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A NOTE ON GEOMETRIC FACTORIALITY

S. M. BHATWADEKAR AND K. P. RUSSELL

ABSTRACT.  Let & be a perfect field such that k is solvable over k. We show that
a smooth, affine, factorial surface birationally dominated by affine 2-space Af is ge-
ometrically factorial and hence isomorphic to /\,2(. The result is useful in the study of
subalgebras of polynomial algebras. The condition of solvability would be unnecessary
if a question we pose on integral representations of finite groups has a positive answer.

1. Introduction. Letk bea field and 4 aregular factorial, affine k-algebra. Suppose
A C k[Z, T], the polynomial algebra in two variables over k. If k is algebraically closed
and k(Z, T) is a separable extension of the quotient field K of 4, then by a famous result
of Fujita and Miyanishi-Sugie, 4 is itself a polynomial algebra over k£ ([F] and [M-S],
see also [R-1] for the case when char k£ > 0). This result fails when £ is not algebraically
closed (see [B-D], Example 4.4 and 4.1 below). On the other hand, in counterexamples
known to us, [k(Z, T) : K] > 1 and moreover, for perfect k, Russell ([R-2], Theorem 1.3)
has shown that when k{Z, T'] is a simple (as ring) birational extension of 4, then again A
is a polynomial algebra over k. We therefore raise

QUESTION 1. Let & be a perfect field and 4 a regular, affine factorial, birational sub-
algebra of k[Z, T']. Is A a polynomial algebra over k?

We were motivated to study this question by considering regular, factorial affine -
algebras B such that

k[X] C B C k[X,Z,T].

It is then natural to ask whether B is a polynomial algebra and, if yes, whether X is
a variable in B. This obviously is true if dimB = 1, and has been shown to hold if
dimB = 2 by Russell and Sathaye ([R-S]). If dimB = 3, it is not difficult to give
counterexamples to the first part of the question (see [B-D], Example 4.4 and 4.2 below),
even if k is algebraically closed. A first step in studying this situation will be to consider
the ring extensions
k(X) C BQ k(X) C k(N[Z,T].
kX

In case the extension k[X,Z, T]/B is birational, an affirmative answer to Question 1
would imply that B is “generically” polynomial over k[X] if chark = 0, a result of
interest even if we assume to begin with that B is polynomial over k.
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The key to answering Question 1 is to ascertain that factoriality of 4 is preserved
when the base field & is extended to L, where L/k is a finite Galois extension. We show
this (see Proposition 3.4) in case L/k is solvable with the help of a result on integral
representations (Proposition 2.2). If the condition of solvability could be removed there,
Question 1 would be answered positively in general.

2. A result from the representation theory. Let G be a finite group and M a finite
Z[G]-module. For any subgroup H C G, we putInvy(M) = {m € M | hm = mVh € H}.
M is said to be a permutation module for G if M is free over Z with a basis S permuted
by G. We then call § a permutable basis for M. M is said to be transitive if G is transitive
on §. It is clear that any permutation module for G is a direct sum of transitive ones,
corresponding to the decomposition of S into G-orbits.

LEMMA 2.1. Let G be a finite group and let M be a transitive permutation left
Z[G)-module. Let H be a normal subgroup of G. Then Invy is a transitive permutation
Z[G | H]-module.

PROOF. Let S be a transitively permutable basis of M and let S, ..., S, be the all
distinct H-orbits of S. Then since H is normal in G and S is a transitively permutable
basis (for G) it follows that any two distinct H-orbits have the same number of elements
and given two orbits S;, S; there exists g € G such that g - S; = ;.

Letw; = Yyes, v € M, 1 < i <t Then Invy(M) = @|_, Zw; and given w;, w; there
exists g € G suchthat g - w; = wj.

Thus Invy(M) is a transitive permutation Z[G / H]-module.

PROPOSITION 2.2. Let G be a finite solvable group. Let F be a permutation Z[G]-
module and let M and N be Z[G]-submodules of F such that F = M & N. Furthermore,
assume M is also a permutation Z[Gl-module. Then Invg(N) = 0 = N = 0.

PROOF. Let H be a normal subgroup of G. Since every permutation Z[G]-module
is a direct sum of transitive permutation modules, it follows from Lemma 2.1 that Inv(F)
and Invy(M) are permutation Z[G/H]-modules. Moreover, Invy(F) = Invy(M) &
Invy(N) and Invg, H(Ian(N)) = Invg(N). Therefore, as F and M are obviously per-
mutation Z[H]-modules, it is enough to prove the result when G is simple. But as G is
solvable, this means that it is enough to prove the result when G is a cyclic group of
prime order.

So we assume |G| = p, p a prime integer. Let g be a generator of G and let I be the
ideal of Z[G] (note that Z[G] is commutative) generated by the element g — 1.

Let F = @], F; be adirect sum decomposition of F into transitive permutation Z[G]-
submodules of F. Since G is cyclic of order p, up to isomorphism Z[G] has only two
transitive permutation modules viz. Z[G] (as a module) and Z (with the trivial G-module
structure). Therefore it follows that Invg(F;) ~ F;/IF; = Z and hence Invg(F) & F/IF.
Similarly Inve(M) ~ M/IM.
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Now F = M @ N and Invg(N) = 0. So we see that N/IN = 0, i.e. IN = N. Since / is
the principal ideal of Z[G] generated g— 1, we get (g— )N = N and hence (g— PN = N.
But g is an element of G of order p. Therefore (g — 1PN = N implies that pN = N.

As N is a submodule of F and F is a free abelian group (since F is a permutation
Z[G]-module), pN = N implies N = 0.

REMARK 2.3. LetF = @_, Fi, where F, ..., F} are transitive permutation modules
of rank ry,...,r;. Then s = rank(InvG(F)) and H%(G,F) ~ ®;_, Z/FZ, where F; =
|G| /ri. (Here H*(G, M) = Inv(M)/ Trace(M); see [L]). Moreover, H(G, N) = 0 in the
situation of Proposition 2.2. So Proposition 2.2 holds for arbitrary finite G in case F, or
M, is transitive. It is therefore reasonable to ask

QUESTION 2. Does Proposition 2.2 remain true without the assumption that G is
solvable?

3. Factorial surfaces dominated by AZ.

LEMMA 3.1. Let k be a field and let L[k be a finite separable extension. Let X be
a smooth, quasi-projective scheme over k. Let x € X be a closed point of X and let
7: X — X be the blowing up of X with the center x (this will be referred to as monoidal
transformation). Then the canonical map: 7;: X; — X, (obtained by base change) is the
blowing up of X, with centre p~'(x) where p: X; — X is the canonical morphism.

PROOF. Without loss of generality, we can assume that X is affine, say X = Spec(4).
Let m be the maximal ideal of 4 corresponding to the closed point x. Let B = 4 ®; L
and let / = mB. Then, since L is separable over £, [ is the defining ideal of the closed
subset p~ ! (x) of Spec(B). Now the result follows from the definition of blowing up and
the following isomorphisms of L-algebras:

BOIOP -~ ADmdm - YQB=ADmDm*--)QL.
A k

LEMMA 3.2. Let k be a field and let L/ k be a finite Galois extension with Galois
group G. Let X be a smooth, geometrically integral, quasi-projective scheme over k.
Then X}, is smooth and integral. The group G acts on the class group CI(X}) inducing a
(left) Z|G]-module structure. Moreover rank(Cl(X)) = rank InvG(Cl(X L)).

PROOF. It is obvious that X} is smooth, integral and G acts (in a canonical manner)
on CI(X}).

Let p: X, — X be the canonical morphism. Let C be an irreducible closed subset of
X of codimension one and let C, ..., C,, be the irreducible components of p~'(C). Then
the codimensionof C} in X, is 1 for 1 <i <nandp*(C) = ¥, C| (as L/k is separable),
where p*: CI(X) — CI(X}) is the group homomorphism induced by p. It is easy to see
that p*(CI(X)) C Invg(CI(X.)).

Since p is a finite morphism and X, X, are smooth, there exists a group homomorphism
P+ Cl(Xz) — CI(X) such that p,p* = multiplication by the integer |G|. This gives the
equality

rank CI(X) = rank(p* CI(X)).
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Let Tr: Cl(X;) — CI(X) be the trace homomorphism defined by Tr(c) = Yeec g - c.
Then it is easy to see that Im(Tr) C Invg(Cl(X;)) and for v € Invg(CI(XL)), Tr(v) =
|G|v. Therefore we get the equality

rank(Im(Tr)) = rank(InvG Cl(XL)).

Since p* CI(X) C Invg CI(X.), to prove the result it is enough to show the inclusion
Im(Tr) C p* CI(X).

Let C' be an irreducible closed subset of X; of codimension 1. Let H = {g |
g € G,g(C') = C'} be the stabilizer of C’" and let p(C') = C. Then we have Tr(C') =
|H|p*(C). Thus we have Im(Tr) C p* CI(X) C InvG(Cl(XL)). Therefore, by both of the
equalities above, we have

rank(CI(Y)) = rank Invg(CI(X,)).

LEMMA 3.3. Letk be afield and let X be a smooth, integral, quasi-projective scheme
over k. Let V be an affine open subscheme of X such that CI(V) = 0 and k* = the group
of units in T'(V), the ring of regular functions on V. Let C\,...,C, be the irreducible
components of the closed set X — V. Then the codimension of C;in X is 1 for 1 <i<n
and CI(X) is a free abelian group with basis {C\,Ca,...,Cy}.

PROOF. Since X is quasi-projective, integral and V is affine, it is clear that the codi-
mension of C; in Xis 1 for 1 <i<n.

Since CI(V) = 0, CI(X) is generated by C1,. .., C,. So it is enough to show that they
are linearly independent.

Suppose 0 = Y7, n;C; in C1(X), where the n; are integers. This means that there exists
a non zero element f of k(X) (the function field of X) such that (f) = S, n;C;, where f
is the principal divisor defined by f on X. Since ;N V =0for 1 <i<n,fand 1 /f are
regular on V and therefore / € £* by assumption. But then (f) = 0. Therefore n; = 0 for
1 <i < nand we are through.

PROPOSITION 3.4.  Let k be a perfect field and A a regular, factorial, birational sub-
algebra of k[Z, T). Let L | k be a finite Galois extension. If the Galois group G = G(L k)
is solvable, then A Q L is factorial.

PROOF. Let X = Spec(4) and A} = Speck[Z, T]. Since 4 is a birational subring
of k[Z, T], we obtain a birational morphism f:AZ — X. Then by Lemma 3.1 (and well
known results on “Resolution of Singularities of Surfaces”) it is clear that there exists a
sequence of monoidal transformations

Xn—ﬂ"_’Xn—l'—""——)/Yll"X

and a morphism g: A2 — X, such that g is an open immersion and 7, om0+ - - my0g = f.
PutY = X,and 7 = m omo---m, ThenTog = f and hence we get a commutative
triangle
A2,y

fL\. ./WL
XL
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with the following properties:
(1) g is an open immersion and g (A7) = ¥, where g(AZ) = V.
Let p: Y; — Y denote the canonical map.
(2) Let C’' be an irreducible closed subset of Y; of codimension 1. Then C' is an
irreducible component of ¥, — ¥, if and only if p(C’) is an irreducible component
of Y — V.

(3) Let E’ be an irreducible closed subset of ¥, of codimension 1. Then 7, (E) = is
a (closed) point if and only if (w o p)(E") = is a (closed) point.

It is easy to establish properties (1), (2) and (3) (with the help of Lemma 3.1) and
these will not be proved.

Let S be the set of all irreducible components of ¥; — V. Then since V; ~ A%, by
Lemma 3.3, CI(Y,) is a free abelian group with S as a basis. Moreover by property (2) it
follows that CI(Y, ) is a permutation Z[G]-module with S as a permutable basis.

Let T be the set of all irreducible closed subsets E’ of Y; such that 7;(E") is a point.
Then by property (3) it follows that G permutes the elements of 7. Moreover, as Y is
obtained from X by a sequence of monoidal transformations, it follows by Lemma 3.1
that the subgroup M of CI(Y}) generated by the elements of T is a free abelian group with
basis 7. Thus M is a permutation Z[G]-module. Furthermore CI(Y,) = CI(X;) & M as
Z[G]-modules.

‘Since A is factorial, CI(X) = 0. Hence by Lemma 3.2, as CIl(X;) is a free
abelian group (being a direct summand of the permutation module CI(Y;)), we have
InvG(Cl(XL)) = 0. Therefore, as G is solvable, by Proposition 2.2 we have CI(X;) = 0,
showing that 4 ® L is factorial.

Let 4 be as in Proposition 3.4. Then there exists a finite Galois extension L /k such
that, in the notation of the proof of Proposition 3.4, all fundamental points of 7, are
rational over L (equivalently, all exceptional curves in Y, are absolutely irreducible) and
all irreducible components of ¥, — A? are absolutely irreducible. Then Aut(k /L) acts
trivially on CI(Y;). If G = G(L/k) is solvable, it therefore follows from Proposition 3.4
that 4 ®y k is factorial. We will say that f: A2 — X is “split” by L /k.

THEOREM 3.5. Let k be a perfect field and f: A? — X a birational morphism, where
X is a smooth, factorial, affine surface. Iff is “split” by a solvable Galois extension L[k,
in particular if Gal(k /k) is solvable, then X is isomorphic to A? over k.

PROOF. X} is smooth and, by Proposition 3.4 above, factorial. By [F] and [M-S],
X; = A% By the triviality of separable forms of A7 ([K], Theorem 3), X ~ A}

4. Some examples.
4.1. Letk=Rand4 = R[x,y,v]/xy—v*— 1. Then 4 is factorial and 4 C R[Z, T] with
x=22+1,y=1+2ZT+(Z* + YT?, v = Z+(Z* + )T (see [B-D] Example 4.4 for a
more elaborate version). This extension is not birational and one of the starting points of
our investigation was the question whether 4 can be birationally embedded in R[Z, T7].
By Theorem 3.5, this is not possible. (Note that 4 ®g C is not factorial).
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4.2 . Let k be a field of characteristic 0, algebraically closed to fix the ideas. We are
interested in affine, regular factorial k-algebras B such that

k[X] C B CkIX,Z,T]

and the extension k[X, Z, T/ B is birational. As an example consider B = k[x, v, ¢, s] with
st—xv=1.Then Bis as above with X =x,Z = %, T= % B is not polynomial over
k, but B ®y(y k(x) is over k(x). Should Proposition 2.2 be true even for non-solvable G,
we would know that this holds in general for B as above. Under the assumption that B is
itself polynomial over k, we would have proved that X is “generically” a variable in B. It
is of course much conjectured, but not yet proved, that then X is in fact a variable in B.
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