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Prolongations and Computational Algebra

Jessica Sidman and Seth Sullivant

Abstract. We explore the geometric notion of prolongations in the setting of computational algebra,

extending results of Landsberg and Manivel which relate prolongations to equations for secant vari-

eties. We also develop methods for computing prolongations that are combinatorial in nature. As an

application, we use prolongations to derive a new family of secant equations for the binary symmetric

model in phylogenetics.

1 Introduction

The notion of prolongation originated with Cartan in the context of differential ge-

ometry [4, 10, 12]. We give the simplest formulation of the definition below. Since

we are using differential operators, we will assume that our ground field K has char-
acteristic zero.

Definition 1.1 Let S = K[x1, . . . , xn], and let A ⊆ Sd be a vector space of polyno-
mial forms of degree d. The r-th prolongation of A, denoted by A(r), is

{

f ∈ Sd+r

∣

∣

∣

∂r f

∂xβ
∈ A for all β ∈ N

n with |β| = r
}

.

In this paper our interest lies not in the role of prolongation in differential geom-
etry, but instead in exploring the applications of purely algebraic reformulations of

the definition to three areas: algebraic geometry, commutative algebra, and phyloge-

netics. In particular, we will explain and generalize results of Landsberg and Manivel
[13] connecting prolongations and secant varieties, as well as apply these ideas to the

computation of some nontrivial secant equations arising in phylogenetics.
Recall that if X ⊂ P

n−1 is a projective variety, Secr(X) = X{r} is the Zariski closure

of the union of all r − 1 planes spanned by r points in X. Let I = I(X) and suppose

that the smallest degree of a minimal generator of I is d. If A = Id , the significance of
the prolongation A(r) comes from connections to secant ideals of I.

Theorem 1.2 Let X ⊆ P
n−1 be a variety over an algebraically closed field of charac-

teristic 0, with I = I(X) ⊆ 〈x1, . . . , xn〉
d and A = Id. Then A((d−1)(r−1)) is the degree

r(d − 1) + 1 piece of the ideal of the secant variety X{r}.

Theorem 1.2 generalizes [13, Lemma 2.2] which concerned prolongations of
spaces of quadratic forms. In a subsequent paper [14], Landsberg and Manivel al-

lude to a generalization of their lemma for higher degrees, but never give a precise
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statement. At the heart of the proof of Theorem 1.2 are connections relating pro-
longations to polarizations of homogeneous forms and to symbolic powers of ideals.

Relationships between symbolic powers and secant ideals are not new; for example,
containment of secant ideals in symbolic powers appears explicitly in[6, Proposition

2.1] and [20, Corollary 4.8] shows that if X is smooth, a graded piece of a high enough

symbolic power cuts out its secant line variety set-theoretically.
One reason that Theorem 1.2 is useful is that it allows for the straightforward

computation of equations that belong to the secant ideals I(X{r}) using linear alge-

bra. Note that by [15], r(d − 1) + 1 is the lowest degree in which there can exist
a nonzero polynomial in I(X{r}). Even if I is generated by A = Id, it need not be

the case that A((d−1)(r−1)) generates I(X{r}). In spite of this, in several instances of
practical interest, the prolongation provides many nontrivial equations in secant ide-

als that are difficult to derive directly from the definition of the secant variety. Thus,

prolongation at least brings us one graded piece closer to understanding secant ideals.
We conclude the paper by returning to our original motivation, which was the

relationship to algebraic statistics, where algebraic varieties are interpreted as statis-

tical models. Passing to the secant variety in algebraic geometry amounts to taking a
mixture model in statistics. We will use prolongations as a tool for describing non-

trivial secant equations for the binary symmetric model in phylogenetics, which has
received attention recently in the algebraic geometry community [5, 17].

This paper is organized as follows. We describe several equivalent definitions of

prolongation in Section 2, ending with a proof of the relationship between prolon-
gations and symbolic powers. In Section 3, we describe algorithms for computing

prolongations. Theorem 1.2, which connects prolongations and secant equations,

will follow from results in Section 4. Part of our proof follows along the lines of
ideas from [13, 14], which we attempt to make more explicit, and part of the proof

depends on a new application of the join of two ideals. We derive some nontrivial
secant equations for the binary symmetric models in Section 5.

Notations and Conventions

Since we are working with differential operators, unless explicitly stated, we assume

that K is a field of characteristic zero. In situations where we need K to be alge-
braically closed, we explicitly state this.

All varieties X are projective and reduced, but they need not be irreducible, that is,
we assume that the ideal I(X) is homogeneous and radical, but not necessarily prime.

Let N denote the non-negative integers. If α = (α1, . . . , αn) ∈ N
n, then α! =

α1! · · ·αn!. If |α| = d, we let
(

d
α

)

denote the multinomial coefficient with parts
α1, . . . , αn. We write 1 to denote a vector in which each coordinate is 1. A monomial

in the polynomial ring K[x1, . . . , xn] = K[x] is given by an element α ∈ N
n where

xα
= xα1

1 · · · xαn
n .

2 Prolongations: Equivalent Definitions

In this section we focus on making explicit the translations between purely algebraic

descriptions of prolongation and Definition 1.1. The importance of the algebraic
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definitions is that they allow us to connect the notion of prolongations to commu-
tative algebra and algebraic geometry, specifically, to symbolic powers and equations

defining secant varieties.
In the interest of keeping our introduction to prolongations self-contained, we

briefly review the definition of the symmetric algebra in terms of the tensor algebra as

well as the basics of polarization, although this material will be well known to some.
We define prolongations from the quotient algebra point of view in Section 2.1. We

translate the definition into the language of polarization in Section 2.2. Finally, we

illustrate how thinking of prolongation in terms of polarization leads to connections
with symbolic powers.

2.1 Prolongations and the Symmetric Algebra

In this section we will recast the definition of prolongation in terms of the symmetric
algebra, viewed as a quotient of the tensor algebra.

Let V be a finite dimensional vector space over a field K, and let V ∗ denote its

dual. We follow the conventions of [9, Appendix B]. The reader may also want to
consult [8, Appendix A2] or [21, Chapter 1].

We let T =
⊕

d≥0 TdV ∗ be the tensor algebra of V ∗, where TdV ∗ denotes the
tensor product of V ∗ with itself d times. The symmetric algebra S, on V ∗ is defined

to be the quotient of T by the ideal 〈x⊗ y − y ⊗ x | x, y ∈ V ∗〉. If we pick a basis x =

(x1, . . . , xn), for V ∗, then we may identify S with K[x1, . . . , xn], the homogeneous
coordinate ring of PV . A monomial xα of degree d represents the equivalence class

of tensors which map to it under the canonical projection T → S.

The co-multiplication or diagonal map Sd+rV ∗ → SdV ∗ ⊗ SrV ∗ will be impor-
tant in what follows. First, we describe it using the intrinsic point of view of [8, Ap-

pendix A2.4]. Recall that the diagonal map ∆ : S → S⊗S sends x ∈ V ∗ 7→ x⊗1+1⊗x.
We get a map ∆d,r : Sd+rV ∗ → SdV ∗⊗SrV ∗ by restricting the diagonal map to Sd+rV ∗

and composing this with the projection to SdV ∗ ⊗ SrV ∗. For example, since

∆(x2 y) = (x ⊗ 1 + 1 ⊗ x)2(y ⊗ 1 + 1 ⊗ y)

= x2 y ⊗ 1 + 2xy ⊗ x + y ⊗ x2 + x2 ⊗ y + 2x ⊗ xy + 1 ⊗ x2 y,

we see that the co-multiplication map ∆2,1 sends x2 y to

2xy ⊗ x + x2 ⊗ y ∈ S2V ∗ ⊗ S1V ∗.

Following [21, p. 5] we can also describe the co-multiplication map by its action
on monomials in terms of our basis x. If i1 ≤ · · · ≤ id+r, then

xi1
· · · xid+r

7→
∑

xiσ(1)
· · · xiσ(d)

⊗ xiσ(d+1)
· · · xiσ(d+r)

,

where we sum over all permutations σ of d + r elements such that σ(1) < · · · < σ(d)
and σ(d + 1) < · · · < σ(d + r).

The reason that co-multiplication appears in connection with prolongation is that

it is closely related to partial differentiation.
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Lemma 2.1 If F ∈ Sd+rV ∗, then ∆d,r(F) =

∑

|β|=r

1

β!

∂rF

∂xβ
⊗ xβ .

Proof By linearity it suffices to assume that F is a monomial, F = xα. The projection

of ∆(xα) to SdV ∗ ⊗ SrV ∗ is the sum of all of the terms of ∆(xα) that can be written

in the form − ⊗ xβ with |β| = r. Since

∆(xα) =

n
∏

i=1

(xi ⊗ 1 + 1 ⊗ xi)
αi ,

there will be
(

α1

β1

)

· · ·
(

αn

βn

)

terms in the product of the form − ⊗ xβ, all equal to

xα−β ⊗ xβ. But

(

α1

β1

)

· · ·

(

αn

βn

)

xα−β ⊗ xβ
=

1

β!

∂rxα

∂xβ
⊗ xβ.

We can use co-multiplication to see that the algebraic definition of prolongation
given in [13, §2.1.3] is equivalent to Definition 1.1.

Lemma 2.2 If A ⊂ SdV ∗, then A(r)
= (A ⊗ SrV ∗) ∩ Sd+rV ∗.

Proof Note that ∆d,r maps F ∈ Sd+rV ∗ to an element of the form

∑

|β|=r

Fβ ⊗ xβ ∈ SdV ∗ ⊗ SrV ∗.

This is in A ⊗ SrV ∗ if and only if each Fβ ∈ A, and by the previous lemma,

Fβ =
1

β!

∂rF

∂xβ
.

2.2 Prolongations and Polarization

In this section we explain the connection between prolongation and polarization. Po-

larization, which arose in classical invariant theory [22], is the higher degree analog
of associating a symmetric bilinear form to a quadratic form and is closely related

to the representation of a homogeneous form as an element of the tensor algebra.

The notion of polarization is also used in connection with secant varieties of curves
[2, Chapter VI, §1]. What is significant for us is that thinking of prolongation in

terms of polarization opens the door to connections with symbolic powers and with
secant varieties.

Definition 2.3 Suppose that F is a homogeneous polynomial of degree d in K[x]

where x = (x1, . . . , xn). For each i = 1, . . . , d we introduce a new set of n variables
xi = (xi1, . . . , xin). We also introduce an auxiliary set of variables t = (t1, . . . , td).

The polarization of F, denoted F(x1, . . . , xd), is the coefficient of t1 in the expansion

of F(t1x1 + · · · + tdxd) as a polynomial in t.
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Example 2.4 Let F(x) = x2
1x2. We compute

F(t1x1 + t2x2 + t3x3) = (t1x11 + t2x21 + t3x31)2(t1x12 + t2x22 + t3x32)

= t3
1x2

11x12 + t3
2x2

21x22 + · · ·

· · · + 3t2
1t2(x2

11x22 + x11x21x12) + · · ·

· · · + t1t2t3(2x11x21x32 + 2x11x31x22 + 2x21x31x12).

We see that F(x1, x2, x3) = 2x11x21x32 + 2x11x31x22 + 2x21x31x12.

Lemma 2.5 If F(x) is a homogeneous form of degree d, then

(i)

F(t1x1 + · · · + tdxd) =

∑

|β|=d

tβ

β!
F(x

β1

1 , . . . , x
βd

d )

where x
βi

i means that the set of variables xi is repeated βi times.

(ii) F(x1, . . . , xd) is linear in each set of variables xi .

(iii) F(x1, . . . , xd) is symmetric in the xi . (If σ is a permutation of d elements, then

F(x1, . . . , xd) = F(xσ(1), . . . , xσ(d)).)

(iv) F(x, . . . , x) = d!F(x).

Proof Note that it is enough to prove the stated claims in the case where F(x) = xα.

In this case

(2.1) F(t1x1 + · · · + tdxd) =

n
∏

j=1

(t1x1 j + · · · + tdxd j)
α j .

For part (i), recall that F(x1, . . . , xd) is the coefficient of t1 in the product consist-
ing of d factors of the form (t1x1 j + · · · + tdxd j) as above. From this definition, we see

that the coefficient of t1 is a sum of d! monomials (counted with multiplicity) which

correspond to the d! ways of choosing one term per factor, where each t j is chosen
exactly once.

We can construct the d! monomials which are coefficients of t1 as follows. Let the

d factors in (2.1) be F1, . . . , Fd. Fix a subset I ⊂ [d] of size β. A monomial coefficient
of t1 is obtained by choosing β terms of the form tkxk j from among the factors Fs

with s ∈ I where k ∈ I and the k are all distinct, and d − β terms tℓxℓ j from among

the factors Ft with t /∈ I where ℓ /∈ I and the ℓ are all distinct. Since there are
(

d
β

)

ways to choose the set I, β! ways to make our construction of a monomial from the

factors Fs with s ∈ I and (d − β)! ways to construct a monomial from the factors Ft

with t /∈ I, we see that we get each monomial coefficient of t1 in this way.

Let us consider F(x
β1

1 , . . . , x
βd

d ) where xi is repeated βi times. We can pass from

F(x1, . . . , xd) to F(x
β1

1 , . . . , x
βd

d ) by computing the result of repeating the i-th set of
variables βi times successively for each i.

Assume that I ⊂ [d] is of size βi , and that for each k ∈ I, tkxk j is replaced by

tixi j . In F(x1, . . . , xd) there are βi ! ways of choosing terms of the form tkxk j from the
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factors Fs with s ∈ I with k ∈ I and the tk all distinct, but if we replace each tkxk j by
tixi j , all of these βi! choices look the same.

Now let us turn to the consideration of the coefficent of tβ in (2.1). Note that there
is only one way of choosing βi terms of the form tixi j from among the factors Fk with

k ∈ I. Considering each of the d sets of variables in turn, we see that if we substitute

the i-th set of variables βi times in F(x1, . . . , xd), we will see each monomial that
appears as a coefficient of tβ repeated β! additional times. Therefore, the coefficient

of tβ is 1
β!

F(x
β1

1 , . . . , x
βd

d ).

Parts (ii) and (iii) follow immediately from the definition of F(x1, . . . , xd) as the
coefficient of t1 in (2.1). Part (iv) follows by computing F(x, . . . , x) as the coefficient

of t1 in

F(t1x + · · · + tdx) =

n
∏

i=1

((t1 + · · · + td)xi)
αi = (t1 + · · · + td)dxα.

Observation. Recall that we may identify the elements of SdV ∗ with elements of TdV ∗

that are invariant under the action of the symmetric group on d letters. This point of

view is especially important in [13, 14]. Explicitly, if vi ∈ V ∗, then

v1 · · · vd 7−→
∑

σ∈Sd

vσ(1) ⊗ · · · ⊗ vσ(d).

Note that the image of a monomial m ∈ SdV ∗ in TdV ∗ is a weighted sum over all of

the monomials in the coset represented by m, and m is 1/d! times the projection of
this element of TdV ∗ into SdV ∗. Therefore, we can easily pass from the expression of

an element of SdV ∗ as a d-tensor that is invariant under the action of the symmetric

group on d letters to its polarization; we just write the elements appearing in the i-th
factor in the tensor in terms of xi and erase the tensor symbols. For example,

x2
1x2 7−→ 2(x1 ⊗ x1 ⊗ x2 + x1 ⊗ x2 ⊗ x1 + x2 ⊗ x1 ⊗ x1)

7−→ 2(x11x21x32 + x11x22x31 + x12x21x31).

The following elementary lemma describes relationships between polarization
and partial differentiation.

Lemma 2.6 Let F be a homogeneous polynomial of degree d + r.

(i) If F = xα, then

F(x, . . . , x, y, . . . , y) = α!
∑

β∈Nn,|β|=r

(

d

α − β

)(

r

β

)

xα−βyβ.

(ii) If β ∈ N
n with |β| = r, then

d!r!
∂rF

∂xβ
=

∂rF(x, . . . , x, y, . . . , y)

∂yβ
.
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In both expressions we assume there are d copies of x and r copies of y.

Proof (i) When we polarize F, we get a (d + r)-linear symmetric form in d + r sets

of variables xi . Each of the
(

d+r
α

)

distinct monomials in F(x1, . . . , xd+r) appears with

coefficient α!. For any choice of β there will be
(

d
α−β

)(

r
β

)

distinct monomials which

will agree (and have yβ as a factor) when the first d sets of variables are all set to x

and the last r are set to y.
(ii) It is enough to prove the result for an arbitrary monomial of degree d + r.

Assume, without loss of generality, that F = xα. Using (i) we see that the coefficient

of yβ in F(x, . . . , x, y, . . . , y) is

α!

(

d

α − β

)(

r

β

)

xα−β
=

d!r!α!

(α − β)!β!
xα−β.

Therefore, we see that taking partial derivatives with respect to yβ yields

d!r!
α!

(α − β)!
xα−β

= d!r!
∂rF

∂xβ
.

The next lemma is a modification of an observation in [13]. (See also the discus-
sion after [14, Corollary 3.2].)

Lemma 2.7 Let A ⊆ SdV ∗, and F ∈ Sd+rV ∗ be a homogeneous polynomial with po-

larization F(x, . . . , x, y, . . . , y), of degree d in the x-variables. The following are equiv-

alent.

(i) F is in A(r).

(ii) Every coefficient of F as a polynomial in the y-variables is in A.

(iii) Every coefficient of F(x, . . . , x, y1, . . . , yr), viewed as a polynomial in all of the

y-variables, is in A.

(iv) F(x, . . . , x, v, . . . , v) ∈ A for every choice of v ∈ V .

Proof First we show the equivalence of (i) and (ii). We know that F ∈ A(r) if and

only if ∂rF
∂xβ ∈ A for every β ∈ N

n with |β| = r. But ∂rF
∂xβ is just β! times the coefficient

of yβ in F by part (ii) of Lemma 2.6.

The equivalence of (ii) and (iii) follows because the coefficient of the monomial
yβ in the polynomial F(x, . . . , x, y, . . . , y), which has degree r in the y-variables,

is
(

r
β

)

times the coefficient of some monomial in the r sets of y-variables in

F(x, . . . , x, y1, . . . , yr).
For the equivalence of (ii) and (iv), note that we are working over an infinite field.

If we choose
(

d+r+n−1
d+r

)

sufficiently generic points vi , the vectors in indeterminates Fα

of the form
∑

|α|=r Fαvα
i will be linearly independent. Hence, they are all in A if and

only if every Fα ∈ A.

Lemma 2.7 allows us to prove the following result about the prolongations and
ideals.

Theorem 2.8 Let A be a subspace of SdV ∗ and let I ⊂ K[x] be the ideal generated by

A. Then F ∈ Sd+rV ∗ is in A(r) if and only if ∂rF
∂xβ ∈ I for every β ∈ N

n with |β| = k ≤ r.
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Proof One inclusion follows immediately from Definition 1.1. For the opposite in-
clusion assume that F ∈ A(r). Write F(x, . . . , x, y1, . . . , yr) as a polynomial in the

variables yi :
∑

β∈Nnr,|β|=k

Fβ(x, . . . , x)yβ.

The symbol y above stands for the vector of vectors y = (y1, . . . , yr).

Part (iii) of Lemma 2.7 tells us that each Fβ(x, . . . , x) is in A. Now set the vari-

ables y1, . . . , yr−k equal to x. Each Fβ(x, . . . , x)yβ 7→ Fβ(x, . . . , x)xα ′

yβ−α where
α ′ ∈ N

n has i-th coordinate
∑

j αi j . From this, we can see that the coefficients

of the monomials in the remaining yi-variables are all in I. Setting the remaining

yi-variables all equal to v, we see that the coefficients of the monomials in v will be in
I and may be interpreted as partial derivatives of F of order k (up to a scalar) by part

(ii) of Lemma 2.6. We conclude that all partial derivatives of order k are in I for all
k ≤ r.

Recall that if I ⊂ S is a radical ideal with Ass(I) = {P1, . . . , Pm}, then the r-th

symbolic power of I is defined to be I(r) := Ir[W−1]∩S, where W = S\(P1∪· · ·∪Pm).
We define the r-th differential power of I to be

I〈r〉
=

{

f ∈ S
∣

∣

∣

∂|β| f

∂xβ
∈ I for all |β| ≤ r − 1

}

.

If K is algebraically closed of characteristic 0 and I is prime, then by the theorem of

Zariski and Nagata, I(r)
= I〈r〉. See [8, Theorem 3.14] for a discussion of the proof

and pointers to a more general statement in characteristic p.

The theorem of Zariski and Nagata also holds for radical ideals. While we found
this statement in the literature, we could not find its proof, so we include one for

completeness.

Corollary 2.9 If I is a radical ideal over an algebraically closed field of characteristic

zero, then I(r)
= I〈r〉.

Proof Suppose that Ass(I) = {P1, . . . , Pm}. It is easy to see that I〈r〉
=

⋂

P
〈r〉
i , so

by the theorem of Zariski and Nagata it suffices to show that I(r)
=

⋂

P(r)
i . Since I

is radical, by prime avoidance, Ass(I(r)) = Ass(I), and the Pi-primary component of
I(r) is (I(r))Pi

∩ S. But, as localization commutes with products and intersections, we

have

(I(r))Pi
= (Ir[W−1] ∩ S)Pi

= (Ir)Pi
∩ SPi

= (IPi
)r

= ((Pi)Pi
))r

= (Pr
i )Pi

.

We see that (I(r))Pi
∩ S = (Pr

i )Pi
∩ S = P(r)

i , which completes the proof.

Thus, we have the following corollary to Theorem 2.8.

Corollary 2.10 Let K be an algebraically closed field of characteristic 0. Let I be a

radical ideal with I ⊂ 〈x1, . . . , xn〉
d and let A = Id. Then the (d + r)-th graded piece of

I(r+1) is A(r).
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3 Computing Prolongations

In this section we describe algorithms for computing prolongations that use linear

algebra and can be implemented in a computer algebra system. We also discuss how
combinatorial tools can be used to speed up the computations by reducing the di-

mensions of the intermediate vector spaces that need to be computed. These combi-

natorial approaches can also be used to determine explicit descriptions of prolonga-
tions.

3.1 Algorithms

We will describe some algorithms for computing prolongations that depend on var-
ious implementations of the equivalent definitions from Section 2. In practice, we

will have a basis for A consisting of a set of homogeneous polynomials of degree d

and will want to compute A(r). The crucial step in each of the algorithms for com-
puting prolongations that we describe may be performed by Gaussian elimination.

However, what is easiest to implement depends on the way polynomials are stored,

since converting polynomials to vectors that may be operated on by the user may be
nontrivial in practice in any given computer algebra package.

Algorithm 3.1

INPUT: A basis for A.

OUTPUT: A basis for A(r) ⊆ Sd+rV ∗.

STEP 1: Map a basis for Sd+rV ∗ into SdV ∗ ⊗ SrV ∗ via the co-multiplication map.

STEP 2: Compute the intersection of A⊗SrV ∗ with the space constructed in STEP 1.

Multiplication (just “erasing” the tensor symbol) maps a basis for this intersection

into Sd+rV ∗ giving a basis for A(r).

Unfortunately, the simplest implementation of Algorithm 3.1 introduces a new

set of variables to represent the terms to the right of the tensor symbol, which slows

computation. Alternatively, we can exploit the connection between co-multiplication
and partial differentiation to avoid introducing a new set of variables.

Algorithm 3.2

INPUT: A basis for A.

OUTPUT: A basis for A(r).

STEP 1: For each β ∈ N
r, with |β| = r, compute Aβ , the space of all forms of degree

d + r whose partial derivative with respect to xβ is in A.

STEP 2: The intersection of the spaces Aβ is equal to A(r).

Another alternative would require more extensive programming, but is poten-
tially quite fast. The complexity of Algorithm 3.3 is governed by the amount of pre-

processing necessary to coordinatize our basis vectors and the Gaussian elimination

in STEP 3.
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Algorithm 3.3

INPUT: A basis B for A.

OUTPUT: A basis for A(r).

STEP 1: Fix a term order so that monomials form an ordered basis for S. Abusing
notation, let A denote the matrix whose columns are the coefficients of the elements

of B with respect to this ordered basis.

STEP 2: Let F be the generic form of degree d + r. Let C be the matrix with a column

for each |β| = r. The column corresponding to β is the coordinate vector of ∂rF
∂xβ

with respect to our ordered basis. (After a suitable scaling of the basis elements, C is
the catalecticant matrix C(d, r; n).)

STEP 3: Form the augmented matrix [A|C]. The space A(r) is just the space of
polynomials F for which the augmented matrix [A|C] is consistent. We find this

space by putting A in reduced-echelon form which will give a linear equation on the

entries of C for every zero row to the left of the bar in the augmented matrix. Solving
this system of equations gives the coordinate vectors of a basis for A(r).

3.2 Monomial Prolongations

In this section, we describe the prolongations of vector spaces spanned by monomi-
als. The monomial case can be solved purely combinatorially and can be used as a

tool for reducing the computational burden in the general case.

Proposition 3.4 Suppose that A is spanned by monomials. A monomial xα is in A(r)

if and only if xα−β ∈ A for all xβ dividing xα with |β| = r.

Proof The differential operator ∂r/∂xβ maps monomials to monomials. If xβ

divides xα, then ∂rxα/∂xβ
= Cxα−β for a nonzero constant C, otherwise

( ∂r

∂xβ )xα
= 0.

An important special case arises when d = 2. In this case, the generators of A have

two types: squarefree pairs xix j and pure powers x2
i . Let σ ⊂ [n] denote the set of i

such that x2
i ∈ A. We define a graph G(A, r) as follows.

Definition 3.5 Let A be a vector space spanned by quadratic monomials from K[x].

For each integer r > 0, we define a graph G(A, r) with r + 2 vertices for each inde-
terminate whose square is in A, and a single vertex for all other indeterminates. For-

mally, the vertex set of G(A, r) is the set of all pairs (i, j) with i ∈ [n], where j ∈ [r+2]

if i ∈ σ and j = 1 otherwise. A pair of vertices (i1, j1) (i2, j2) is connected by an
edge if xi1

xi2
∈ A.

The graph G(A, r) can be used to read off the generators of the prolongations A(r).

Corollary 3.6 The induced subgraph of G(A, r) on vertices (i1, j1), . . . , (ir+2, jr+2) is

a complete graph if and only if xi1
· · · xir+2

is in the prolongation A(r).

Proof The set of vertices (i1, j1), . . . , (ir+2, jr+2) forms a Kr+2 if and only if xik
xi l

∈ A

for all 1 ≤ k < l ≤ r + 2 if and only if each divisor of xi1
· · · xir+2

of degree r has

quotient in A.
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(1,1)

(1,2)

(1,3)

(2,1)

(3,1)

(4,1)

Figure 1: G(A, 1)

Example 3.7 Let A be the span of x2
1, x1x2, x2x3, x2x4, x3x4 ∈ K[x1, x2, x3, x4]. To

compute A(1), we construct the graph G(A, 1) (see Figure 1) containing five complete

subgraphs K3. One is the subgraph of G(A, 1) on the vertices (1, 1), (1, 2), (1, 3) and
this corresponds to the monomial x3

1 ∈ A(1). There are three triangles in the graph

of the form (1, i), (1, j), (2, 1) and these all correspond to the monomial x2
1x2 ∈ A(1).

Finally the triangle (2, 1), (3, 1), (4, 1) corresponds to the monomial x2x3x4 ∈ A(1).

Corollary 3.6 implies that these three monomials span A(1).

Corollary 3.8 Computing prolongations is NP-hard.

Proof Focusing on the case where M is generated by squarefree quadratic mono-

mials, we see that the prolongations are determined by the complete subgraphs in a

fixed graph G(M). In particular, A(r)
= 0 if and only if the largest clique of G(M) has

cardinality less than r + 2. However, determining the cardinality of the largest clique

is NP-hard.

Besides the connections to graph theory, the monomial case can be used as a tool

for reducing the dimensionality of the computations described in Section 2.

Proposition 3.9 Let A ⊂ SdV ∗ be any vector space of forms of degree d, and let M(A)
denote the span of the monomials that appear as a term with nonzero coefficient in some

polynomial in A. Then A(r) ⊆ M(A)(r).

Proof A monomial differential operator is injective on the set of monomials it does
not kill. Thus, for every monomial xα of every polynomial in A(r), and every divisor

xβ of xα there exists a polynomial f ∈ A such that xα−β appears with a nonzero

coefficient in f .

Proposition 3.9 can be useful for computations because the monomial case can be

precomputed combinatorially. Then, when applying the algorithms from the previ-
ous sections, one can immediately eliminate any polynomials that arise in a partial

computation that do not belong to M(A)(r). Furthermore, the monomial case can be

used as a theoretical tool to prove that certain prolongations are, in fact, empty.

Example 3.10 (No 3-way Interaction) Recall that the toric ideal of the no 3-way

interaction model is the kernel of the ring homomorphism

φlmn : K
[

xi jk

∣

∣ i ∈ [l], j ∈ [m], k ∈ [n]
]

−→ K[ai j , bik, c jk], xi jk 7−→ ai jbikc jk.
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The no 3-way interaction model is an example of a log-linear model in statistics.
Giving a complete descriptions of the toric ideals Ilmn = ker φlmn is a challenging

open problem in algebraic statistics that has been studied by many authors [1, 7]. It
is known that the lowest degree of a minimal generator is 4 and that A = (Ilmn)4 is

spanned by the
(

l
2

)(

m
2

)(

n
2

)

binomials that are equivalent to

x111x122x212x221 − x112x121x211x222

under the natural action of the product of symmetric groups S4 × S4 × S4 on indices.

Let M(A) be the space of quartics spanned by the monomials appearing in these
binomials. We will show that M(A)(k)

= 0 for all k. Proposition 3.9 then implies

that A(k)
= 0 for all k. Since the prolongation of a prolongation is a prolongation, it

suffices to show that M(A)(1)
= 0. This, in turn, is equivalent to showing that there is

no monomial of degree five in K[x] which is divisible by five distinct monomials from

M(A). However, if we are given any three variables that are part of a monomial in

M(A), there is a unique way to complete it to a monomial in M(A), which guarantees
that no degree five monomials of the desired type could exist.

Applying Theorem 1.2, we have shown that A(3(r−1))
= 0, and hence that the

degree 3r + 1 piece of I
{r}
lmn is zero for all r, l, m and n. This implies that these secant

ideals cannot be generated in their lowest possible degree.

Another useful property of the monomial point of view is that generation by cir-

cuits is preserved when taking prolongations.

Definition 3.11 Let A ⊂ SdV ∗ be a vector space of polynomials and f ∈ A. The
support of f is the set of monomials that appear with nonzero coefficient. The poly-

nomial f is a circuit of A if there is no polynomial g ∈ A such that supp(g) ⊂
supp( f ), in other words, f has minimal monomial support. We say that A is mini-

mally generated by its circuits if the set of all of its circuits is a basis for A.

Remark. Circuits are basic objects in matroid theory that generalize linearly depen-

dent sets. Note that for polynomials there are two natural definitions of circuits. One
is the definition that we have used, where we consider the set of polynomials as a

vector space, and the connection to linear algebra is clear. Another definition of cir-
cuit for an ideal I is that a circuit of f is a polynomial such that the set of variables

appearing in f is minimal with respect to inclusion among all nonzero polynomials

in I. If I is a prime ideal, this leads to the notion of an algebraic matroid. This is the
definition of circuit which appears, for instance, in [16, Chapter 4], but this is not the

notion of circuit that we mean.

Note that A ⊂ SdV ∗ is minimally generated by its circuits if and only if the mono-

mial support of any two circuits with distinct support are disjoint. Indeed, suppose
that f and g are two circuits that contain the monomial xα with coefficient one. Then

the polynomial f − g ∈ A does not contain xα. The new polynomial can be written
as a linear combination of circuits with support in supp( f − g). But this implies that

either f or g is not needed as a minimal generator. We show below that the property

of being minimally generated by circuits is preserved under prolongation.
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Proposition 3.12 If A is minimally generated by its circuits, then so are the prolonga-

tions A(r).

Proof It suffices to show that if xα is a monomial that is in the support of some

circuit of A(r), there is no other circuit of A(r) containing xα in its support. Suppose to
the contrary that there are two circuits f and g that contain a monomial in common.

Let S be the set of monomials appearing in both f and g. Let xα be any monomial in

S, and let xβ be any divisor of xα of degree r. The derivatives
∂r f
∂xβ and

∂rg
∂xβ are thus

nonzero and in A. Moreover, they must both contain a multiple of the same circuit

h that contains xα−β, because A is minimally generated by its circuits. This means

that if xγ appears in h, then xβ+γ appears in both f and g, and will belong to S.

Now let fS and gS be the polynomials obtained from f and g by taking only those

terms corresponding to elements of S. We will argue that if xβ has degree r, then
∂r fS
∂xβ

is in A. Indeed, by the argument in the preceding paragraph, if xβ divides an element

of S, we get an element of A, and otherwise
∂r fS
∂xβ = 0. However, since f and g were

circuits, this implies that fS = f and gS = g. Since f and g are circuits with the same
support, they must be nonzero multiples of each other.

Proposition 3.12 is useful in special cases for proving that we have determined a

complete generating set for a particular prolongation.

Example 3.13 Let I be the ideal of the Segre embedding of P
n1−1 × P

n2−1 into
P

n1n2−1. The ideal I is generated by the 2 × 2 minors of the generic matrix X = (xi j).

Let A be the space of quadrics spanned by these 2 × 2 minors. Note that each 2 × 2
minor is a circuit, and these circuits have disjoint monomial support. By Proposition

3.12 A(r) is generated by circuits which have disjoint monomial support.

The monomials appearing in the 2×2 minors generating I are precisely the mono-

mials xi1 j1
xi2 j2

such that i1 6= i2 and j1 6= j2. The cliques in the resulting graph
G(A, r) are the monomials of the form xi1 j1

· · · xir+2 jr+2
such that ik 6= i l and jk 6= jl

for all k 6= l. Each such monomial is a term of a unique (r + 2) × (r + 2) minor.

Each (r + 2) × (r + 2) minor belongs to A(r) which can be verified by differentiating
the Laplace expansion of the determinant. As each minor is a circuit, we deduce that

these (r + 2) × (r + 2) minors span the prolongation.

4 Prolongations and Secant Varieties

In this section we will explain the relationship between prolongation and secant va-

rieties. The proof of Lemma 2.2 in [13] goes through in a more general setting, and
our proof of Theorem 4.1 follows along these lines. Although we could also use the

ideas of the proof of [13, Lemma 2.2] to prove Theorem 4.2, we give an alternate and
simpler proof appealing to the computation of joins of ideals.

Theorem 4.1 Suppose that X ⊆ P
n−1 is a variety over an algebraically closed field,

and I = I(X). Let A = Id. Then A((r−1)(d−1)) is contained in the ideal of the r-th secant

variety of X.
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Proof Suppose that F ∈ A((r−1)(d−1)) so that

deg F = (d − 1)(r − 1) + d = dr − r − d + 1 + d = dr − r + 1 = r(d − 1) + 1.

A general point on the r-th secant variety of X is the span of r points of X. So let

v = t1v1 + · · ·+ trvr where the ti and vi are indeterminates. We will show that for any
specialization of the vi to points of X, and ti ∈ K, F(v) = 0. Since

F(x) =
1

(r(d − 1) + 1)!
F(x, . . . , x),

F(v) = 0 if and only if F(v, . . . , v) = 0.
The point now is that the polarization F(x1, . . . , xr(d−1)+1) is linear in each set of

variables xi . This implies that

F(x1, . . . , xi−1, v, xi+1 . . . , xr(d−1)+1) =

r
∑

j=1

t jF(x1, . . . , xi−1, v j , xi+1, . . . , xr(d−1)+1).

Therefore, we see that

F(v, . . . , v) =

∑

β∈N
r

|β|=r(d−1)+1

(

r(d − 1) + 1

β

)

tβF(v
β1

1 , . . . , vβr
r ),

where vi is repeated βi times. For each β in the sum, |β| = r(d − 1) + 1, implies that

some βi ≥ d. Therefore, F(v
β1

1 , . . . , vβr
r ) can be written as a polynomial whose coeffi-

cients have degree d in vi . Since F ∈ A((r−1)(d−1)), every coefficient of a monomial in

the y-variables in the polynomial F(x, . . . , x, y1, . . . , y(r−1)(d−1)) is in A by part (iii)
of Lemma 2.7. Therefore, each of these degree d coefficients is in A (written in the

vi-variables). Thus, if we specialize all of the v j to points of X, F(v
β1

1 , . . . , vβr
r ) = 0.

We conclude that F(v, . . . , v) = 0.

We also have the partial converse if we know that the ideal of X does not contain

any forms of degree < d.

Theorem 4.2 Suppose that X ⊂ P
n−1 is a variety over an algebraically closed field

and that no form of degree ≤ d−1 vanishes on X. If m = r(d−1)+1, then I(X{r})m =

A((r−1)(d−1)).

To prove the theorem, we collect some general definitions and results about se-

cants and joins of ideals. Given a collection of ideals I1, . . . , Ir ⊆ K[x], their join is
obtained by constructing the new ideal

I1 ∗ · · · ∗ Ir =

(

I1(y1) + · · · + Ir(yr) +
〈

x j −

r
∑

i=1

yi j

∣

∣ j ∈ [n]
〉

)

∩ K[x]

where yi denotes the vector of variables yi = (yi1, . . . , yin), Ii(yi) denotes the ideal

Ii with variable yi j substituted for variable x j , and the big ideal in parentheses is
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contained in the ring K[x, y1, . . . , yr]. The r-fold join of I with itself is the r-th secant
ideal I{r}

= I ∗ · · · ∗ I. If I1, . . . , Ir are the saturated homogeneous radical ideals over

an algebraically closed field, then I1 ∗ · · · ∗ Ir is the homogenous ideal representing
the embedded join of the projective varieties V (I1), . . . ,V (Ir). The secant ideal I{r} is

the vanishing ideal of the r-th secant variety of V (I). Note that the join construction

is commutative and associative, and it respects containments. Proposition 4.3, due to
Simis and Ulrich, puts a restriction on the degrees of forms which may appear in the

secant ideal, and Proposition 4.4 describes how symbolic powers may be computed

via the join operation.

Proposition 4.3 [15] If I ⊆ 〈x1, . . . , xn〉
d, then I{r} ⊆ 〈x1, . . . , xn〉

r(d−1)+1.

Proposition 4.4 [19] Suppose that K is algebraically closed. If I is a radical ideal, then

I(r)
= I ∗ 〈x1 . . . , xn〉

r.

These results lead us to a more general result involving containments of secant
ideals in symbolic powers. Theorem 4.2 reflects information about one graded piece

of this containment.

Proposition 4.5 Suppose that K is algebraically closed, I is radical, and I is contained

in 〈x1, . . . , xn〉
d. Then I{r} ⊂ I((r−1)(d−1)+1).

Proof This follows by the chain of containments

I{r}
= I ∗ I{r−1} ⊆ I ∗ 〈x1, . . . , xn〉

(r−1)(d−1)+1
= I((r−1)(d−1)+1).

The first equality is by the associativity of the join, the second containment follows
because joins respect containment together with Proposition 4.3 and the third equal-

ity follows by Proposition 4.4.

Proof of Theorem 4.2 This is a direct consequence of Proposition 4.5 and Corol-

lary 2.10.

Proof of Theorem 1.2 This is a direct consequence of Theorems 4.1 and 4.2.

Remark. The proofs of Theorems 4.1 and 4.2 can be extended to the nonreduced
case. To do this requires the replacement of the symbolic power with the differential

power, and some more algebraic reasoning in the proof of Theorem 4.1. We have

only included the proof of the reduced case because it is, by far, the most interesting.

5 Application to the Binary Symmetric Model

As mentioned in the introduction, one recent motivation for the detailed study of

equations vanishing on secant varieties comes from algebraic statistics, where secant
varieties correspond to statistical models called mixture models. Our goal in this

section is to illustrate how prolongations can be used to derive some nontrivial al-
gebraic constraints on mixture models in situations where it seems difficult to prove

directly that the same equations belong to the secant ideal. In particular, we explore

this problem for some models arising in phylogenetics.
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To give our description of equations in the prolongation, we first need to describe
the space of quadrics which generate the ideal of the phylogenetic model. The bulk

of this description can be found in [17]. First we describe the variables of the toric
ideal. Let T be an unrooted trivalent tree (that is, each vertex of the tree that is not

a leaf has degree three) with n leaves. The ideal of the phylogenetic model IT lives in

the polynomial ring in 2n−1 indeterminates,

K[q] := K[qi | i ∈ (Z/2Z)n
even],

where (Z/2Z)n
even is the group of binary strings of length n with sum zero in Z/2Z.

These q indeterminates are the Fourier transform of the natural probability coordi-

nates (see [17]).

The ideal IT is generated by determinantal quadrics. Specifically, each internal

edge e of the tree induces a split of the leaves into two disjoint sets, A|B. The indeter-
minates are also partitioned into two disjoint sets, namely, the sets

{

qi

∣

∣

∑

j∈A

i j = 0 ∈ Z/2Z

}

and
{

qi

∣

∣

∑

j∈A

i j = 1 ∈ Z/2Z

}

.

These two sets of indeterminates fit into two 2|A|−1 × 2|B|−1 matrices, Me
0 and Me

1,
whose rows are indexed by the strings iA and whose columns are indexed by iB. The

toric ideal IT is generated by the set of all 2×2 minors of the matrices Me
0 and Me

1 as e

ranges over all the internal edges of T. Let AT denote the space of quadrics generated

by the determinants described above.

Example 5.1 For instance if T is the trivalent tree with four leaves with unique

internal split 12|34, then we have

Me
0 =

(

q0000 q0011

q1100 q1111

)

Me
1 =

(

q0101 q0110

q1001 q1010

)

and IT is a complete intersection of quadrics.

While the description given thus far is rich enough to describe generators of the
ideals IT , we need a more involved combinatorial description of the indeterminates

in the ring K[q] to provide a characterization of the polynomials in the prolongation.

The crucial observation is that associated with each indeterminate qi is a labeling of
all edges in the tree T by zeros and ones. An edge gets the label

∑

j∈A(e) i j ∈ Z/2Z

where A(e) is one part of the split induced by the edge e. Note that this labeling

naturally corresponds to a set of disjoint paths through the tree T such that the end
points of every path are leaves of the tree. Conversely, every such set of disjoint paths

is the associated labeling of some indeterminate qi. Thus, for each such labeling L we
get an indeterminate qL. In [5], these unions of paths are called sockets. We will use

these path indeterminates in the remainder of the section.

Now we wish to describe generators of the prolongation of the space of quadrics

we have described, which we do in terms of the path indeterminates from above.
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A frame F is a partial labeling of the tree T where the labels have been assigned to
a trivalent subtree T(F) of T. The frame has active edges a(F) which are the leaves

of T(F) that are not leaves of T. Each active edge e induces a subtree Te(F) ⊂ T

consisting of all edges on the side of e that does not contain T(F). Let Le denote the

set of all possible labelings of Te(F) that are compatible with the frame F (that is,

can be completed to a variable). If F is a frame and e is an edge of F that has been
assigned, let F(e) be the label assigned to the edge e.

Definition 5.2 A collection of frames F1, . . . , Fd together with a function

e( · , · ) :

(

[d]

2

)

−→ E(T)

is compatible if e( · , · ) satisfies the following.

(i) For all (i, j) ∈
(

[d]
2

)

, e(i, j) ∈ a(Fi) ∩ a(F j) with Fi(e(i, j)) = F j(e(i, j));

(ii) If e(i, j) = e( j, k), then e(i, j) = e(i, k),

(iii) For all j ∈ [d],
⋃

i 6= j e(i, j) = a(F j).

The function e( · , · ) determines an equivalence relation on the set of pairs (Fi, e)

with e ∈ a(Fi) where (Fi, e) is defined to be equivalent to itself, and if i 6= j, then

we define (Fi , e1) ∼ (F j , e2) if e(i, j) = e1 = e2. Let E denote such an equivalence
class and let C(E) ⊂ Le be a set of |E| distinct labellings of Te(F) compatible with the

Fi ∈ E. Given all these data (in particular, the frames and the labelling sets C(E))
we define a polynomial of degree d. To do this, fix a particular base ordering on

each of the sets C(E). Now for each E, take some permutation of C(E). This set of

permutations can be used to complete all the frames F1, . . . , Fd in a unique ordered
way. This is accomplished by adding the first element of each C(E) to the frame F j

that appears first in the equivalence class E and so on. Thus each set of permutations

yields a monomial in the qL. Denote by P(F1, . . . , Fd ; C(E1), . . . ,C(Ek)) the signed
sum of all such monomials where the sign of a monomial is the product of the signs

of the permutations used to form the monomial.

Example 5.3 (The six-leaf snowflake) Let T be the six-leaf tree (see Figure 2) and

let A be the span of the quadratic binomials which generate IT .

Computing A(1) and A(2) with Macaulay 2 [11], we see that A(1) is spanned by 32
8-term cubics and A(2) is spanned by a single 64-term quartic form. As we will see, in

6

12

3

4 5

Figure 2

https://doi.org/10.4153/CJM-2009-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-047-5


Prolongations and Computational Algebra 947

1
1

1

0

0 0
0

0
0 0

1

1

1

1 1

1
1

1

0

0 0
0

0
0 0

1

1

1

1 1

1
1

1

0

0 0
0

0
0 0

1

1

1

1 1

1 1

1
1

1

1

0

0

0

0

0

0

0 0

0

0

0

0

1 1

1

1

1

1

1
1

1

1

1 10 0

0

0
0

0

_

_

Figure 3

both cases, the construction described above yields the entire prolongation.

To construct a cubic, we need to choose three frames with compatible labelings.

In Figure 3 our choice of frame is depicted in bold.

We show triples of trees that correspond to the first three terms of the 8-term cubic

q011000q100010q111111 − q101000q010010q111111 − q011011q100010q111100

+ q101011q010010q111100 − q011000q101110q110011 + q101000q011110q110011

+ q011011q101110q110000 − q101011q011110q110000.

We get 32 such cubics because there are 4 ways of choosing three distinct frames

and there are two ways of labelling each of the pairs of cherries attached to the three

inactive edges on the frames.

Our 64-term quartic is constructed by choosing the 4-tuple consisting of our 4
distinct choices of frames and completing each edge-labelling in any way allowed.

There is only one way to define the function e( · , · ) and each edge on each frame is

active.

Example 5.4 (The six-leaf caterpillar) Let T be the six-leaf caterpillar-shaped
graph (see Figure 4). The corresponding toric variety has ideal IT generated by the

2 × 2 minors of four 2 × 8 and two 4 × 4 matrices. Using Macaulay 2 [11], one can

see that A(1) is spanned by 32 6-term cubics and that A(2) is spanned by two 24-term
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Figure 4: Six-leaf caterpillar

quartics. These forms may be constructed using the methods above although it is

easy to see that they are the 3 × 3 and 4 × 4 minors of the 4 × 4 matrices used to
define IT .

Theorem 5.5 For any set of compatible frames F = F1, . . . , Fd, compatibility func-

tion e(·, ·), and completions C = C(E1), . . . ,C(Ek), the polynomial P(F; C) is in the

prolongation A(d−2)
T .

Proof The proof is by induction on d. When d = 2, P(F; C) yields the description

of a 2 × 2 minor of a matrix M
e(1,2)
F(e(1,2)) associated to the unique common active edge

in the two frames. So suppose the statement is true for d − 1. The result will follow

if we show that the derivative of the degree d polynomial P(F; C) with respect to any

variable is the sum of polynomials of the form P(F ′; C ′) of degree d − 1.

Let F = F1, . . . , Fd and qL be any variable appearing in a monomial in P(F; C).

By our construction of P(F; C), each occurrence of qL is associated to a frame in F.
Without loss of generality, assume that qL arises by completing the labelling of the

frame Fd. (It may be associated with other frames as well.) In each monomial in

which qL appears by completing a labelling of Fd, the d − 1 other factors come from
the frames F1, . . . Fd−1. Now construct the new set C(E1) ′, . . . ,C(Ek) ′ by removing

the elements from C(E1), . . . ,C(Ek) that are used to make qL. If any of the sets C(Ei)
′

are singletons, we can take this single element and modify the appropriate frame Fl

to get a new frame, and remove the set C(Ei)
′ from our list of completions. Carrying

out this procedure yields a set of frames F
′
= F ′

1, . . . , F ′
d−1 and a set of completions

C
′
= C(E ′

1), . . . ,C(E ′
r ), such that upon dividing all monomials in P(F; C) that have

this particular realization of qL (associated with the frame Fd) we get the polynomial

P(F ′; C ′). Applying this argument to all realizations of qL by different frames, we
deduce that the derivative of P(F; C) with respect to qL is the (signed) sum of poly-

nomials P(F ′; C ′).

Remark. Note that the argument in the preceding proof holds even when qL appears
to a power > 1, because the coefficient of the derivative will account for the different

frames that yield qL. It is interesting to note that this exceptional case cannot occur,

however, because A is generated by polynomials with all squarefree terms. Thus,
A(d−2) is also generated by polynomials with all squarefree terms.
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