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Undulatory slender objects have been a central theme in the hydrodynamics of
swimming at low Reynolds number, where the slender body is usually assumed to be
inextensible, although some microorganisms and artificial microrobots largely deform
with compression and extension. Here, we theoretically study the coupling between
the bending and compression/extension shape modes, using a geometrical formulation
of kinematic microswimmer hydrodynamics to deal with the non-commutative effects
between translation and rotation. By means of a coarse-grained minimal model and
systematic perturbation expansions for small bending and compression/extension, we
analytically derive the swimming velocities and report three main findings. First, we
revisit the role of anisotropy in the drag ratio of the resistive force theory, and generally
demonstrate that no motion is possible for uniform compression with isotropic drag.
We then find that the bending—compression/extension coupling generates lateral and
rotational motion, which enhances the swimmer’s manoeuvrability, as well as changes
in progressive velocity at a higher order of expansion, while the coupling effects depend
on the phase difference between the two modes. Finally, we demonstrate the importance
of often-overlooked Lie bracket contributions in computing net locomotion from a
deformation gait. Our study sheds light on compression as a forgotten degree of freedom
in swimmer locomotion, with important implications for microswimmer hydrodynamics,
including understanding of biological locomotion mechanisms and design of microrobots.

Key words: biological fluid dynamics, micro-organism dynamics, propulsion

1. Introduction

The hydrodynamics of swimming of slender bodies in the Stokes regime has been
intensively studied in recent decades, in particular in the context of swimming
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microorganisms with cilia and flagella, and artificial microrobots made of rod-shaped
particles and flexible filaments (Elgeti, Winkler & Gompper 2015; Lauga 2020). The
locomotion of such swimmers is often achieved by undulatory deformation, therefore
studies on a bending filament in a viscous fluid have constituted a central theme in the field
for more than a half century (Taylor 1951; Gray & Hancock 1955). These slender objects
are usually assumed to be inextensible, although this assumption may not be reasonable
for some biological and artificial swimmers.

In fact, large compressions and extensions have been reported in some unicellular
microorganisms. A slender organelle, spasponeme, seen in Vorticella, can rapidly contract
within a second in response to calcium signalling (Ryu et al. 2016), with its contraction
being rather uniform. A microtubule-based motile organelle, called haptonema, seen in
Haptophyte algae, exhibits a rapid coiling contraction within milliseconds, while the
detailed mechanisms are still unknown (Nomura et al. 2019). Microtubule-supported
pseudopodia of Heliozoan, called axopodia, also exhibit contraction and extension (Suzaki
et al. 1980; Febvre-Chevalier & Febvre 1986). Body contraction is well known in Euglena
as euglenoid motion (Arroyo et al. 2012), and such a body contraction is also seen in
some ciliates such as Stentor (Huang & Pitelka 1973). More recently, an origami-based
mechanism has been uncovered for a large extensibility of a ‘neck’ of Lacrymaria (Flaum
& Prakash 2024).

The millimetre-sized nematode Caenorhabditis elegans is a well-studied model
organism in a large domain of biology, including reproduction, development and
neuromechanics (Meneely, Dahlberg & Rose 2019), and its swimming dynamics is also
well captured by fluid mechanics in the Stokesian regime (Montenegro-Johnson et al.
2016). Since the bending motion of C. elegans is driven by muscular contraction, the
worm inevitably changes its body length during its movement. Hence the measurement
of compressibility has been performed experimentally, for example, by a linear
viscoelastic model (Backholm, Ryu & Dalnoki-Veress 2013). The shape tracking through
videomicroscopy also requires the body contraction/extension for accurate detection of
the body shape (Roussel et al. 2014). Integrated neuromechanical models of C. elegans
therefore include body extensibility (Izquierdo & Beer 2018).

In artificial microrobots, large compressions and extensions are well recognised in
microswimmers made of hydrogels (Nikolov, Yeh & Alexeev 2015; Sharan et al. 2021;
Tan et al. 2024). Motile extensible filament has been experimentally developed via a self-
assembled droplet, in which self-elongation is essential to trigger morphological instability
(Cholakova et al. 2021; Lisicki 2024).

The simplest model of the body—environment coupling of slender bodies in the
inertialess regime is the resistive force theory (RFT), which only considers the local
hydrodynamic drag and does not account for non-local hydrodynamic interactions (Gray &
Hancock 1955; Lighthill 1976). Nonetheless, because of its theoretical and computational
simplicity, RFT has been widely used as an empirical drag model of viscous Newtonian
fluid as well as non-Newtonian fluid (Fu, Powers & Wolgemuth 2007; Riley & Lauga
2017) and granular material (Zhang & Goldman 2014). More recently, RFT-type local drag
models have been used even for terrestrial locomotion, including slithering and legged
animals and robots (Zhang & Goldman 2014; Chong et al. 2023; Rieser et al. 2024). In
these studies with RFT, net locomotion is generated by the drag anisotropy between the
tangential and normal drag coefficients.

Despite these broad interests in the compressible/extensible slender microswimming
from biological to artificial systems, our understanding about the impact of compression/
extension when coupled to bending deformation is still very limited, even in the kinematic
swimming problem where the swimmer shape gait is prescribed. Notable past theoretical
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studies on the role of compression/extension in kinematic microswimming deal with
an extensible filament with isotropic drag ratio that moves in one dimension (Pak &
Lauga 2011), and a slender helical body, numerically simulated with implicit extensibility
by reparametrisation of the body curve (Pak er al. 2012). Another model featuring
compression was studied in the context of crawling worm motions (DeSimone & Tatone
2012; Tanaka et al. 2012), which, however, focused on body—surface interactions with one-
dimensional locomotion, and does not contain a bending mode. Body extensibility was
considered in simulations of an active filament in a viscous fluid, but mainly to stabilise
the numerical schemes (Olson, Lim & Cortez 2013; Ishimoto & Gaffney 2018).

An exception is the kinematic two-link scallop swimmer with compression/extension,
which has been studied recently by Gidoni, Morandotti & Zoppello (2024), focusing on
the controllability problem. The famous Purcell scallop theorem (Purcell 1977; Ishimoto &
Yamada 2012) states that a reciprocal deformation cycle cannot generate net locomotion in
Stokes flow. Since compression/extension provides an additional degree of freedom, even
the simple scallop model with a single bending angle can generate net locomotion. To the
best of the authors’ knowledge, however, the impacts of the compression/extension during
bending motions have not been studied comprehensively.

Our aim in this study is therefore to theoretically elucidate the mechanical coupling
between body compression/extension and bending of self-propelled kinematic slender
bodies at low Reynolds number, which we hereafter refer to as the bending—compression
coupling for brevity. For this purpose, we use the geometrical theory of microswimming
(Shapere & Wilczek 1989), which relies on the connection operator linking net motion
as the product of a cyclic body deformation. The swimmer trajectories are obtained by a
geometrical integration based on the Magnus expansion (Hatton & Choset 2015), with Lie
brackets capturing the effects of motion non-commutativity.

Equipped with this framework, we make further analytical progress by two methods:
coarse-graining the deformation of the swimmer to a minimal set of two degrees of
freedom, and focusing on small-amplitude deformation in the general case. Regarding the
choice of deformation cycles, we examine two illustrative examples, uniform compression
and bending—compression wave, motivated by biological locomotion such as body
contraction of unicellular microorganisms and muscular contraction of nematodes.

Upon laying out the dynamics and deriving analytical expressions for the coarse-
grained and small-amplitude cases, our results on the bending—compression dynamics in
slender microswimmers may be outlined as three main findings. First, we demonstrate that
bending—compression coupling allows net locomotion in the case of isotropic drag, even if
the swimmer’s total body length remains constant over time, rectifying a prior statement
by Pak & Lauga (2011) that overlooked the active role of local compression. Second,
we observe the prominent role played by bending—compression coupling in enhancing
the swimmer’s ability to rotate in the fixed frame, through the emergence of a coupled
lower-order term in the averaged rotational velocity from small-amplitude theory. This
improved turning ability is also confirmed by numerical simulations at large amplitude.
Finally, the expressions that we obtain for swimming velocity through perturbative analysis
highlight the importance of the Lie bracket terms due to non-commutativity between
rotation and translation in deriving the swimmer’s net locomotion, which is often bypassed
in analogous studies on flagellar swimming. The bending—compression swimmer provides
an instructive example warranting the crucial role of non-commutative terms in a broader
context of microswimming theory.

The paper is organised as follows. In § 2, we introduce our general compressible/
extensible slender object, and present a general statement on locomotion with isotropic
drag. In §3, we consider a minimal theoretical model similar to the compressible/
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(@)

Figure 1. Schematic of a filament in three frames of reference. (@) A filament in a reference state. The arc
length s € [0, Lo] is used for parametrisation of the curve. (b) A filament in the body-fixed frame at time .
The point labelled by so is mapped to X (so, #), where the distance along the filament is denoted by s(so, 7),
and the local tangent angle is represented as 6 (sg, £). (¢) A filament in the laboratory frame, which is obtained
by rigid body transformation, translation with X (¢), and rotation by @ (¢), from the filament in (b). The point
X(so, t) is mapped to x (s, ).

extensible scallop swimmer by Gidoni et al. (2024), focusing on elementary locomotion
gaits and the case of isotropic drag. We then analyse a general slender object via
a systematic perturbation theory on small-amplitude bending and compression in §4.
Two example swimmers, uniform compression and bending—compression wave, are
then examined in §§5 and6, respectively, followed by a discussion on swimmer
manoeuvrability by compression in § 7, before final conclusions are drawn in § 8.

2. Problem setting and general properties
2.1. Coordinates, kinematics and dynamics

We consider a slender self-propelled object moving in a plane, which we denote as our
x—y plane, as illustrated in figure 1. The shape of the slender filamentous object is
described by its centreline curve. The length of the filament, L, may change over time
due to self-compression/extension. To represent this effect, we introduce a Lagrangian
label s € [0, Lo] as the arc length of the filament in the reference state, where L is the
reference length of the filament (figure 1a). We then consider the compression/extension
at time ¢ in the form

as

— =1+np(so, 1), 2.1)
950

where s = s (50, t) is the arc length of the current configuration at time ¢ (figure 15). Here,
we introduce a constant n for later use. The body-fixed frame is introduced as a frame
attached to the leftmost point of the slender body, as shown in figure 1(b). The position
labelled by sg is deformed to X (sg, #) in the body-fixed frame, and the tangent angle is
given by 6(so, 1). We describe self-deformation of the swimmer as

b(s0, 1) = €q(s0, 1), (22)

where the constant € is introduced for later use.

The body shape in the laboratory frame is obtained by a rigid body transformation,
translation with X (), and rotation by @ (¢), as in figure 1(c). The point X (sg, ¢) in the
body-fixed frame is then mapped to x(s, ¢) in the laboratory frame by x = X + Rpx,
where R is the two-dimensional rotation matrix by an angle ©. In this study, we consider
the kinematic problem amounting to solving the displacement X (¢) and ® (t), where the
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shape gait is provided by the two intrinsic functions, p(so, t) and g (so, ¢), that physically
correspond to local extensibility and local bending angle, respectively.

The velocity of the local point on the body in the laboratory frame is obtained as
the Lagrangian time derivative defined as Dx /Dt = dx(sg, t)/dt. To compute this, we
introduce the linear velocity U = (U, Uy)T and the angular velocity 2 = 2e,, with
§£2 = d® /dt; the superscript T denotes the transpose. The local velocity is then given by

DX _ Ut e x i+ Ro X 2.3)
— = e, XX 9—-. .
Dt ‘ “ Dt

To determine the motion of the object, we calculate the drag forces acting on an
infinitesimal segment of the filament via the empirical RFT. With Cjj (> 0) and C| (> 0)
being the tangential and normal hydrodynamic drag coefficients per unit length, the drag
from the environment is obtained as

Dx
[f(s,1)=—-C ( e||) e —CL (E'ej_> e, 2.4)

where e|(so, 1) and e (so, t) are tangential and normal unit vectors at the segment of
the filament, respectively. The ratio y :=C, /C) is called the anisotropy ratio, and the
particular case y =1 is called isotropic drag. In this study, we take this as an arbitrary
positive value. For swimming in low Reynolds number flow, it is known that y — 2 in the
slender filament limit (Gray & Hancock 1955), and empirically y =1.5—1.8 is used for
flagella and cilia (Lighthill 1976; Friedrich et al. 2010). When the flagellum possesses an
accessory hairy structure known as mastigonemes, however, the effective anisotropy ratio
y may be lower than unity (Brennen 1976; Asadzadeh et al. 2022). In contrast, locomotion
of C. elegans on a gel-like structure is well described by a large anisotropy ratio y =~ 70
(Keaveny & Brown 2017).

To close the system and calculate the locomotion velocity, we employ the force-free

= (F, F ) = 0 and torque-free M = Me, = 0 conditions in the body-fixed frame:

L(t) L(1)

s, 1) ds=/ ¥ x f(s,1)ds =0, (2.5)
0

0
where we employ the torque around the point X (¢). Equations (2.4) and (2.5) yield a closed
form for the kinematic problem, allowing us to uniquely determine X and ® from a given
deformation p and g.

We denote the translational velocity in the body-fixed frame by U = (U,, Uy)T, and
introduce a 3 x 3 matrix representation of the Lie group G € SE(2), also known as

homogeneous representation, as
_(Re X

and the associated Lie algebra se(2), whose elements A acton SE(2) as G= Q.fl, with the
matrix representation

X 0 2 U,
A=1-0 o Uy | - 2.7
0 0 O

The ‘hat’ notation of A is standard in solid mechanics and refers to the correspondence
between the matrix representation of the Lie algebra se(2) and its twist coordinates stacked
in a vector (representation) A = (./Zl)v =U,, U Vs )T,
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To derive the expression in the laboratory frame, we directly solve the differential
equation on the rigid body motion, and represent its solution as

T
G(T) = G(0) Pexp [/ A) dt} , (2.8)
0

where the symbol P denotes the reverse path ordering operator (Shapere & Wilczek 1989).
Using the Magnus expansion, this formal solution (2.8) may be expanded in a Lie brackets
series as

T R 1 T t R R
G(T) = G(0) exp [ f Aty dn + 5 / dn /0 dr, [A(zo,A(rz)]

/ dry / dn, / di3 (LA, A1), Atx)1] + [A1), [A<zz>,A<r1>]])+---],
2.9)

where the bracket symbol represents the matrix commutator [fl(tl), fl(tz)] =
A(n) Aln) — A(n) A(n).

An alternative path to the computation of G resorts to gauge field theory (Shapere
& Wilczek 1989; Zhao et al. 2022). By linearity of the RFT, the matrix .A may be
decomposed as

A= " Hu6y, (2.10)

where oy (@ =1,2,..., N) is the shape variable, and N is the number of degrees
of freedom in the shape space, with the overdot symbol denoting the time derivative.
Here, 7, is called a gauge field or Stokes connection, as it depends only on the shape
variables. A local connection maps a shape variation to a velocity for a given body
shape, independent of swimmer position and orientation (Kelly & Murray 1995). Using
the matrix representation of SE(2), the connection He is represented by a third-rank
tensor of dimensions 3 x 3 x N; we may also ‘drop the hats’ in (2.10), using the twist
coordinates A, which would, in turn, represent the Stokes connection H, as a 3 x N
matrix H = (Hy; Hy; Hy), where the semicolon denotes vertical concatenation. The
integral representation (2.8) is then rewritten as

G(T) =G(0) Pexp {Z/ ”F(O,(a)daa] (2.11)
« /C

where C is a path in the shape space. We are particularly interested in the net locomotion
caused by a periodic shape gait, which is represented by a closed loop in the shape space.
In the small-amplitude case, by neglecting terms above third order in the expansions, the
net locomotion is well described by a surface integral of the curvature in the shape space
as (Hatton & Choset 2015)

G(T)~GO)exp | > /S Fup(0) dog dog |, (2.12)
a, B Vo€
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where Sc is a region in the shape space enclosed by the close loop C, and the associated
curvature form, also called field strength or Stokes curvature, is defined as
A . 87:20( 87:[13

Fap +[Ha. Hp). (2.13)

N dog 00y

When pulled back to the vector representation of se(2), the curvature field F has three
components, F = (Fx, Fy, Fo)T, which can be interpreted as the effect of small loop
gaits on each spatial direction according to Stokes’ theorem. Finally, according to the
Ambrose—Singer theorem (Ambrose & Singer 1953), we have (Shapere & Wilczek 1989)

- . 1 T,
Pexp U A() dt] ~ 1+ 3 Z/ Fopoa0p dt, (2.14)
0 B 0

up to the second order of amplitude.

2.2. Locomotion with isotropic drag

In this subsection, we focus on the particular case of isotropic drag, i.e. y = 1. Note that
the arguments below are not limited to planar motion, but are valid for general three-
dimensional motion without external forces and torques.

Isotropic drag has been known to hinder locomotion. The classical RFT study by Gray
& Hancock (1955) considered simple sinusoidal transverse deformation, and theoretically
showed that drag anisotropy allows net locomotion. Becker, Koehler & Stone (2003) later
extended this argument to a general self-propelled free-swimming slender object, and
showed that no net motion is possible in isotropic drag with only bending deformation.
These studies, however, neglected rotational dynamics; it was then proven that isotropic
drag may be compatible with net rotation (Koens & Lauga 2016). Finally, considering
extensible slender swimmers, Pak & Lauga (2011) argued that time variation of the total
length can generate net locomotion in isotropic drag.

However, ambiguity remains regarding the need for total length variation, and the exact
role played by compression in allowing locomotion in isotropic drag. Here, we answer
precisely with the proposition below.

PROPOSITION 1. Assume that y = 1. Let X be the centre of geometry of the swimmer,
defined as

. 1 L(t)
X(t):Z/O x(s, 1) ds. 2.15)

Then the following statements hold:

(i) If the compression is spatially uniform (3p/dso = O for all times), then X =0, i.e. no
net motion is possible.
(ii) Otherwise (dp/dso # 0), net motion is indeed possible.

Of particular note, case (ii) includes the case L =0 of constant total length, contrary to
the statement by Pak & Lauga (2011), which restrictively assumed that the arc length s is a
materially conserved quantity. This, however, is not always the case for active compression,
as seen in the proof of Proposition 1 below. o

Proof of Proposition 1. Let us compute the time derivative of X, recalling that the arc
length s is provided as a function of the Lagrangian label s¢ as s = s(so, t), which yields
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the following change of variable in the integral (2.15):
dX d [ 1

Lo
T Z/o x(so, 1) (1 +1n p(so, 1)) dSo], (2.16)

where L is the body length in the reference frame. The right-hand side of (2.16) is then
computed as

L [t 1 (Lo 9x(so, 1) n Lo ap
—-— , ) ds + — — d — ,1)— dsg. (2.17
| xen S+L/o 20 1+ p) S0+L/O X(s0, 050 dso. (217)
Assuming isotropic drag (C = C| = C), the second term vanishes, because one has
Lo 9x (s0, 1) L Dx 1 [k
— ,1))dsg = —ds=— ds=0 2.18
/0 ” (147 p(so, 1)) dso /0 Dr & C/o fds (2.18)

from the force balance equations (2.4) and (2.5). By writing L as

dL d Lo Lo p(so, 1)
@ ar ) [1+7n p(so. 1)] dso n/o ” 50 (2.19)
we may summarise the motion of the centre of geometry in the isotropic drag case as
dXx Lo ap(so, t ~ L0 ap(so, t
— n / x(s0, t)M dsg — X/ M dso |, (2.20)
dr L|Jo at 0 at

which is clearly non-zero in general, hence point (ii) of the proposition. Note that we can
also recover, from (2.20), the zero motion for an inextensible object, by setting n = 0.

Now we assume uniform compression, i.e. dp/dso=0, so dp(sg,1)/dt=p.
Equation (2.20) then becomes

dX pp [ [*o —1_np [Lo /LO -
— = J)dso— LoX | = = | == .0 dso— LoX | =0,
P [/0 x(so, 1) dso — Lo ] LT ), x(so, )(1 +np)dso — Lo
(2.21)

which proves point (i). [

The first term on the right-hand side of (2.20) clearly highlights how the coupling
between the local position and the compression rate contributes to the net motion, and
this means in particular that a change of total length is not essential for the generation of
motion. In the following sections, we quantitatively investigate the role of this coupling.

3. Minimal model of swimming with bending-compression coupling

In order to illustrate the statement of Proposition 1 and explore further how locomotion
can result from the coupling between curvature-type and compression-type degrees of
freedom, we first consider a minimal model, made of two rigid links connected by a hinge
(figure 2). In this minimal model, compression is materialised by a uniformly distributed
variation of the lengths of the links, while bending is represented by the varying angle
between the links. Here, we consider an additional relationship between the lengths of
the two links in order to retain only one independent parameter for compression; then we
obtain a system with two shape variables (N = 2 in the previous section): one angle for
bending, and one length ratio for compression.

If we further forbid compression, then the model becomes the so-called ‘scallop’, which
famously cannot swim (Purcell 1977); it is often used as an illustration of the fact that in
inertialess environments, at least two degrees of freedom are necessary for a deformation
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€1

X = (X0, Yo)

Z

Figure 2. Set-up and notations for the minimal model.

cycle to result in net locomotion, which can be seen from the connection structure in (2.10).
In turn, several studies have proposed minimal models with a second degree of freedom,
whether it is angular (‘Purcell swimmer’) (Purcell 1977; Moreau 2019; Ishimoto, Moreau
& Yasuda 2022), linear (‘three-sphere swimmer’) (Najafi & Golestanian 2004; Yasuda,
Hosaka & Komura 2023) or volumic (“push-me-pull-you swimmer’) (Avron, Kenneth &
Oaknin 2005; Silverberg et al. 2020).

In this section, we add to this family what we could playfully call a ‘squeeze-
me-bend-you swimmer’, with compression as a second degree of freedom. A similar
model has been studied in Gidoni et al. (2024), with a comparison between different
distributions of compression along each link (i.e. the function p(sq, t)), and focusing on
model controllability with a limited range of y. Beyond controllability, the simplicity
of the model allows analytical computation of the Stokes connection and curvature
fields, which we use here to gain intuition of the locomotion capabilities offered by
bending—compression coupling, and propose elementary gaits.

3.1. Model

We consider an idealised planar swimmer made of two rigid slender rods Si, S» of lengths
£1, £2, connected by a junction, and assume that the swimmer is situated in an x —y plane.
The position of the swimmer with respect to the fixed frame (e,, ey, e;) is represented
by the position of the junction between the two rods, and is denoted by x¢ = (xg, yo).
Additionally, we consider two moving frames (e1 |, e1,1) and (e2, |, €2, | ) attached to each
rod. We denote by 6y the angle between e, and e; |, and by « the angle between e
and e ||. These angles are taken positive for an anticlockwise rotation from e, and ey |,
respectively.

Here, we assume that the angle « and the lengths £1, £5 evolve in time according to some
prescribed gait, and aim to derive the effect of such a gait on the swimmer configuration
in space: position x¢ and orientation 6. To track the current length of segment S; with
respect to its reference length E?, we introduce B; such that ¢; = ,3,-6?.

In particular, we focus on two subcases of interest for the compression. The first
case is uniform compression. Unicellular swimming microorganisms such as Stentor
and Lacrymaria exhibit morphological changes of their helically coiled structure
during the compression and extensions, and it is reasonable to assume uniform
compression/extension as a simple model of their deformation. In the two-link model,
this means £{ = £, at all times, or

1020 A1-9
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4
pr= g1 3.0)
2

which yields B = B, at all times if 9 = ¢.

The second subcase is the constant total length, which fits case (ii) of Proposition 1
and may model distributed muscular contraction. In the two-link model, it translates as
b+l = Z(l) + Zg at all times, or

ZO
mz(lzg g, (3.2)

which means 81 4 B =2 at all times if E(l) =

For sg € [0, Z?], let x;(sp) be the coordinates of the point of Lagrangian label sy on
segment i, with the origin of coordinates being taken at the S;—S> junction. Then it holds
that

x1(s0) =x0 — soB1e1,, (3.3)
x2(s0) = x0 + soB2e2,, (3.4)
and it follows, for the local velocity at x; (sp), that
¥1(s0) = %0 — sopre1,| — sobifer 1, (3.5)
X2(s0) = X0 + soPrez, +s0B2(0 +a)ea | . (3.6)

Using (2.4), we can express the local force density exerted by the fluid on the swimmer at
point x; (so):

fitso)=—Cy(x;-e)ey —C(xi-ei)e]. (3.7
Then one can compute the total hydrodynamic force on each segment, scaled by extension

Bi:
¢
Fi=|[ fdS; = Bi fi(so) dso, (3.8)
S; 0
which yields
Fi= —)'C,BM?(C” cosfpey, —Cyrsinbper )
— yﬂlﬂ(l)(C” sinfy ey, +Ccosbtper 1)

. )2 . (1)?
+ 60C LBy > e, +C BB 5 €Ll (3.9

F,= —)&0/3268 (Cjcos(Bp+a)er —Cysin(Bp+oa)ep 1)

— Y0 B2t (Cy sin(Bp + @) ez, + C cos(fp +a) e, 1)
— , (9)? . (€9)?
+ (B0 +a)C1 B e 1 +Cpp S el (3.10)

Similarly, the torques 77 and 7> on each segment with respect to the junction point, and
projected on e, are given by

(€? g%3
/31 CL— (—Xg cos By + yg cos bp) +90ﬁ

@)

(3.11)

ﬂﬂ3

T, =pB3C.
1020 A1-10
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Since inertia is negligible, we can write balance of force and torques at all times:

{ Fi+F,=0,

T+ T, =0. (3.13)

Using (3.9)—(3.13), and plugging the expression for 8, with respect to 81, one can derive
the Stokes connection that links shape velocities (&, B1) to rigid motion velocities in the
reference frame (xg, yo, 6p):

X0 .
Ao, @, B1) [ 30 | = B0, o, B1) (gl). (3.14)
o

To highlight the existence of a connection, we rewrite the resistance matrices in a
moving frame (e, |, €4, 1) representing the average orientation of the swimmer, namely
at 8g 4+ o¢/2. As noted by Hatton & Choset (2015) and Bass, Ramasamy & Hatton (2022),
this frame has the important advantage of minimising the error accumulated by higher-
order terms when integrating the Stokes curvature (2.10) over a loop trajectory in the shape
space. Hence we define A, = Rg_()]_,’_a/ZARQO+a/2 and B, = Re_o1+a/zB’ and write (3.14) in
the form,

X0 .
R7! o |=H(5), 315
fo+ar/2 gg (51> (3.15)

where the connection  is given by H = A ' B,,.

Now let us give detailed expressions of these matrices in both cases of interest, (3.1)
and (3.2). For simplicity, we assume Z? = Zg = (. In the case of uniform compression (3.1),
one obtains

0 0
B1y L cos <%) £ sin (%)
Tl ener (@] frracpw @ T
~1/2 0

Then one can compute the velocity of the geometric centre from its definition as x,, =
(1/4)2x0 + x1(€) + x2(£)), which, expressed in the rotating basis (e, |, €4, 1), yields the
motion only in the y,, direction, with its velocity given by

£ cos (%) (y — l)|:,61 sin o + aTﬂl(cosa — 1):|

2y —2cosa+2ycosa+2

Ym = , (3.17)
from which we deduce that any translational motion occurs along the y, direction.
Moreover, it is clear that isotropic drag (y = 1) forbids any translation, in agreement with
case (i) of Proposition 1.

In the case of constant total length (3.2), one has

£(y +cosa —ycosa + 1) Lsina(B; — D(y — 1) —y€%sin (a/2) (812 — 281 +2)
A= Csina (B — D)(y — 1) L(y —cosa+ycosa+1) —2p 02 cos (a/2) (B1 — 1)
—y@sin(@/2) (B> —=2p1 +2)  —2yLcos(@/) (Bi—1  —2/3)y (361> — 61 +4)
(3.18)
1020 A1-11
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and
—(y/2)€ sin (@/2) (B1 —2)* € cos (a/2)
B,=| (y/2€cos (/2) (B1 —2)* —Lsin(@/2)(Br—D]. (319
(y/3) (B —2)° 0

leading to the connection £ = A, ! B,, in the form

2y0B%(B1 — 2)%(B1 — 1) sin(er/2) Py () € cos(ee/2) Pia(e)
YEBA(B1 — 2)% cos(a/2) P () yL(B1 — D sin(e/2) Pu(a) | .

(B1 —2)% P31 (a) B1(B1 —2) Py ()
(3.20)

B 1
" Q(cosa)

where P;; are polynomials in cos «, sina, 81 (whose expressions are too lengthy to write
fully) and y, and Q is defined as

0() =L [3p1(Ty2x% = Ty — 1yx? = 2yx + 13y +4x” — 4)
+ 1283 (= T2 + 72 + 1ya? 4+ 2yx — 13y —4x? + 4)

3 37
+ 1681 (Ty*x* — Ty — llyx* — VXSV +4x? — 4)

+8B1(—7y2x> + Ty + 1lyx? — 35y —dx? +4) + 112y ]. (3.21)

The expression for the motion of the geometric centre can be calculated with symbolic
calculus software but is too tedious to be reproduced here, even in the particular case of
isotropic drag. We can, however, evaluate it at specific shapes in the case y = 1 to ensure
that motion is indeed possible. For isotropic drag (y = 1) and flat shape (¢ =0, 6y =0),
one obtains

e, 7B1L(B1 — 12(B1 —2
L T L il et (322)
2 4387 — 9681 + 56
and for links of equal length (8; = 1), one obtains
£cos(a +6p) . . £sin(a + 6p) .
=Bl Sm=—— . (3.23)

2 2

In both cases, it is clear that the geometric centre does not stay fixed, despite the total
length of the swimmer remaining constant. This simple example therefore provides a
constructive proof for point (ii) of Proposition 1.

3.2. Gait prediction

From the expression of the connection, one may obtain the curvature of the gauge field 7
following (2.13). Since the squeeze-me-bend-you swimmer possesses only two degrees of
freedom, each scalar component of F can be easily visualised on a two-dimensional plane
(o, B). Moreover, any deformation gait can be represented in the same plane, and (2.10)
indicates that the net locomotion produced by the gait will be, at first order, proportional to
F integrated over the (algebraic) area enclosed by the gait cycle in the shape space. In the
following, we use this principle to design simple gaits achieving elementary motion in each
available direction, demonstrating the swimming capabilities of the squeeze-me-bend-you
swimmer model.

1020 A1-12
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(a) Ty
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'3 1.0
0.5
-2 0 2
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w o

-2 0 2
o

Figure 3. Curvature fields for the squeeze-me-bend-you swimmer, as defined in (2.13). Dotted black
lines indicate zero-curvature level set. Suggested gaits are indicated by a continuous black line, and the
corresponding deformation sequence of the swimmer is represented on the right of each curvature plot:
(a) y-displacement for uniform compression, (b) x-displacement, (¢) y-displacement, and (d) 6€-displacement,
with time progress shown by the arrow and colours.

We first examine the uniform compression case, in which only the y component of F
does not vanish, and takes a remarkably simple form depending only on « (and notably

not on B):
cos (%) — 3 cos (%)3‘

a2 2
(2 cos ( 2) + 2)

The function F, is even and 27-periodic. On the interval [—m, ], it vanishes at £
and *a,,, with o, = arccos(—1/3) (which, serendipitously, happens to be the ‘tetrahedral
angle’ measured between a diagonal of a cube and its adjacent edge). It is therefore of
constant sign on the interval [—o,,, o), ], suggesting that to ensure maximal displacement,
the swimmer must fold between these two values, with compression 8 alternating between
any two set values with the same periodicity in the meantime. Such a gait is represented
in figure 3(a).

In the constant length case, the symbolic expression of F is not nearly nice enough to
be analysed in the same way, or even reproduced here. We may nonetheless evaluate it
numerically, and its three components are plotted in figure 3(b—d). Then it is possible
to predict the qualitative behaviour of the swimmer after some gait by leveraging the
symmetries of F (Shammas, Choset & Rizzi 2007), as is classically done in analogous
studies on minimal swimmer models such as the Purcell swimmer (Avron & Raz 2008).
In figure 3(b), one may first observe that F, is odd in «. For this reason, a simple circular
or elliptical gait centred at (0, 1) would fail to produce any net locomotion in the direction
x. A good candidate for a successful gait would be a ‘butterfly’ gait as shown in figure 3(b).
Note that in the meantime, no motion in y or 6 would result from this butterfly gait, due to

1020 A1-13
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the even parity in « of ) and Fy visible in figure 3(c,d). On the other hand, to generate
net motion purely in the y direction, an elliptical gait centred at &« = 0 may be considered,
but needs to be shifted away from 8 = 1 to avoid producing net rotation at the same time,
as shown in figure 3(b).

As one can infer from Fy in figure 3(d), elliptical gaits centred at (0, 1) will rotate
the swimmer in the reference plane. We note that the net rotation after one cycle is
outstandingly high when compared to the capabilities of its cousin in the family of minimal
swimmer models, the Purcell swimmer, which features only bending and no compression.
Indeed, under the reasonable assumption that o € [—, ], a simple optimisation routine
on elliptical gaits shows that the Purcell swimmer can reach a net rotation of around 7t /2
rad in one cycle, at most, while the squeeze-me-bend-you swimmer can achieve a rotation
of nearly 31t /2. This high orientational manoeuvrability suggests that compression, even in
a small amount, plays a prominent role in the orientational dynamics of slender swimmers.
We further quantitatively evaluate this enhancement of manoeuverability in § 7.

4. Small-amplitude theory

In this section, we go back to a general slender object, but with a particular focus on a small

bending and compression regime in order to quantify the effects of bending—compression

coupling on the locomotion at low Reynolds number, by assuming €, n < 1 and n = O (¢).
The position in the body-fixed frame is then expanded such that

S0
X(s0, 1) =/ cos(0(sg, D) (1 41 p(sy, 1) ds;,
0
S0 62 ) 5 5
ZSO+77/ p(so. 1) ds(’)—? q°(sp, 1) dsg + O(en), 4.1)
0 0

50
y(s0, 1) :/o sin(6 (sg, 1)) (1 + 1 p(sg, 1)) ds

50
:e/ q(sg, 1) [L+ 1 psg, D] dsg + O(€?). 4.2)
0
Also, the local tangent and normal vectors need to be expanded as
ej(so,)=(1,€q)" +0() and ey (s0,1)=(—eq, )" + O(e?). (4.3)
By plugging (4.1)-(4.2) into (2.3), we have the deformation velocity as
Di 9% 0 3p €2 [ dg*(s), 1)
—=—(s0,1) = — (s, 1) dsy — — ——0 Zds) + O(e*n), 4.4
Dr at(so ) 77/0 8t(so ) ds 2/0 ” 50+ O(e™n) (4.4)
Dy 9y %09
=2y _y(so, ) =c¢ / — [q(s(/), t) (1 +n p(S(/), t))] dS6 + 0(62), 4.5)
Dt ot o Ot

noting that the perpendicular deformation velocity contains both the bending and the
compression.

We consider expansions with respect to the small parameters € and n for the velocities
in the body-fixed frame and rotational velocity. With the velocities in the body-fixed
frame written as U = (Ux, Uy) ie. U= ROU we use the following notations for the
expansions:

b= 00 402+ 00 4. “6)
O, =00+ 0@+ 00 4 .. @)
Q=00 + o + 0® R 4.8)

1020 A1-14
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where the superscripts (0, @ and @ indicate the linear, quadratic and cubic terms of €

and n, respectively.

4.1. Leading-order calculations

We first consider Fx = 0 by substituting (2.1)—(2.2) into (2.5), to obtain, up to the second
order of expansions,

/L b, + 2 d—Q/L y ds + €( 1)fL 0, + 25+ 2
A 5, s =€ A qyds +e€(y A q y X Dr s
+ 0(3, €%). 4.9)

Here, we find that the right-hand side of (4.9) is of the second order of small parameters,
while the left-hand side is of the first order of magnitudes. Hence at the leading order of
the expansions, we have

5 Lo 50 g
U“):—ﬁ/ / P (s 1y dst | dso. 410
O==T || s 0 ds|as (4.10)

We then consider the force balance in the normal direction by imposing F y =0, which
is written as

L
e(y—l)/ (U —I——)ds_ / <Uy+.§2x—|—];—>ds+0(e n). 4.11)
0

Similarly, the torque balance M = 0 reads
L (-  Dx L /. Di
e(y—l)f qx UX+D— ds—l—/ y Ux—i-D—t ds
L ~
=y/ (U —|—.Qx+—) ds 4+ 0(€, €2n). (4.12)
0

By similar order estimates for (4.11)—(4.12), we find that in the leading order, only the
right-most integral contributes in each equation. Hence we obtain

. L2 Lo 0
LUV + =020 +e / 2 (50, 1) dso = 0, (4.13)
2 o ot
L—ZU(,])+L—3.Q(”+6/LO soa—q(s(), 1) dso =0, (4.14)
2 Y 3 0 dat
yielding the first-order velocities
. 6e (Lo /2L dg
I _ _ = -~ _ -1
Uy =—73 / ( 3 s0> ” dso, (4.15)
12¢ L dg
oM f = 2 dso. 4.16
L3 A 5 S0 ar S0 ( )

4.2. Second-order calculations

We then proceed to the second-order velocities, by substituting the leading-order results
into the force and torque balance equations (4.9)—(4.12).

1020 A1-15
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We start with the tangential force balance. The second-order contributions are
calculated as

L L S
3 ) 3 D
LO® +/ (W, — 205) ds + (1 — y)f q (Uy(l) + W5+ D—f) ds=0, (4.17)
0 0

where we introduced

Dx

Dr" (4.18)

Wi (s, 1) := UV +

From (4.17), we may readily obtain the second-order tangential velocity 0,52). Similarly,
the normal force balance and torque balance equations are expanded up to second order as

L - L - Dy - L2
e(y—l)/ gW, ds:y/ UP 4+ Wi+ = )ds+y(LUP + 2@ ) 4.19)
0 0 Y Dt Y 2

and

LZ 5 L3
209D L= 0@
+y(2Uy +50 ) (4.20)

respectively. Hence U y(z) and 2 may be calculated by evaluating the integrals in (4.19)—
(4.20) up to second order.

4.3. Third-order calculations

To obtain the third-order progressive velocity, one needs to expand the position x and ¥,
and the vectors n and ¢, up to the third order of small parameters € and ;. The force balance
equations in the x direction (4.9) are therefore evaluated as

L
0§3>L—s§<2)/ )7ds+/
0 0

L ~
- - - <. D
+ e(1—y) / [U}(,l) +UP + (21 +29)x + D—f] ds =0, 4.21)
0

L L

[+ 00 = 2V5] (1-202) as ey [ gPibas
0

by neglecting the fourth- and higher-order terms. Since the first- and second-order
velocities are all calculated, by substituting these expressions into (4.21) and evaluating

the integrals, we may obtain the expression for the third-order tangential velocity U )53).

5. Bending wave with uniform compression
5.1. Uniform compression

As an illustrative example, we first consider locomotion with bending wave and uniform
compression, given by

p(so, t) =sin(wt) and ¢g(sg, t) =sin(ksg + wt + ¢), 5.1

1020 A1-16
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where ¢ € [0, 27t) denotes the phase difference between the two modes. For simplicity,
we assume that the filament contains an integer number of waves, i.e. kLg=
27, 47w, +6m7, .. ..

The first-order calculations provide

. L

U;') = _I9%0 s wt, (5.2)

N 6ew

o = % sin(wt + ¢) — L cos(wt + ¢), (5.3)

o = 1260 ot + ), (54)
k2L

0
which vanish after averaging over a time period.

We then proceed to calculating the second-order contributions. The tangential velocity
at the second order may be calculated from (4.17) as

2 2
- 1 6
0 =52 | (v = D)+ 5 cosQot +2¢) | = 255 (y =2) [1+cos(2r +29)]. (5.5)
2k ar
By calculating the integrals and solving the linear problem at the second-order
equations (4.19)-(4.20), we obtain

- —1 3y —1
U® — _ene iy cos ¢ + Y cosRwt + ¢)
Y 2k % Y
3 2y =3 4y =3
e [( Y ) sin ¢ + ( Y ) sin(er +¢)} (5.6)
k2L} Y
@  Benw [y —1 . .
02V = —— |\ [sin ¢ + sinRwt + ¢)] . 5.7
k2Lg Y
By taking the time average, we have
2 20
~ €“w
U.) = 1) - 5.8
(U) =5 = 1) kst(V 2), (5.8)
~ enw [y —1 3enw (2y — 3\ .
Uy)=—— — , 59
and for the angular velocity,
18enw [y — 1) .

)= — | sing, 5.10
(@)= ( . ¢ (5.10)

where we introduced the time average symbol, (e) = (1/T) fOT e df, and deformation
time period T = 27 /w. To obtain the expressions in the laboratory frame to second order,
one needs to take the non-commutative effects into account as in (2.9). Instead of using
the gauge-theoretical method, we directly compute the Magnus expansion (2.9), as the
shape variable is not obvious in the continuous filament model. The final results are then
obtained as

W)= 20 1= ) (5.11)
) = - (”—_1> cos 4 SN ( - 1) sin ¢, (5.12)
y 2k Uy k?Lo \ 'y
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Figure 4. Top: sample trajectories of a swimmer under uniform compression with different phase shifts, (a)
¢ =0and (b) ¢ = 1t/2. The parameters are e =n=0.4,y =2, Lo =1, kLo =27 and w = 1. With the initial
position (0, 0) (marked by a red dot) and the initial angle 6 = 0, we drew the orbits of the leftmost end of the
filament from ¢ =0 to # = 10. The configuration at # = 10 is also shown. Bottom: time sequence of swimmer
shape from ¢t = 0 to = 1 with the local extension visualised by the colours.

while the rotational velocity is unchanged from (5.10). We clearly find no net locomotion
with the isotropic drag (y = 1) for the uniform compression as in the general theory in
§2.2.

The corrections by the Lie bracket appear in the second terms in (5.11)—(5.12), which
represent the finite-size effect of the body, and vanish in the limit kL — oco. Many math-
ematical models with bending motions including the Taylor sheet and a slender filament
model usually assume one-dimensional motion, while this simplification is only valid for
an infinitely long body, because the instantaneous lateral and rotational motion, in general,
does not vanish. This result highlights the importance of the motion non-commutativity
for a finite-sized swimmer with lateral oscillation, the so-called yawing motion.

Although the compression itself does not generate progressive velocity, the bending—
compression coupling in the O (en) terms generates both normal translation and rotation.
This notably underlines the enhancement of manoeuvrability through body compression.
In fact, by manipulating the phase shift ¢, the swimmer is able to make a turn in both
directions.

When sin ¢ =0, as found from (5.10), no net rotation is generated. To analyse this no-
net-rotation property in the large-amplitude case, we numerically examine the swimmer
dynamics, by discretising the slender swimmer by N small segments with length ¢;
(i=1,...,N), known as the N-link model (Moreau, Giraldi & Gadé&lha 2018). In the
case of the current kinematic problem, we prescribe the segment length and the angle
between the ith and (i + 1)th segments, which we denote by o; (i=1,..., N —1).
The force balance and torque balances (2.5) are then computed by summing the
contributions from each segment. These balance relations then form linear equations for
the translational and rotational velocities. In the numerical calculations below, we use N =
40, which guarantees satisfying numerical accuracy for our purpose. Although the non-
local hydrodynamic interactions are not negligible outside the small-amplitude regime,
we use the resistive drag relation as empirical modelling, with a focus on the effects of
the bending—compression coupling and the mechanical roles of drag anisotropy. Sample
trajectories of the swimmer are shown with its shape gait in figure 4. The no-net-motion
property still holds even outside the small-amplitude regime, as seen in figure 4(a).
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(b)

t——t—c

Figure 5. Schematics for the symmetry arguments of the no-net-rotation property: (a) the original shape in the
body fixed frame with velocities U and §2; (b) the shape after the time reversal with a shift c =kLo/w — T/2;
(c) the head-to-tail inversion; (d) the m-rotation of the system.

In fact, this can be predicted by considerations on the symmetry of the shape gait. Let us
consider two linear changes of variables: time reversal with a phase shift t — t' = —¢ +
T/2 + kLy/w, followed by head-to-tail inversion sg —— s(/) = Lo — sg (figures Sa—c). Then
the bending and compression functions are unchanged: ¢ (s, t') = ¢ (so, t) and p(s, ') =
p(so, t), from the assumption on kLq. Hence the positions in the body-fixed frame also
remain the same, after taking a m-rotation of the system as illustrated in figure 5(d). With
this transformation of 59 and 7, the time derivatives of p and g have an additional minus
sign, dq’/dt' = —dq/dr and dp’/dr’ = —dp/dt, yielding again the same shape velocity
after the additional m-rotation of the system. Therefore, we recover the same shape and
shape deformation velocity, while the rotation direction is reversed after the sequences of
transformations (figure 5d). To compensate for the uniqueness of the motion with given
boundary conditions, the net rotation must vanish, while the instantaneous rotation is still
allowed by the phase shift in the transformation of z.

With sin ¢ # 0, the above symmetry arguments are no longer available. Hence, as in
the case ¢ = /2 of figure 4(b), net rotational motions are generated by the bending—
compression coupling, allowing the swimmer to turn.

5.2. Symmetric uniform compression

We then consider a symmetrical situation, where the functions p(so, ) and g(so, t) are
given by

p(so, t) =sinQRwt) and ¢ (sg, t) = sin(ksy + wt + @), (5.13)

to focus on progressive velocity. The assumption of an integer number of waves is again
employed here.

By expanding the velocities up to second order, direct calculations then lead to the
progressive velocity in the body-fixed coordinates

2

@) _ €@ _ 1 _ 67w
Uy = " [(y 1)+200s(2wt+2¢)} k3L%

eza)

(¥ —=2) [1 +cosQut +2¢)],
(5.14)

as well as normal and rotational velocities

Senw [(5” — 6) sin(p — wt) + (7” — 6) sin(3er + ¢)} (5.15)
y y

k2L,
36 1
Q® = % (”T> [sin(¢ — wt) + sin(3et + ¢)] . (5.16)
0
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By taking the time average of the second-order velocities, we obtain

2

02 =20 -1y - 52, ) (5.17)
ST w2 T '

and (Uy) = (£2) =0 as expected by symmetry. After including the non-commutative
effects between the normal translation and the rotation, we recover the same expression
as in the asymmetrical case,

620)

2 6
U@y = Z—,ﬁ”(y—l)— vy —1). (5.18)

k3LZ

Now let us examine the third-order contribution for the tangential velocity. We need
to expand X (so, 1) and y(so, t) as well as the vectors e (so, #) and e (sp, ¢) up to third
orders of € and 7. The third-order tangential velocity in the body-fixed frame is therefore
obtained by substituting the first- and second-order velocities into (4.21), and evaluating
the integrals. Since the expression is lengthy, we present only the time-averaged velocity

(T), given by

2 2
~ 3 5y —6
(O) = 2y = 1)sin2¢ — = ”“’( Y

oLl ) (y — 2) sin 2¢. (5.19)

We then evaluate the Lie brackets in (2.9) from the matrix .A by employing the first- and
second-order velocities as well as U )53). The averaged tangential velocity in the laboratory
frame may be calculated up to third order in the form (U, ) = (U,Ez)) + (U,E3)), with

U9 = Gzﬂ( — 1)sin2¢ — 3¢lnw (M) (y — 1) sin 26 (5.20)

ST ez \y )V ' '
Hence, thanks to the corrections coming from the non-commutativity of the rigid motion,
we recover case (i) of Proposition 1.

The effect of uniform compression may be found at third order with an increase or
decrease of velocity depending on the phase difference ¢. We also numerically examine
the effect of the uniform compression outside of the small-amplitude region, and plot the
ratio of the averaged velocities with and without compression, (Uy)/{Ux|;=0)), in figure 6.
For small amplitude, we obtain that this ratio is expressed, up to third order, by a linear
function of 7 as

3) —1 -1
U U 15-24 6
le_M:Q 1272 V(o2 ) (5.21)
(Ux|n=0> (U§2)> 2 kzL% kzL%

As seen in the figure, the impact of the compression is linearly proportional to the
compression size n, which agrees well with what the small-amplitude theory predicts. The
quantitative agreements are more precise as the wavenumber k increases (see figure 6b).

Remarkably, the plots in figure 6 are only weakly affected by the size of €, although the
small-amplitude theory cannot apply for large €.

6. Bending-compression wave

Motivated by muscular contraction, we then consider a bending—compression wave with a
simple sinusoidal wave of p and ¢, given by

p(so, t) =sin(ksg + wt), q(sg, t) =sin(ksg + wt + ¢). (6.1)
1020 A1-20
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Figure 6. Impacts of uniform compression on the swimmer velocity. The averaged velocity is relative to a
non-compressive bending swimmer. We used symmetrical uniform compression with @ =2n and y =2 for
different values of n and ¢ € {0, £m/4}. We used wavenumbers (a) k =2x and (b) k = 6.

(@) () (©)
[“j “~ 0.3

-> 0.2
<< 7 01 970 %
o . 0
1) -
0 02 04 06 08

X X

Figure 7. (a) Schematic of contraction and extension of an elastic body that exhibits bending and compression
(shown by arrows). (b,c) The configuration of the swimmer with a bending—compression wave. The parameters
aree =n=04, Lo=1, kLo =2m, w=1, and the phase shift is chosen as (b) ¢ =0 and (c) ¢ = /2. We
set the position as (0, 0) and the initial angle as & = 0. The local extensibility of a slender body is shown by
different colours, from blue (compressed) to red (extended).

As illustrated in figure 7, local contraction of one side of a slender body yields both
compression and bending.

For brevity, we again assume that the filament contains an integer number of waves,
ie. kLo =22m, +4m, +6m, . ... Also, to avoid displaying unnecessarily cumbersome
expressions in the general case, we focus on two illustrative examples, ¢ = 0 (figure 7b)
and ¢ = 1t/2 (figure 7¢). This shape morphology is a counterpart example of the ’squeeze-
me-bend-you’ swimmer, with the total length L of the body remaining constant in time
due to the assumption of an integer wavenumber k.

6.1. The ¢ =0 case
When ¢ = 0, the compression and bending, p and ¢, are given by
p(so, 1) =q(sg, t) =sin(ksy + wt). (6.2)

An example shape of the swimmer is shown in figures 7(a) and 8(a), and the local
extension p(sg, t) is visualised by the different colours from blue (compressed) to red
(extended).
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Using the results derived in the previous section, (4.10), (4.15) and (4.16), we readily
obtain the leading-order velocities by direct calculations as

oo = % sin o, (6.3)
- € 6¢
;1) = 70) sin wt — kle:) Cos wt, (6.4)
a _ 12ew 6.5
= %coswt. (6.5)

The time average of these velocities all vanish at this order, (U )51)) = (U}(,l)) = (W) =0.
To examine the net locomotion, we proceed to the second-order calculations. The

tangential velocity 17;2) may be obtained by substituting the leading-order expressions
into (4.17). After some manipulations, we have

2 2
~ 6
U)£2) = ;0_]( |:€2(V -1 - ,72 + % cos(2wt):| — %(y —2)(1 4 cosRwt)). (6.6)

From the linear equations for ljy(z) and 2@ in (4.19)—(4.20), we may derive the second-
order contributions:

. 1 20t 3 1
g = <1 | Lty cos@on ] 3enw (¥ 1Y Ghou, 6.7)
2k y 2kZ Ly Yy
3 |
Q@ =212 (i) sinQwr). (6.8)
K2Ly \ vy

To obtain the locomotion after a full deformation cycle from the instantaneous
velocities, we consider the extra contribution from the non-commutative Lie algebra
(see (2.9)) in addition to the time average of the velocities in the body-fixed frame, which
gives

1) 6w
UP)=—[(y—De—n*]—(y -1 €, 6.9
(U 2k[(y )e-—n7]— (v )k3L(2) (6.9)
enw  benw
U(,Z) - — )
Wy 2vk  K3L2
and the average angular velocity is simply the time average in the body-fixed frame,
(£2)=0.

The tangential velocity (U )52)) contains an additional compression term of O (%), which
remains for a purely compression/extension wave without bending. Note that the direction
of swimming from the compression wave is opposite to the locomotion from the bending
wave.

The normal velocity (U y(2)> does not vanish. This notable effect of the drift velocity is
generated by the bending—compression coupling, seen as the O (en) term. The rotational
motion, however, vanishes after taking the time average. To examine the dynamics
outside the small-amplitude theory, we numerically solve the system and plot an example
trajectory in figure 8(a). As seen in the figure, the no-net-rotation property still holds
for a large amplitude, and this property is derived by the symmetry arguments as in the
uniform compression case, where we consider the m-rotation of the system after the time
reversal with a phase shift and the head-to-tail inversion t —t' = —t +T/2 — kLy/w
and so —> s(/) = Lo — s¢ (see also figure 5). In this case, the symmetry arguments follow
for any wavenumber k.
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(b)

1.0

t t

Figure 8. Top: sample trajectories of a swimmer with a bending—compression wave with (a) ¢ =0 and ¢ =
7t/2. The parameters are the same as in figure 7. With the initial position (0, 0) (marked by a red dot) and the
initial angle 6 = 0, we drew the orbits of the leftmost end of the filament from # = 0 to = 10. The configuration
at t =10 is also shown. Bottom: time sequence of swimmer shape from 7 =1 to t = 10. The colour of the
swimmer represents the local extension with the same colour as in figure 7.

6.2. The ¢ =m/2 case

We then consider the situation with ¢ = 7/2, where the contraction of one side of the
body travels down, and an example shape is shown in figures 7(b) and 8(b), with different
colours illustrating the compressed (blue) and extended (red) regions.

We start with the small-amplitude regime, where we follow similar calculations as in
the previous sections. By executing the calculations up to second order, and calculating
the Lie brackets in (2.9), we may derive the expressions of the velocities in the laboratory
frame as

w 6w
U =_—[(y —De* —n*] = (y = )¢, (6.11)
* 2k K3L3
3enw (v +1
U@y = _ ). 6.12
(Uy~) k2L0< > > (6.12)
6 1
(@)= 2<ne (r 1y (6.13)
K2L} Y

The velocity (U, ) has the same expression as that of the ¢ =0 case, while the normal
and rotational velocities are qualitatively different. In particular, net rotational motion is
generated. An example trajectory with its shape gait is shown in figure 7(b).

6.3. Symmetric bending—compression wave

Muscular contraction is typically generated symmetrically to avoid drifting and turning
motions. In this subsection, therefore, we consider a symmetric bending—compression
wave, given by

p(so, t) =sin(ksg +2wt) and q(sg, t) = sin(ksg + wt + ¢). (6.14)

For brevity, we again assume that the filament contains an integer number of waves, i.e.
kL =27, £4m, +£6m, .. ..
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We first consider the case with ¢ = 0. The first-order calculations provide

2
oo = % sinQat), (6.15)
6
U(l) = 7 sin(wt) — k;lcj) cos(wt), (6.16)
) 12ew
2V = 212 cos(wt), (6.17)
0

which yields no net motion or rotation. Up to second order, we may obtain explicit forms
by estimating the integrals in (4.17) as

2 2
~ 2 no 12¢“w 2
gP=-T24+22 [3 2y — 2 cos? wt] o (y —2) cos? wt, (6.18)
5 -2
Uy(z) = EZ—ka) |:2 <y > ) coswt —3 cos(3a)t)}
1 4
+ D2 i (Y siner — 3 (2222 sinGon | (6.19)
4k?L y y
3 3y +4
2@ = Gin wr + 12 [6 (y - )coswt —3 ( s )] sinwr.  (6.20)
2 2k2L2 y ¥
By taking the time average, we derive
- 6€2w
o =3[ —1 2—22]— ~2), 6.21
(U7 =50 (v = Dem = 2n kSL%(y ) (6.21)

and zero normal and angular velocities
UP)=0, (2@ =0, (6.22)

as expected from the symmetry.
After the non-commutative algebra, the averaged velocity for the tangential velocity in
the reference frame is calculated as

6€w
2
k3L

(U=

X

(y — D2 — 2 ] (v — ). (6.23)

il

We then proceed to the third-order contributions for the progressive velocity,
using (4.21) and the second-order expressions (6.18)—(6.20). Direct calculations lead to
the time-averaged velocity

- 3e2nw
U@y =—"1, 6.24
0= e (6.24)

which is, however, found to be cancelled out in the laboratory frame after calculating the
Lie brackets such that

(U =o. (6.25)

The zero velocity contributions at third order are similar to those of the classical Taylor
sheet (Taylor 1951), but are different from the uniform compression case.

The case ¢ = 1t/2 can also be calculated in a similar manner. By executing the second-
order calculations, we found that the expression of the averaged progressive velocity (Uy)
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Figure 9. Numerical simulation of averaged swimming velocity (U, ) (in the reference frame) of the swimmer
driven by a symmetrical compression wave with Lo =1, kL =2n, ¢ = 7/2 and w =27 for different values
of € and 5. The dashed line is a null curve of the velocity predicted by the small-amplitude theory up to third
order, which is in excellent agreement when € < 0.4.

is identical to that obtained in the ¢ =0 case (6.23), together with zero normal and
rotational velocities due to the symmetry. At third order, the progressive velocity has a
form similar to (6.24), i.e.

~ 3e2nw

UGy = — , 6.26
0 == (6.26)

and after including the non-commutative effects from the Lie bracket, this contribution
vanishes again: (U,E3)) =0.

Hence both when ¢ =0 and ¢ = /2, according to the analysis above (see (6.23)), net
locomotion disappears when

77| 12 \y—1
- = l——— ) —. 6.27
‘e kzL(z) 2 ©:27)

To test these theoretical results, we numerically compute the averaged swimming
velocity for a finite amplitude with different € and 7, with the same numerical scheme
as in §5. The results are shown in figure 9, together with the theoretical prediction of
the null curve by the small-amplitude theory (6.27). As seen in the figure, the theoretical
prediction is in excellent agreement when € < 0.4.

7. Manoeuvrability by bending-compression in different drag environments

In the previous sections, we have seen that a phase difference between the bending and
compression modes may generate swimmer rotation. To further qualitatively examine
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the manoeuvrability of extensible swimmers, in this section, we evaluate the power
consumption for drift and turning motion in the small-amplitude model, and compare the
turning dynamics by bending—compression coupling with those of inextensible slender
swimmers. Moreover, we numerically highlight the important role of the anisotropy drag
ratio y to plan the swimmer’s motion after a gait.

Inextensible microswimmers with cilia and flagella control their orientation by laterally
asymmetric beating, as seen in chemotactic sperm cells (Shiba et al. 2008). To represent
an asymmetric waveform, we consider a non-zero mean curvature in the bending
angle as

6(s0, 1) = €q(so, 1) + K50, (7.1)

where a constant x corresponds to the mean curvature in the absence of compression.

We first perform perturbation analysis with the small-amplitude theory in §4, by
assuming €, 1, k < 1, n= 0(¢) and k = O(¢). Following the previous analyses in §§ 5
and 6, we consider functions of p(sp, t) and g(sg, ¢) for uniform compression (5.1) and
bending—compression wave (6.1). With the assumptions of the integer number of waves,
kLo = =£2m, +4m, .. ., the difference in the tangent angle is simply é(Lo, t) — 5(0, 1) =
kL.

We then redo the perturbation calculations of §§5 and 6, including the non-zero
mean curvature. The resulting expressions reveal that in both the uniform compression
and bending—compression wave cases, the time-averaged translational and rotational
velocities are unchanged up to the second order of expansion, regardless of the non-zero
mean curvature. In particular, the lateral and rotational velocities are (Uy) = O(en) and
(£2) = O(en), respectively, and the effects of x only appear in the higher-order averaged
velocities. Moreover, we note that O (ex) terms appear in the instantaneous velocities, but
all vanish by taking the time average. This quantitatively demonstrates the importance
of the compression-driven turning in terms of swimmer manoeuvrability compared to
asymmetric inextensible bending.

Further, the energy consumption (P)= ([ f(s)-u(s)ds) may be computed
analytically from the small-amplitude theory. We find, in both the uniform compression
wave and bending—compression wave, the identical leading-order expression

2 2
w“Lg 12 Lo
(P) (1 - k2L2) ye? + n?, (72)
0

2k?

in the non-symmetrised case, where the frequencies of bending and compression are equal.
Here, the overall constant prefactor is omitted. In line with Lighthill (1976), a possible
definition of swimming efficiencies (a rate of energetic conversion) may be

Effprog = C||LO(UX>/<P>’ (73)
Effgrir = CLLo(Uy) /(P), (7.4)
Effym = CRLG($2)/(P) (7.5)

for progressive, drifting and turning efficiencies, respectively, where Cg is the rotational
drag coefficient. It is worth mentioning that the progressive efficiency is always smaller
than the inextensible swimmer in the uniform compression case, because the compression
does not contribute to the progressive speed (5.12). From the small-amplitude theory, the
drifting and turning efficiencies have the form aen/(be? + cn?), where a, b and ¢ are
independent of the amplitudes € and 5. Therefore, we may find the optimal ratio of 1 and
€ from the expression of (P) as
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Figure 10. Numerical simulation of averaged angular velocity (£2) (in the reference frame) of the swimmer
driven by (a) uniform compression wave and (b) bending—compression wave with Lg=1, kL =2m and
w=2m, e =0.4, ¢ =0.57 for different values of « € [0, =] and n € [0, 0.8].

-1/2
n"_(i_ 12 (7.6)
<\ Tez) '

We then examine the swimmer manoeuvrability for the finite-amplitude case by
numerically evaluating the time-averaged rotational velocity for different values of 5
and «, while the other parameters are fixed. In figure 10, we show an example of the
contour plot of (£2) for the uniform compression (figure 10a) and bending—compression
(figure 10b) cases. In both cases, the contour is rather horizontal in the small-x regime,
suggesting that asymmetric beating with non-zero mean curvature could be less efficient
than bending—compression coupling to generate net rotation.

In addition to the deformation gait, the environment properties modelled by the
anisotropic drag ratio y also strongly impact the swimmer’s manoeuvres. Recalling
Proposition 1, uniform compression in isotropic drag cannot produce net locomotion. This
is numerically confirmed as seen in figure 11(a), where we plot positions and orientations
after one beat cycle of a uniform compression swimmer with different values of y from
02t040(y €{0.2,0.4,...,1.8,2.0}U{3,4,...,40}). Initially, the position X is taken
at the origin, and the orientation angle ® is set to zero, as shown by the black dot and
the black arrow. After one beat cycle, the swimmer moves towards the +x direction
with potitive lateral migration (+y direction) when y < 1, and the direction of the lateral
motion is reversed when y > 1, while no displacement and rotation are generated when
y = 1. In the bending—compression wave case, as shown in figure 11(b), the swimmer may
move in both positive and negative x directions, and the net displacement and rotation are
both generated even when y = 1, as predicted by the small-ampltiude theory.

8. Conclusions

We have theoretically investigated the impact of compression or extension on the bending
motion of slender objects at low Reynolds number, with a particular focus on the bending—
compression coupling effects, motivated by some biological and artificial microswimmers
that exhibit a large amount of compression and extension.

We first revisited the effect of body extensibility on swimming with isotropic drag, first
discussed by Pak & Lauga (2011), refining the arguments to prove that no net motion
is possible by uniform compression with an isotropic drag (Proposition 1). Since the
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Figure 11. Positions and orientation, X and @, after one beat period T for (@) uniform compression and (b)
bending—compression wave with different y values. The positions and orientations are depicted by blue circles
and red arrows, respectively. Initial position (0, 0) is marked by a black dot, and the initial orientation ® =0 is
shown by the black arrow. Parameters are the same as in figures 4(b) and 8(b): e =n=0.4, Lo =1, kLo =2x
and w = 1. The value of y is changed from from y = 0.2 to y =40.

bending—compression coupling, in general, generates an instantaneous rotation or yawing
motion, we employed the gauge theoretic formulation and the Lie bracket to deal with the
rotation—translational coupling.

We then introduced minimal theoretical models with two degrees of freedom, one
from bending and the other from compression/extension. The first model, which we
referred to as the compressive scallop swimmer, undergoes uniform compression. The
second minimal model, which we introduced as a ’squeeze-me-bend-you’ swimmer, has
a constant total length, but the position of the hinge can vary over time. We computed
the curvature field that characterises the locomotion, and the results illustrated several
deformation modes to generate translation and rotation, highlighting the enhancement of
manoeuvrability and complexity of emergent dynamics through the compression during
swimming.

We then examined a general slender body, with systematic perturbation analyses
within the small-amplitude regime both for bending angle amplitude ¢ and compression
amplitude 7n, with €, n < 1. As counterpart examples to the minimal models, we
theoretically and numerically examined in detail the uniform compression as well as the
bending—compression travelling wave, both being motivated by biological swimmers and
relevant also in robotics.

The results are summarised in table 1. The analysis shows that bending—compression
coupling triggers transverse drift and turning behaviours, at the order of O(en). With
the coupling effects, the swimmer can make a turn, although the emergent behaviours
depend on the phase shift between the bending and compression. This result highlights
the importance of the shape gait symmetry, and we have found that net locomotion is only
generated by the breakdown of symmetry.

To focus on the progressive velocity of the swimmer, we then considered uniform
compression with a double frequency. Detailed perturbation analysis found that the
bending—compression coupling appears as the increase or decrease of swimming speed at
the order of O (¢27) in the uniform compression case, while the higher-order contributions
vanish for the bending—compression wave case. In both cases, the theoretical prediction
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Uniform compression Bending—compression wave
Case ¢=0,7 ¢#0, Symmetric ¢=0 ¢=7/2 Symmetric
Section §5.1 §5.1 §52 §6.1 §6.2 §6.3
() € €’ e €+’ €+ 1’ € +n?
() - - e - - 0
(U}(,Z)) €n €n 0 €n €n 0
(2@ 0 €n 0 0 €n 0

Table 1. Summary of the orders of magnitude appearing in the small-amplitude analysis. Amplitudes of
bending and compression are denoted as 7 and €, respectively.

well explained the numerical simulations, illustrating the usefulness of the systematic
perturbation analysis incorporating the non-commutative effects of translation and rotation
through the higher-order Lie brackets. Such a non-commutative effect has long been
neglected in theoretical calculations of microswimmer models such as the Taylor sheet and
slender filaments, for example by assuming an infinite body length and one-dimensional
locomotion. In contrast, we have explicitly derived the finite-size effect of a slender
bending filament at the Stokesian regime. The motion non-commutativity is inevitable for
finite-sized bending swimmers that possess in general instantaneous lateral and rotational
velocities. Such yawing effects in microswimmers are usually considered rapid time scale
dynamics and often naively averaged out. However, if the swimmer dynamics is coupled
with outer environments, then the long-time behaviour is no longer a simple average due
to nonlinear interactions. This has been recently studied through multiple scale analysis
for coupling with external flows, boundaries, neighbours and spatial viscosity variations
(Walker et al. 2022a,b, 2023; Kanazawa & Ishimoto 2024).

Several extensions of the framework presented in this paper may be envisioned.
As mentioned in §2, we circumscribed our study to the kinematic problem, where
deformation is prescribed. In the elastohydrodynamic problem, by contrast, deformation
is an unknown, and a description of the internal active forcing and constitutive law of the
deformable body, as well as suitable boundary conditions, is required to close the dynamics
equations (e.g. Passov & Or 2012; Ramasamy & Hatton 2021; Ishimoto, Moreau & Yasuda
2023; Alouges et al. 2025; Ishimoto, Moreau & Herault 2025). Of course, it is challenging
to observe, measure and model those internal forces in biological swimmers. Therefore,
the dynamic problem, known as active elastohydrodynamics, is less straightforward. We
hope to be able to solve the inverse problem of finding which internal activity can give
rise to a prescribed bending—compression deformation in future studies. Another avenue
of follow-up research would be to investigate the role of shear deformation in efficient
locomotion. While less prominent as an active locomotion mechanism, transverse shear
in slender bodies is studied in microscopic organisms (Gadélha et al. 2013). It would be
interesting to explore its role in locomotion using the same mininal model approach.

Our results on bending—compression coupling unveiled emergent drifting and rotation
dynamics as well as modulations of progressive velocity by nonlinear interactions, which
could be beneficial for higher manoeuvrability of locomotion. Also, these findings will
be useful for better understanding of biological functionality in microswimmers with
compression and extensibility (Yanase et al. 2018; Wan 2019; Cammann et al. 2025),
as well as for designing soft artificial microrobots using the compression/extension
degree of freedom, such as hydrogels (Nocentini et al. 2018). Our study sheds light on
compression as an important degree of freedom in locomotion at low Reynolds number,
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and more broadly in a dissipative medium, including slithering and crawling animals on
the ground. Also, the theoretical methodology based on the geometrical formulation of
microswimming will be widely applicable to yawing behaviours and non-commutative
translation—rotation coupling in microswimming.
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