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ABSTRACT

Given a perfect field k with algebraic closure k and a variety X over k, the field of
moduli of X is the subfield of k of elements fixed by field automorphisms v € Gal(k/k)
such that the Galois conjugate X, is isomorphic to X. The field of moduli is contained
in all subextensions k C k' C k such that X descends to k’. In this paper, we extend
the formalism and define the field of moduli when k is not perfect. Furthermore, Debes
and Emsalem identified a condition that ensures that a smooth curve is defined over its
field of moduli, and prove that a smooth curve with a marked point is always defined
over its field of moduli. Our main theorem is a generalization of these results that
applies to higher-dimensional varieties, and to varieties with additional structures. In
order to apply this, we study the problem of when a rational point of a variety with
quotient singularities lifts to a resolution. As a consequence, we prove that a variety X
of dimension d with a smooth marked point p such that Aut(X,p) is finite, étale and
of degree prime to d! is defined over its field of moduli.

1. Introduction

The concept of field of moduli was introduced by Matsusaka in [Mat58], and considerably clarified
by Shimura in [Shi59]. Suppose that k is a field with algebraic closure k. Let us assume for
simplicity that k is perfect. An algebraic variety X, perhaps with additional structure, such as
a polarization, or a marked point, will be defined over some intermediate field k — ¢ — k that
is finite over k. If I' is the Galois group of k over k, call A C I the subgroup formed by elements
v € I' such that the Galois conjugate X, is isomorphic to X as a k-scheme, possibly with its
additional structure. Then A is an open subgroup of I'; the field of moduli of X is the fixed
subfield %~ It is contained in every field of definition of X.

If X has a finite group of automorphisms, and is one of a class of varieties with finite
automorphism groups parametrized by a coarse moduli space M — Spec k (for example, smooth
curves of genus at least 2), then the field of moduli has a natural interpretation as the residue
field of the image of the morphism Spec k — M corresponding to X, see §3.2.
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One basic question is: when is X defined over its field of moduli? This problem has been the
subject of a considerable amount of literature over the years.

An important early example is due to Shimura [Shi72]. Let A4 be the moduli space of abelian
varieties of genus g over C, and call K its field of rational functions. Let X be the corresponding
generic abelian variety defined over K its field of moduli is K. Then Shimura proved that X is
defined over K if and only g is odd.

In the case that X is a smooth curve, an important advance is due to Debes and
Emsalem [DE99].

Let X be as above; assume that the group Aut X of automorphisms of X over k is finite.
Consider the group A above; for each § € A we have an isomorphism X5 ~ X, well defined up to
an automorphism of X over k. This descends to a canonical automorphism of X/ Aut X, defining
an action of A on X, compatible with the action on k; by Galois descent this defines a scheme
X€ over k, a form of X/ Aut X, which we call the compression of X. If X is a smooth curve, so
is X°.

The following result is due to Debes and Emsalem.

THEOREM [DE99, Corollary 4.3(c)]. Assume that X is a smooth curve of genus at least 2. If
X¢(k) # 0, then X is defined over its field of moduli.

See [Bir94, SV16] for related results, and [Bre22] for applications.
Let us describe the content of this paper.

The definition of field of moduli. The definition of field of moduli for an object defined
over k is present in the literature in two particular cases, as explained above: when k is perfect
and when X is in a class of objects having a coarse moduli space. This last hypothesis is not
very natural: for example, one could be interested in the field of moduli of non-polarized abelian
varieties, or K3 surfaces. In §3 we give a somewhat more general and flexible formalism for
defining fields of moduli and residual gerbes under very weak hypotheses. In particular we adapt
it to non-perfect fields and objects with non-reduced automorphism group schemes, using the
fppf topology instead of the Galois group.

In §4 we apply the Grothendieck—Giraud classification of gerbes, commonly known as non-
abelian cohomology, to draw some consequences. In the case of curves these consequences are
spelled out in [DE99, Corollary 4.3], and proved using a more special formalism.

In the rest of the introduction we assume chark = 0; this simplifies the statements
considerably. We refer to the main body of the paper for precise statements in arbitrary
characteristic.

The Debes—Emsalem theorem in arbitrary dimension. Let X be as in the introduction. If X
is singular, or higher-dimensional, it is not true that if X°(k) # ), then X is defined over its field
of moduli (see [SV16, §5] for singular examples in dimension 1). Our main result (Theorem 5.4)
is the following: let X be a resolution of singularities of X¢. If X (k) # 0, then X is defined over
its field of moduli.

When X is a smooth curve, we have that the compression X€ is smooth, so this recovers
the result of Debes and Emsalem. Debes and Emsalem mention the fact that their methods can
be generalized to curves with a structure such as pointed curves [DE99, Remark 3.2(b)], but
they do not give details on how to do it. Thus, in dimension 1, we are essentially clarifying what
curves with a structure are, and checking that the theorem of Débes and Emsalem holds for
them. More importantly, we are able to generalize their result to arbitrary dimension.
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Debes and Emsalem also observed that a suitable form of their theorem implies that every
pointed curve of genus > 2 is defined over its field of moduli [DE99, Corollary 5.4]. This fails,
however, in higher dimension: smooth pointed varieties are not necessarily defined over their
fields of moduli. An example is Shimura’s result on generic abelian varieties explained in the
introduction. In order to apply the result above, we need to ensure that a rational point of the
compression X°¢ lifts to a resolution of singularities.

More precisely, we need conditions that ensure that a resolution of singularities X — X°©
has a rational point. In the case of pointed varieties this translates into the following question.
Suppose that X is a variety over k and G is a finite group acting on X with a smooth fixed point
p € X(k). Let X be a form of X/G defined over k, with a rational point p € X°(k) lifting to p.
If X — X° is a resolution of singularities, under what conditions does it follow that there is a
rational point of X lying over p?

The arithmetic of quotient singularities. In §6 we introduce two related concepts.

One is that of R-singularity (Definition 6.13). An R-singularity is a pair (S, s), where S is a
variety over a field K with quotient singularities and s € S(K), such that, in particular, if k C K
is a subfield, (5, s") is a form of (S, s) defined over k, and S" — S is a resolution of singularities,
then S’ has a k-rational point over s’. If the condition holds for one resolution of S’, then by
the Lang—Nishimura theorem 5.5 it holds for every other resolution, so the choice of 5 is not
important.

The other key definition is that of R4 group (Definition 6.12): if d is a positive integer,
a finite group G is Ry if whenever it acts faithfully on a smooth d-dimensional variety X
with a fixed rational point x € X (k), the pair (X/G,|[z]), where [z] is the image of z, is an
R-singularity. It follows from our main theorem that if X is a smooth variety over k and
p € X(k) is a k-point, and Aut(X,p) is an Ry group, then (X,p) is defined over its field of
moduli.

Not all finite groups are Rg: for example, a cyclic group of order 2 is not Ry for any d > 2.
Here we present two results, showing that this is not an empty definition.

The first (Theorem 6.18) shows that there are infinitely many groups that are Ry for
all d. The second (Theorem 6.19) says that any finite group of order prime to d! is Ry.
As a consequence (Theorem 6.21), a d-dimensional variety X with a smooth marked point
p € X such that Aut(X,p) is finite of degree prime to d! is defined over its field of
moduli.

There is much more that one could say about Ry groups. The paper [Bre24] by the first author
contains a complete classification of Ry groups. The case d > 2 seems much harder; hopefully it
will be the subject of further work.

Using the classification in dimension 2, the first author proved that every smooth plane curve
of degree prime with 6 is defined over its field of moduli, and other similar results about cycles
in P? (see [Bre23b, Bre23c, Bre23d)).

Another result along these lines is Corollary 6.24, stating that if X is an odd-dimensional
variety over k with a smooth marked point p € X (k), and the automorphism group of (X,p)
is cyclic of order 2 and has p as an isolated fixed point, then (X,p) is defined over its field of
moduli. This would be false without assuming that p is an isolated fixed point, as the cyclic
group Cs is not Ry for any d > 2. This vastly generalizes Shimura’s result that odd-dimensional
generic principally polarized abelian varieties are defined over their field of moduli.

For the second and third part, the fundamental tool is the Lang—Nishimura theorem for tame
stacks proved in [BV23] (see Theorem 5.5).
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2. Notation and conventions

We follow the conventions of [Knu71] and [LMO00]; so the diagonals of algebraic spaces and
algebraic stacks will be separated and of finite type. In particular, every algebraic space will be
decent, in the sense of [Sta23, Definition 03I8].

We follow the terminology of [AOV08]: a tame stack is an algebraic stack X with finite inertia,
such that its geometric points have linearly reductive automorphism group. This is equivalent to
requiring that X is étale locally over its moduli space a quotient by a finite, linearly reductive
group scheme [AOV08, Theorem 3.2].

If k is a field and G — Speck is a group scheme, we denote by %G the classifying stack of
G, whose objects are G-torsors.

3. Fields of moduli
Let k be a field, (Aff/k) the category of affine k-schemes. All stacks will be fppf stacks over

(Aff/k). If ./ is such a stack, and R is a k-algebra, we set .#(R) = .#(Spec R); if R — S is a
morphism of k-algebras and ¢ is an object of .Z (R), we denote by &g the pullback of £ to .Z(.S)
via the induced morphism Spec S — Spec R.

Recall that a stack .# — (Aff/k) is locally finitely presented if whenever {A;};cr is a filtered
inductive system of k-algebras, the induced functor lim  .#(A;) — . (lim, A;) is an equivalence.
In particular, we have the notion of a locally finitely presented sheaf (Aff/k) — (Set).

Suppose that K is an extension of k. We define, as usual, the sheaf of automorphisms
Auty &: (Aff/K)°P — (Grp),

where (Grp) is the category of groups, as the functor sending an affine K-scheme S into the
group of automorphisms of the pullback &g.
If £ and 7 are two objects of .Z(K'), we denote by

Isomeg, i (Pr1 €, pran): (AfF/S)P — (Set)
the sheaf of isomorphisms of the pullbacks of & and 7 along the two projections pry,
pry: Spec K Xgpeck Spec K = Spec(K @, K) — Spec K.

If A is locally finitely presented, the two sheaves above are locally finitely presented. Recall
that, in our terminology, algebraic spaces are quasi-separated: under this assumption, group
algebraic spaces are separated schemes [Sta23, Tag 08BH, Tag 0B8G]. In particular, the sheaf
Autj € is an algebraic space of finite type if and only if it is a group scheme of finite type.

LEMMA 3.1. Let .# — (Aff/S) be a locally finitely presented fppf stack, K an extension of k, &
and n two objects of # (K). Let K' be an algebraic extension of K; then we have the following
two equivalences.

(1) The sheaf Isom g, (pri &, pryn) is an algebraic space of finite type over K if and only if
Isom g, g (Pr] €7, DTS ngk+) is an algebraic space of finite type over K'.

(2) The sheaf Auty & is a group scheme of finite type if and only if Auty &' is a group scheme
of finite type.

Both parts are immediate consequences of the following, applied to the cases R = K, R' = K’,
and R = K ®; K, RI:K’(X)kK/.

LEMMA 3.2. Let R be a commutative ring, {R;}ics a filtered inductive system of finitely pre-
sented R-algebras with faithfully flat transition functions. Set R’ & lim R;. Let F': (Aff/R)°P —
(Set) be an fppf sheaf that is locally of finite presentation, and call F' the composite
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(Aff/R")°P — (Aff/R)°P — (Set), where the functor (Aff/R')°P — (Aff/R)°P is given by restric-
tion of scalars. Then F is a finitely presented algebraic space over R if and only if F' is a finitely
presented algebraic space over R'.

Proof. If F is a finitely presented algebraic space then F’ = Spec R’ Xgpec g F' is also a finitely
presented algebraic space. Thus, assume that F” is a finitely presented algebraic space.

If R’ is finitely presented over R, then the result follows from Artin’s theorem [LMOO,
Corollaire 10.4]. Thus, denote by F; the pullback of F' to Spec R;; it is enough to show that
F; is a finitely presented algebraic space for some 7. Since F’ is finitely presented, it will be
obtained by pullback from a finitely presented algebraic space G over some R;; we can replace
R, F with R;, F;, and assume that G is defined over R. Then it is enough to show that for
some %, the pullback of G to Spec R; is isomorphic to Fj.

We claim that the isomorphism G ~ Frr = F' comes from a morphism Gr, — F; for some i.
For this, choose an affine scheme U with an étale surjective map U — G, and an affine scheme V'
with an étale surjective map V' — U x g U. Since F is an fppf sheaf, for any R-algebra S the set
of morphisms Homg(Gg, Fs) is the equalizer of the two maps F(Ug) — F(Vs); since F is locally
of finite presentation, and filtered colimits commute with equalizers, we have Homp/ (Gg/, Fr/) =
lim, Hompg, (GRg,, F;), hence the thesis. Thus, by replacing R with R; we may assume that there
exists a morphism GG — F' that pulls back to the isomorphism G g ~ Fg; we need to check that
this is an isomorphism. This is standard if R’ is finitely presented over R; let us show that the
proof adapts to the general case.

Let S be any R-algebra, we want to show that G(S) — F(S) is bijective. Denote by S’, S;
the tensor products S ®@g I, S ®p R, we have that G(S') = lim, G(5;) — F(5') = lim, F(S;)
is bijective. If g1, g2 are elements of G(S) which map to the same element of F(S), then g;,; =
g2,; € G(S;) for some i. Since S; is faithfully flat over S, this implies that g; = g2. We have, thus,
proved that G — F' is an injective morphism of sheaves, it remains to prove surjectivity. Let f
be any element of F(S), there exists an i such that f; € F(S;) is the image of some element
gi € G(S5;). Since f; descends to S, the two restrictions of f; to S; ®g S; are equal. Injectivity of
G — F implies that the same holds for the two restrictions of g;, hence g; descends to an element
g € G(S). The image of g in F(S) restricts to f; € F(S;), hence it is f € F(S) since S — S; is
faithfully flat. O

3.1 The residual gerbe

Notation 3.3. In this subsection we always use the following notation: .# will be an fppf stack
over (Aff/R), locally of finite presentation, K an algebraic extension of k, £ an object of .Z (K).
We also interpret & as a morphism £: Spec K — .

Assume that K is finite over k. We define the residual gerbe 9 of £ in .4 as in [LMOO,
§ 11], that is, we take % to be the fppf image of £ in .#. In other words, % is the full fibered
subcategory of .# such that an object 1 in .#(S) is in ¥ (S) if there exists an fppf cover S —
and a morphism of k-schemes S’ — Spec K such that the pullback ng and &g/ are isomorphic in
A (S'). It is immediate to check that ¢ is an fppf stack.

Note that, by definition, {: Spec K — .# factors through %:; in fact, ¥ C .# is the smallest
fppf substack of .# through which £ factors.

LEMMA 3.4. Let L be a finite extension of K. Then %& =Y.

Proof. This is clear from the fact that Spec L — Spec K is an fppf cover. g
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In the general case K is an algebraic extension of k, and £ an object of .# (K) as before. Since

A is locally of finite presentation, there is a factorization Spec K — Spec L L3N of £: Spec K —
A with L finite over k; we define % to be ¥. Because of Lemma 3.4, this is independent of
the factorization. It is immediate to show that the analogue of Lemma 3.4 holds when K /k and
L/K are only assumed to be algebraic.

PROPOSITION 3.5. Let L be an algebraic extension of K. Then ¥, = %;.

Proof. Let E be an intermediate extension kK C E C K, finite over k, such that £: Spec K — .#
factors as Spec K — Spec F/ £, A . By definition, we have ¥; = 9y = Y, . O

DEFINITION 3.6. We say that £ is algebraic if the residual gerbe 9 is an algebraic stack.
From Proposition 3.5 we obtain the following.

PRrROPOSITION 3.7. Let L be an algebraic extension of K. Then ¢ is algebraic if and only if &1, is
algebraic.

ProrosiTiON 3.8. The following conditions are equivalent.

(1) The object & is algebraic.
(2) The sheaf

Isom e, i (Pr1 €, pra&): (Aff/K @ K)® — (Set)
is an algebraic space of finite type.

Proof. (1) = (2). The sheaf in question is the fibered product Spec K x_, Spec K; since ¥
is a full subcategory of .# and Spec K — .# factors through %, we have Spec K x_, Spec K =
Spec K Xg, Spec K, and the result follows.

(2) = (1). Set S % Spec K and R % Isom g, 1 (P17 €, Prs §). We obtain an fppf groupoid
R = S; since S — % is an fppf cover, we have an equivalence of ¢ with the quotient stack
[R = S]. Then it follows from Artin’s theorem [LMO00, Corollaire 10.6] that % is an algebraic
stack. g

If ¢ is algebraic, then the sheaf Auty &: (Aff/K)°P — (Grp) is a group scheme of finite type,
as it is the restriction of IsomK®kK(pr“f €, pry &) along the diagonal Spec K C Spec K ®j, K. We
do not know whether the converse holds in general; but it does if K/k is separable.

PROPOSITION 3.9. Assume that the extension K/k is separable, and that Auty & is a group
scheme of finite type. Then £ is algebraic.

Proof. We can assume that K is finite over k. Set G & Auty & and R o Isom g, k(P17 €, pr3 &);
there is a natural right action of G on R, by right composition. Assume that G is representable,
and let us show that R is representable.

We have K ®p K = Ly x --- X L,, where each of the L; is a finite separable extension of k.
Let us show that for each i the restriction Ry, of R to Spec L; is representable by a scheme; this
will prove the result. For each 7 we have two mutually exclusive cases.

(a) There exists an extension L) of L; such that the pullbacks of pri¢ and pri¢ to L) are
isomorphic.
(b) For any extension L] of L;, the pullbacks of prj £ and pri ¢ to L are not isomorphic.

In the first case the restriction Ry, is a G-torsor, and torsors are representable (see, e.g.,
[Sta23, Tag 04UT]). In the second case, Rr, = 0. O
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PROPOSITION 3.10. Assume that & is algebraic. Then % is an fppf gerbe over Spec k(§), where
k(€) is an intermediate extension k C k(§) C K, with k(&) finite over k. Furthermore, there is
the following cartesian diagram.

By Autye € —— %

J |

Spec K —— Speck(§)

Proof. We can assume that K is finite over k. Since Spec K — % is flat and surjective, and
every morphism to Spec K is flat, it follows that every morphism to % is flat. In particular,
the inertia of ¥ is flat over %; by [Sta23, Proposition 06QJ] it follows that ¥ is an fppf gerbe
over an algebraic space Z over Speck (in the more general sense of [Sta23]). Under the present
conditions it is immediate to check that the diagonal of Z is of finite type; hence, Z has dense
open subset that is a scheme [Sta23, Proposition 06NH]. Since Spec K — Z is flat and surjective,
it follows immediately that Z has to be the spectrum of a field, which proves the first statement.

For the second, the pullback Spec K Xgpecre) % 1is an fppf gerbe over SpecK.
Since §: Spec K — .# factors, by definition, through %, we obtain a section Spec K —
Spec K Xgpeck(¢) %; the automorphism group scheme of the corresponding object is Auty &.
This concludes the proof. ]

DEFINITION 3.11. The field k(§) above is called the field of moduli of €.

The field of moduli has the following interpretation. Denote by R the sheaf
IsomK®kK(pr’f &, prs€), which is an algebraic space of finite type over K ®j K, by
Proposition 3.8.

PROPOSITION 3.12. The field of moduli k(§) is the equalizer of the two arrows prj and pry: K —
O(R).

Proof. Since % is a gerbe over Speck(§), we have k(§) = €0(%:). The morphism Spec K — %
is an fpqc cover, and R = Spec K Xy, Spec K, hence & (%) is the equalizer of the two arrows in
question. ]

In the ‘classical’ case, where K /k is a (not necessarily finite) Galois extension we obtain the
following interpretation of the field of moduli.

PROPOSITION 3.13. Suppose that K/k is a Galois extension with Galois group G. For each
v € G call ¥*¢ the pullback of & along v: Spec K — Spec K ; call K the algebraic closure of K.

Let H C G the subgroup consisting of the elements vy € G such that (y*§)z is isomorphic to &5
Then k(€) is the field of invariants K.

Proof. First, assume that K is finite over k. In this case Spec(K ®j K) is a disjoint union
[I,ccSpec K. The image of the natural morphism R — Spec(K @k K) is [[ ey Spec K C
[1,ec Spec K hence, pri K, prj: K — O(R) factor through the pullback [[, .y K — O(R),
which is injective. The conclusion follows from Proposition 3.12.

If K is not finite over k, choose a finite intermediate extension k¥ C K’ C K such that (X, ¢)
descends to K’. The result for K’ is easily seen to imply that for K. O

DEFINITION 3.14. The object & is tame if it is algebraic, and Auty & is finite and linearly
reductive.

Equivalently, the object ¢ is tame if % is a tame stack.
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3.2 Residual gerbes and moduli spaces
In case . is an algebraic stack with finite inertia, there is another interesting interpretation of
the field of moduli of a tame object.

Assume that .# is an algebraic stack with finite inertia, with moduli space .# — M, and let
m € M be a point. By the definition of a moduli space there exists an object & over the algebraic

closure k(m); we say that the point m is tame if Autmﬁ is linearly reductive.

DEFINITION 3.15. Assume that m € M is a tame point. The residual gerbe of m is defined
to be

% < (Speck(m) x s M)

red’

PROPOSITION 3.16. The residual gerbe %, is a finite tame gerbe over k(m).

Proof. By [AOVO08, Proposition 3.6] the tame points of M form an open subspace M’ C M:;
we can replace M with M’, and assume that .# is tame. Since formation of moduli spaces
of tame stacks commutes with base change, we have that the moduli space of Speck(m) X s
A is Speck(m); and from this, that the moduli space of ¥, is Speck(m). From [Sta23,
Proposition 06RC] it follows that %, is a gerbe over k(m), as claimed. O

PROPOSITION 3.17. Assume that .# is an algebraic stack with finite inertia locally of finite type
over k, with moduli space # — M. Let £: Spec K — .# be a tame object, and call m € M the

image of the composite Spec K AN M — M. Then the residual gerbe of £ is 9,,, and the field of
moduli k(§) is the residue field k(m).

Proof. We may assume that K is finite over k. The morphism Spec K — .# factors through
Spec k(m) X A ; since Spec K is reduced we get a factorization Spec K — ¥, C .# . Since %,
is a finite gerbe, it follows that Spec K — ¥, is flat and finite, hence it is an fppf cover. The
result follows from this. g

It is easy to give counterexamples to the statement of Proposition 3.17 without the tameness
hypothesis. The point is that the moduli space of Spec k(m) X s .# may be a non-trivial purely
inseparable extension k' of k(m); and in this case the argument above shows that the field of
moduli of £ is k.

3.3 The basic question
Now assume that .# — (Aff/K) is an fppf locally finitely presented stack, £: Speck — .# an
algebraic object defined over the algebraic closure of k, k(¢) C k its field of moduli. Is ¢ defined
over its field of moduli k£(§)? This is equivalent to asking whether % (k(&)) # 0.

From now on we consider objects ¢ defined over the algebraic closure k of k; from
Proposition 3.5 it is clear that this is not a restriction.

4. Application of non-abelian cohomology

In the situation above, assume that & € .# (k) is an algebraic object.
As an immediate corollary of the fact that every affine gerbe over a finite field is neutral
[DTZ20, Theorem 8.1], we get the following.

PROPOSITION 4.1. Assume that k is finite and Autg ¢ is affine. Then ¢ is defined over its field
of moduli.
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One can also apply standard results on the classification of gerbes, which usually go under the
name of Grothendieck—Giraud non-abelian cohomology [Gir71], to get conditions ensuring that
§ is defined over its field of moduli. This works very cleanly when Autz ¢ is finite and reduced.

Set G ¥ Auty &, and assume for the rest of the section that G is finite and reduced; according
to our general conventions we think of G as an ordinary group. Denote by Aut G the group of
automorphisms of G, and by Out G its group of outer automorphisms, that is, the cokernel of
the homomorphism G — Aut G given by conjugation.

PROPOSITION 4.2. Assume that the following conditions are satisfied:

(1) the center of G is trivial; and
(2) the projection Aut G — Out G is split.

Then £ is defined over its field of moduli.

This should be compared with [DE99, Corollary 4.3(b)].
In a similar spirit we get the following, which is a generalization of [DE99, Corollary 4.3(a)],
with the same proof.

PROPOSITION 4.3. Assume that the absolute Galois group of k has cohomological dimension at
most 1. Then £ is defined over its field of moduli.

These two propositions are immediate corollaries of the following standard application of
non-abelian cohomology.

LEMMA 4.4. Let G be a finite group, k a field. Let ¢4 — (Aff/k) be a gerbe such that % is
isomorphic to %rG. Assume that either:

(1) G has trivial center, and Aut G — Out G is split; or
(2) k has cohomological dimension 1.

Then ¥ is neutral.

Proof. Denote by k° the separable closure of k& and by I' = Gal(k®/k) be the absolute Galois
group of k. We have that % is isomorphic to %sG by Lemma 4.5. The tautological section
Speck® — $BsG — ¥ induces a continuous homomorphism I' — Out G. Under both conditions
(1) and (2), we have a lifting I' — Aut G: for condition (1) this is obvious, whereas for condition
(2) this follows from the fact that G is projective [Ser94, Proposition 45]. By descent theory, the
homomorphism I' — Aut GG induces a finite étale group scheme G over k which is a twisted form
of G. Equivalently, G is the quotient (G x Spec k®)/T" where I' acts on both G and Spec k°.

Let L be the non-abelian band, in the sense of [Gir71], of 4. By construction, L is represented
by G. By [Gir71, Théoreme 3.3.3], under both conditions (1) and (2), the gerbe ¢ is the only
gerbe banded by L. Since the classifying stack %G is banded by L by construction, we get that
94 ~ B.G, i.e. 9 is neutral. O

LEMMA 4.5. A finite gerbe with unramified diagonal over a separably closed field is neutral.

Proof. Let k be a separably closed field with algebraic closure k, and ¢ a finite gerbe over k with
unramified diagonal. There exists a finite extension k'/k with a section s € 4(k’). The scheme
Isom(pjs, phs) is finite étale over the artinian local ring &’ ®j k&’ and we have a lifting Spec &’ —
Isom(p7s, phs) of the closed point Spec k' C Speck’ @y, £/, hence we get a section Spec k' ® k' —
Isom(pis, pss). By descent theory we obtain that s descends to k. O

These results do not apply in many cases of great interest, for example, when G is abelian
and k is a number field.
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Our main theorem, which is a generalization of [DE99, Corollary 4.3(c)], gives a criterion for
this to happen, when ¢ is tame, for an interesting class of stacks, whose objects are algebraic
spaces with additional structure.

5. The main theorem

5.1 Categories of structured spaces
We denote by (FAS/k) the fibered category over (Aff/k) whose objects over an affine scheme S
over k are flat finitely presented morphisms X — S, where X is an algebraic space.

DEFINITION 5.1. A category of structured spaces over k is a locally finitely presented fppf stack
M — (Aff/k), with a faithful cartesian functor .# — (FAS/E).

Examples spring to mind.
Examples 5.2.

(1) The category (FAS/k) itself is a category of structured spaces.

(2) Any condition that we impose on objects X — S in (FAS/k) that is stable under base change
and fppf local defines a full subcategory .# C (FAS/k) that is a category of structured
spaces. Thus, for example, the stacks .Z, and ]9 of smooth, or stable, curves of genus g,
the stack of smooth abelian varieties, of projective surfaces, and so on.

(3) The stacks .#;,, and ]g,n of n-pointed smooth, or stable, curves of genus g are all categories
of structured spaces.

(4) The category of smooth polarized projective schemes is a category of structured spaces.

An object & of a category of structured spaces .# will be denoted by (X — S, &), or simply
(X,§), where X — S is the image of £ in (FAS/k); we want to think of (X, ) as an algebraic
space with an additional structure.

A category of structured spaces .# has a universal family 2 — (Aff/k); the objects of 2
are triples (X — S,¢,x), where (X — S,¢) is an object of .Z(S), and z: S — X is a section
of the morphism X — S. We have an obvious morphism 2  — .# which forgets the section.
If S — # is a morphism, corresponding to an object (X — S,§) of .#(S), then the fibered
product S x 5, % is equivalent to X; hence, the morphism 2~ — .Z is representable, flat, and
finitely presented. The universal family is itself a category of structured spaces.

Now, let (X, &) be an algebraic object of .# (k), and denote by Z(x¢) the fibered product
Yix.6) X Z . We have a commutative diagram

X —— [X/Autgl] ——— Zixe) ——— &
l = | o | o |
Speck ——» Br Atz ——— Yx o —— M
~ 1 o | J
Speck —— Speck(X,£) —— Speck
in which the squares marked with [J are cartesian.

DEFINITION 5.3. Assume that ¥ x ¢) (and, hence, 2/ x ¢)) has finite inertia. The compression of
(X, §) is the coarse moduli space of Zx ¢); it is an algebraic space over the field of moduli k(X &).
We denote the compression using bold letters, for instance we write X x ¢) for the compression
of (X,£).
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Since formation of moduli spaces commutes with flat base change (see [Con05]) we have
Speck Xspeck X(x,6) = X/ Auty €.

In other words, whereas X does not necessarily descend to k(X &), the quotient X/ Aut; £ always
does, in a canonical fashion. This is a more general version of [DE99, Theorem 3.1].

It is possible to show that, in a certain sense, the compression Xy ¢) contains the same
amount of information as the structure { on X, see [Bre23a, Theorem 2.

5.2 The main result
THEOREM 5.4. Let .# — (Aff/k) be a category of structured spaces, (X,€) € .4 (k) a tame
object with X integral.

Assume that there exists a dominant rational map Y --» X(x ¢ where Y is an integral
algebraic space of finite type over k(X, &) with a k(X,§)-rational regular point. Then (X, &) is
defined over its field of moduli k(X,¢).

In this proof, and in the rest of the paper, a crucial role is played by the Lang—Nishimura
theorem for tame stacks that we prove in [BV23]. For the convenience of the reader we recall its
statement.

THEOREM 5.5 [BV23, Theorem 4.1]. Let S be a scheme and X --» Y a rational map of algebraic
stacks over S, with X locally noetherian and integral and Y tame and proper over S. Let k be
a field, s: Speck — S a morphism. Assume that s lifts to a regular point Speck — X; then it
also lifts to a morphism Speck — Y.

Proof of Theorem 5.4. There exists an Autg &-invariant open subset U C X such that the action
of Aut;- & on U is free: by hypothesis the action of Aut; £ on X is faithful, and for each non-trivial
subgroup G' C Auty § the locus of points of X fixed by G is a proper closed subset of X. This, in
turn, implies that there exists an open substack % C Z(x¢) which is an algebraic space; then
the composite Z C Z(x¢) — X(x¢) is an open embedding.

Because of this, the hypothesis gives us a rational map Y --+ %. We conclude by applying
Theorem 5.5 to the composite Y --» % C Z(x¢) — Y x,0)- O

Note that if X is smooth of dimension 1 over k, then X(x,) s also smooth over k(X &);
hence, in this case we get the following.

COROLLARY 5.6. Let .# — (Aff/k) be a category of structured spaces, (X,€) € .# (k) a tame
object such that X is integral, smooth and one-dimensional. Assume that the compression X x ¢)
has a k(X §)-rational point. Then (X, &) is defined over its field of moduli k(X §).

When (X,¢) is a smooth projective curve with no additional structure, this is [DE99,
Corollary 4.3(c)].

5.3 The case of pointed spaces
One case in which we can ensure the existence of a rational point on X x ¢ is the case of pointed
spaces. For the rest of the paper, we use the following definition.

DEFINITION 5.7. A pointed space (X,p) over an affine scheme S over k is a flat locally finitely
presented morphism f : X — S with a section p: S — X landing in the smooth locus of f.

Pointed spaces form a fibered category (PFAS/k) — (Aff/k); there is an obvious repre-
sentable cartesian functor (PFAS/k) — (FAS/k), which forgets the section.
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DEFINITION 5.8. A category of pointed structured spaces over k is a locally finitely presented
fppf stack .# — (Aff/k), with a faithful cartesian functor .# — (PFAS/k).

If . # — (PFAS/E) is a category of pointed structured spaces and S is a scheme, an element
of .#(S) will be denoted by (X, p, &), where (X, €) is the corresponding structured space given
by the composition .# — (PFAS/k) — (FAS/k) and p: S — X is the given section.

If A is a category of pointed structured spaces, it can be considered as a category of struc-
tured spaces by composing .# — (PFAS/k) with the forgetful morphism (PFAS/k) — (FAS/k).
One can think of categories of pointed structured spaces as categories of structured spaces in
which the structure includes a smooth marked point.

There are many natural examples of categories of pointed structured spaces: for example, the
category of abelian varieties, or the category of n-pointed stable, or smooth, curves, for n > 1.

LEMMA 5.9. Let .4 be a category of pointed structured spaces, (X, p, &) € .4 (k) a tame object.
The compression X (x ¢y has a rational point p over k(X,p,§) such that pg corresponds to p
via the identification X(ng) 7= X/ Aut(X,p,§).

Proof. Consider the universal family 2" — .#, and its smooth locus Z5, C 2 (this is the
largest open substack of 2~ where the restriction of 2" — .# is smooth). The fibered prod-
uct A X was/k) (PFAS/k) is canonically isomorphic to Zgm; hence the cartesian functor .4 —
(PFAS/k) induces a section .# — Zgn of the projection Zi, C 2 — #. By restricting to
Y x p,e) We obtain a section ¥ x , ¢) — Z(x p¢) of the projection Z(x , ¢) — ¥ x ), and, passing
to moduli spaces, a section Spec k(X, p,§) — X(x p¢) of the projection X x5, ¢y — Spec k(X, p,§),
or, in other words, a k(X p,§)-rational point of X x  ¢)- O

When X is one-dimensional, it follows that p € X, X7p,§)(k‘(X ,p,§)) is smooth (recall that,
by Definition 5.7, p € X is smooth). Hence, we get the following.

COROLLARY 5.10. Let .Z be a category of pointed structured spaces, (X,p,€&) a tame object
of A (k), such that X is one-dimensional and integral. Then (X, p,£) is defined over its field of
modauli.

As a consequence, we recover the following result by Debes and Emsalem.

COROLLARY 5.11 [DE99, Corollary 5.4]. Let g > 1 and n > 1 be positive integers and k a field.
Every smooth n-pointed curve of genus g over k with tame automorphism group scheme is defined
over its field of moduli.

In particular, if chark =0, K/k is any extension and Mg, is the coarse moduli space of
smooth n-pointed curves of genus g over k, every K-valued point of M ,, comes from a smooth
n-pointed curve of genus g over K.

Proof. Let .#,, be the stack of n-pointed curves of genus g over k, since n > 1 we may think
of it as a category of pointed structured spaces, the first part then follows from Corollary 5.10.
Now assume that chark = 0, let K/k be any extension and Spec K — M, ,, a point. Let X be
an n-pointed smooth curve over K corresponding to the composite Spec K — Spec K — My n;
by Proposition 3.17 we have that the field of moduli of X is K, hence X is defined over K. [

This fails for stable curves that are not irreducible: one can give examples of 1-pointed stable
curves that are not defined over their field of moduli. The issue here is that the automorphism
group of the pointed curve may not act faithfully on the component Z C X containing the
marked point: if the action on Z is not faithful and Z C X(x ) is the image in the compression,
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we do not have an induced rational map Z --» ¥ x ¢) (see the proof of Theorem 5.4), and hence
a smooth rational point of Z does not guarantee that ¢ x ¢) is neutral.

Corollary 5.10 fails in dimension higher than 1. There are many counterexamples. For exam-
ple, fix a positive integer g, let A, the moduli space of principally polarized g-dimensional abelian
varieties over C, and let k£ be its field of rational functions. Call X the corresponding abelian
variety over the algebraic closure k, which we can think of as 1-pointed variety (X,0). By
Proposition 3.17 the field of moduli of (X,0) is k. As we mentioned in the introduction,
Shimura showed in [Shi72] that when k& = C (X, 0) is defined over k if and only if ¢ is odd (see
[BRV11, Appendix] for a refinement of this statement due to Najmuddin Fakhruddin). In this
case the group of automorphisms is cyclic of order 2.

Given a positive integer d, we study a natural class of discrete finite groups over k, with the
property that if .# is a category of pointed structured spaces, (X, ¢) is a tame object of .# over
k, and Autz € is in this class, then £ is defined over its field of moduli.

6. The arithmetic of tame quotient singularities

Let S be an algebraic space of finite type over a field k. We say that S has tame quotient
singularities if there is an étale cover {S; — S} and, for each i, a smooth algebraic space U;
and a finite group G; of order not divisible by char k acting on U;, such that S; is isomorphic to
U;/G. In particular, S is normal.

More generally, one could consider spaces that are étale-locally quotients of smooth algebraic
spaces by finite linearly reductive group schemes, as in [Sat12]; but the technology to adequately
deal with these in our context still does not seem to be completely in place, which forces us to
limit ourselves to considering tame Deligne-Mumford stacks, as opposed to general tame stacks.

6.1 Minimal stacks
The following is known, see [Vis89, Proposition 2.8]. Our statement is slightly different from that
in the reference, though, so we give details.

PROPOSITION 6.1. The moduli space of a smooth tame Deligne—-Mumford stack with finite
inertia over k has tame quotient singularities.

Conversely, if S is an algebraic space with finite quotient singularities, there exists a smooth
tame Deligne-Mumford stack with finite inertia S with moduli space S, with the property that
the morphism S — S is an isomorphism over the smooth locus of S.

Furthermore, if V is a smooth integral Deligne-Mumford stack with a dominant mor-
phism V — S, there exists a factorization V — S — S, unique up to a unique isomorphism.
In particular, S is unique, up to a unique isomorphism.

Proof. Let 2 be a smooth, tame Deligne-Mumford stack with finite inertia, and let M be its
moduli space, we want to show that M has tame quotient singularities. By [AV02, Lemma 2.2.3],
we may assume that 2~ = [U/G], where G is a finite group, so that M = U/G. If ug: SpecQ — U
is a geometric point of U, and G, is the stabilizer of ug, then the natural morphism U/G,,, —
U/G is étale in a neighborhood of ug; but Gy, has order prime to char k, because [U/G] is tame,
so the result follows.

If S has tame quotient singularities, then the second half of the proof of [Vis89,
Proposition 2.8] shows the existence of a stack 5 — S as in the statement (the reference’s
assumption char k = 0 is not used in the relevant part of the proof).

Now let V' — S be as in the statement. Since S is normal, S — S is an isomorphism in
codimension 1. Let U be the normalization of V' xg S. Since everything is of finite type over k
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and S is the moduli space of S , then U — V is proper and birational. By purity of branch locus,
it is étale too, hence U ~ V and we obtain the desired morphism V' — S. The uniqueness follows
from the fact that S is separated. U

We call the stack S above the minimal stack of S (also called the canonical stack in the
literature). Clearly, if S has tame quotient singularities, and &k’ is an extension of k, the space
Sy obtained by base change also has tame quotient singularities, and the minimal stack of Sy
is §k’- In other words, formation of the minimal stack commutes with extensions of the base
field. Furthermore, if S — S is an étale morphism and S has tame quotient singularities, then
so does S, and S’ = 5’ xg S.

It is known that algebraic spaces with tame quotient singularities have a resolution of sin-
gularities, that is, there is a proper birational morphism S — S where S is a smooth algebraic
space over k. If k is perfect, this is [BR19, Theorem E]; in the general case it is obtained by
applying [BR19, Theorem B] to the minimal stack S — S.

6.2 Singularities and fundamental gerbes
Let k be a field; a tame quotient singularity over k is a pair (S, s), where S is a an integral scheme
of finite type over k with tame quotient singularities and s € S(k) is a k-rational point. No other
kinds of singularities will appear in this paper, so from now on a tame quotient singularity will
be called simply a singularity.

Two singularities (S,s) and (S’,s") are equivalent if there exists a singularity (S”,s”),
together with étale maps S” — S and S” — S’ sending s” into s and s', respectively. This is true
if and only if the complete local k-algebras ﬁg s and ﬁgl ; are 1somorphlc [Art69, Corollary 2.6].

DEFINITION 6.2. Given a singularity (S, s), the fundamental gerbe ¥ g q) of (S,s) is the resid-

ual gerbe, as in Definition 3.15, of S — S at s. The fundamental group G g of (S,s) is the
automorphism group of any geometric point of ¥ ).

Thus, by definition, the fundamental group of (.9, s) is a finite group, of order prime to char k.
It is well defined up to a non-canonical isomorphism.

One can prove that ¥ g ) is the local fundamental gerbe of S, in the following sense. Let
S < Spec ﬁgs, where Spec ﬁgs is the henselization of s s, and let U C S’ be the smooth locus

of §'. Set §" % 5" x g §. Then 9(s,s) is the fundamental gerbe, in the sense of [BV15] of U and

also of S”. We do not prove this here, as it is not needed in what follows.
Since formation of the minimal stack commutes with étale morphisms, equivalent singularities
have isomorphic fundamental gerbes.

LEMMA 6.3. Assume that k is separably closed. Let Z be a smooth, tame Deligne-Mumford
stack which is generically a scheme, with moduli space 2" — S. Let £ be an object in Z (k) and
s € S(k) its image of &.

There exists a faithful representation Aut& C GLg4(k) such that (S,s) is equivalent to
(A%/ Aut £, [0]), and the quotient of Auté by the subgroup generated by pseudoreflexions is
isomorphic to the fundamental group of (S, s).

Proof. After passing to an étale neighborhood of s € S, we may assume 2" ~ [U/H| with U
smooth and H finite of order prime to char k. Since k is separably closed, the rational point
¢ € Z (k) lifts to a rational point v € U(k). Let H, C H be the stabilizer of u, then U/H, —
U/H ~ S is étale in [u], hence we may replace 2", H with [U/H,|, H, = Aut ¢ and assume that
H = Aut ¢ and that u is a fixed point.
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Call V' the tangent space of U at u; then Aut& acts on V, and by fixing a basis we get
a representation Auté — GLg(k). By Cartan’s lemma, after passing to an equivariant étale
neighborhood of u in U we may assume that there exists an étale Aut £-equivariant map U — V.
This implies that the action of Aut € on V is faithful, and that (S, s) = (U/ Aut &, [u]) is equivalent
to (V/ Aut &, [0]).

Denote by P C Aut¢ the subgroup generated by pseudoreflexions. By the Chevalley—
Shephard-Todd theorem V/P is smooth and Aut /P acts on it with no fixed points in codimen-
sion 1. It follows that [(V/P)/(Aut&/P)] is the minimal stack of V/ Aut{ and, hence, Aut /P
is the fundamental group of (V/ Aut ¢, [0]) ~ (5, s). O

COROLLARY 6.4. Assume that k is separably closed, and let (S, s) be a tame quotient singularity
over k. There exists a faithful representation G g ) C GL4(k) with no pseudoreflexions such that

(Sa 3) ~ (AZ/G(S,S)v [0])

Proof. Thanks to Lemma 4.5, we may apply Lemma 6.3 to S. O

6.3 Liftable singularities
The following is a consequence of Theorem 5.5.

PROPOSITION 6.5. Let (S, s) be a tame quotient singularity, S — S a resolution of singularities.
The following conditions are equivalent:

(1) S has a k-rational point over s;

(2) the minimal stack S — S has a k-rational point over s;

(3) the fundamental gerbe 9 s ) of (S, s) is neutral;

(4) for every proper birational morphisms S’ — S, where S’ is an integral tame
Deligne-Mumford stack, S’ has a k-rational point over s.

Proof. Note that S — S and S — S are both birational morphisms, hence we have a birational
map S --» Sover S. Similarly, for every proper birational morphism S’ — S we have a birational
map S --5 8 over S. We get the implications (1) = (2) = (4) by applying Theorem 5.5 to
S --» 5 --» §'. Condition (4) clearly implies condition (1). Conditions (2) and (3) are equivalent
by the definition of the fundamental gerbe ¥ ,) g

DEFINITION 6.6. Let (S, s) be a tame quotient singularity. We say that (S, s) liftable if it satisfies
the equivalent conditions of Proposition 6.5.

Remarks 6.7.

(1) If two singularities are equivalent, then one is liftable if and only if the other is.
(2) Since formation of S commutes with extension of the base field, we see that if (S,s) is
liftable over k, and k' is an extension of k, then (S, s)x is also liftable.

The following construction gives a criterion for a singularity to be liftable, which will be a
fundamental tool in the rest of the paper.

6.4 The blowup construction

Let K/k be a separable closure. Let (S,s) be a tame quotient singularity over k; by

Corollary 6.4 (Sk, sg) is equivalent to (A?/G,[0]) for some G C GLg(K), such that G contains

no pseudoreflexions and has order prime to char k. Denote by G the image of G in PGLy(K).
Denote by ¢ the fundamental gerbe ¢ ,), and by .#” the normal bundle of ¢ in S ; this is a

vector bundle over ¢ of rank d. In addition, denote by % the blowup of S along ¥; clearly the
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exceptional divisor & equals P(./"). Denote by E the moduli space of &’; the morphism & — F
factors through the minimal stack FE.
We have & = [PL! /G, N = [A%/G], and Er = P& /G.

DEFINITION 6.8. We say that F is the associated variety of the singularity.

Recall that % is the blowup of ¥4 in S , let B — S be its coarse moduli space. Since 4 is a
tame stack and formation of coarse moduli spaces commutes with base change for tame stacks,
the reduced fiber of B — S over s is F.

COROLLARY 6.9. There exists a rational morphism E --+ 4.

Proof. The morphism £ — B is birational. Since & is smooth, then B is normal, in particular
it is regular at the generic point of E. It follows that the morphism Speck(E) — B lifts to
a morphism Speck(E) — % by our version of the Lang—Nishimura theorem 5.5. Clearly, the
composite Spec k(E) — B — S factors through ¥4 — S. 0

Given an irreducible algebraic space X of finite type over a field k, we say that a field
extension k'/k splits X if there exists a dominant rational map Y --» X} where Y is an integral
scheme of finite type over k¥’ with a smooth k’-rational point. If & splits X, then we say that X is
split. If X has tame quotient singularities, using our version of the Lang—Nishimura theorem 5.5
we see that k' splits X if and only if the minimal stack X has a k’-rational point.

PROPOSITION 6.10. A field extension k' /k splits E if and only if it splits 4.

Proof. If k' splits ¢, then there exists a morphism of k-stacks Speck’ — ¥; since & is the
projectivization of a vector bundle on ¢, this lifts to Speck’ — &; but & maps to E, so k’

splits F.
If k¥’ splits E, since there exists a rational map F --+ ¢ our version of the Lang—Nishimura
theorem 5.5 implies that k' splits ¢. ]

6.5 R-singularities

If k and k' are fields with the same characteristic, (S, s) is a singularity over k and (S’,s’) is a
singularity over k', we say that (S, s) and (5’,s") are stably equivalent if there exists a common
extension k¥ C K and k' C K, such that (5, s)x and (S’ ')k are equivalent. It is easily checked
that this is an equivalence relation on tame quotient singularities.

DEFINITION 6.11. An R-singularity is a tame quotient singularity such that every singularity
that is stably equivalent to it is liftable.

From the definition, it is not clear that there are any non-trivial examples of R-singularities.

6.6 R4 groups
DEFINITION 6.12. Let d be a positive integer, p be either 0 or a prime, and G be a finite group
whose order is not divisible by p. We say that G is an Ry group in characteristic p if for every
field K of characteristic p and every faithful d-dimensional representation G C GL4(K), the
singularity (A% /G, [0]) is an R-singularity.

If G is Ry in all characteristics not dividing the order of G, we say that G is an Ry group,
or simply that G is Ry.

Another way of stating this is the following.

DEFINITION 6.13. Let G be a finite group, (S, s) a singularity over a field & whose characteristic
does not divide the order of G. We say that (S,s) is a G-singularity if there exists a field K
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and a faithful d-dimensional representation G C GL4(K) such that (.5, s) is stably equivalent to
(A% /G, [0]).

Then G is an Ry group if and only if every G-singularity is liftable.
Remarks 6.14.

(1) As a point of terminology, we note that if G is not a subgroup of GL4(K) for any field K
(for example, if G contains an abelian subgroup of rank larger than d), then it is vacuously
an Ry group. Such a group cannot act faithfully on a d-dimensional variety with a smooth
fixed point, so it will not actually appear in the statement of Theorem 6.16. Thus, we are
actually only interested in Ry groups that are subgroups of some GL4(K).

(2) Every finite group is trivially R;.

(3) In the definition of an Ry group we may assume that K is algebraically closed, since every
singularity over a field is stably equivalent to its base change to an algebraic closure.

LEMMA 6.15. Let Z be a geometrically integral tame Deligne-Mumford stack of dimension d
over a field k with finite inertia and moduli space 2~ — M. Assume that 2 — M is a birational
morphism. Let £ € 2 (k) be a smooth geometric point with image p € M.

If the automorphism group Autz{ is an Ry group in char k, then (M, p) is an R-singularity.
In particular, p € M lifts to a k(p)-rational point of Z .

Proof. This is a direct consequence of Lemma 6.3. g

The point of this definition is the following result. Let us put ourselves in the situation of
§5.3: .4 — (Aff/k) is a category of pointed structured spaces, (X,p,&) € .# (k) an algebraic
object, as in Theorem 5.4.

THEOREM 6.16. Let .# — (Aff/k) be a category of pointed structured spaces, (X, p, &) € # (k)
an algebraic object with X integral of dimension d. Assume that the automorphism group scheme
Aut(X,p) is finite, tame, and reduced. If Autz (X, p,§) is an Rq group, then (X, p,§) is defined
over its field of moduli.

Proof. We apply Lemma 6.15 to the stack Z(x ,¢), with moduli space X x ,¢), to conclude
that the space X(x,¢) has an R-singularity at the rational point corresponding to p. Then
if Z— X(xp¢) is a resolution of singularities we see that Z has a regular rational point by
Proposition 6.5, so the conclusion follows from Theorem 5.4. ]

We still have to give meaningful examples of Ry groups.

A fairly trivial class of R4 groups is the following: say that a group is strongly Ry if
for any embedding G C GL4(K), where K is an algebraically closed field of characteris-
tic not dividing |G|, we have that G is generated by pseudoreflexions in GLg4(K). By the
Chevalley-Shephard-Todd theorem we have that A?/G is smooth, hence every strongly Ry
group is also Ry.

The following is straightforward.

PROPOSITION 6.17.

(1) If m is a positive integer, Cfn is strongly Ry.
(2) Dihedral groups are strongly Rs.

To give examples of finite groups that are Ry without being strongly R is more complicated,
and requires much more technology. Here are two results in this direction.
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THEOREM 6.18. Let G a finite group with the following properties.

(1) The center of G is trivial.
(2) The projection Aut G — Out G is split.
(3) Either G is perfect, or all proper normal subgroups of G are perfect.

Then G is Ry for all d.

For example, these conditions are satisfied for all symmetric groups S, and alternating groups
A,, with n > 5, n # 6. In addition, there are infinitely many classes of simple groups such that
the projection Aut G — Out G is split; a complete classification is given in [LMMO03].

Although this result is interesting, it does not give any new examples of applications of
Theorem 6.16, because of Proposition 4.2. The next result, however, does yield new examples.

THEOREM 6.19. A group of order prime to d! is Rg.
The following result allows us to give more examples of Ry groups.

PRrROPOSITION 6.20. Let G be a finite group and H C G a normal subgroup. If H is strongly Rq
and G/H is Ry, then G is Ry.

Proof. Let G C GLy4(K) be a faithful representation of G, we want to show that (A?/G,[0])
is of type R. Since H is strongly Ry, the quotient A?/H is smooth and we have an induced
representation of G/H on the tangent space V of [0] € AY/H. By the same argument given in
the proof of Lemma 6.3 applied to U = A?/H, we get that (A?/G, [0]) is equivalent to (V,[0]),
which is of type R since G/H is Ry. O

Thus, for example, a product of d cyclic groups Cy,y, X - -+ X Gy, Where 71, ..., 74 are prime
to d!, is an Ry group.

Note that subgroups and quotients of R; groups are not necessarily Ry: for example, Coy X Co
is R, but Cy is not. Furthermore, the product of two Ry groups is not necessarily Ry, see [Bre24,
Remark 18] for a counterexample with d = 2.

By putting together Theorem 5.4, Lemma 5.9, and Theorem 6.19, we obtain the following.

THEOREM 6.21. Let .# be a category of pointed structured spaces, (X,p,&) € .# (k) a tame
object such that X is integral of dimension d. If Aut(X,p,§) is étale of degree prime to d!, then
(X, p,&) is defined over its field of moduli.

Proof. The rational point p of the compression Xy ¢ given by Lemma 5.9 is a tame quotient
singularity whose fundamental group has degree prime to d! by hypothesis, hence (X( Xp.£)s p)
is liftable by Theorem 6.19. We conclude by applying Theorem 5.4. g

6.7 The proofs of Theorems 6.18 and 6.19
Let G C GL4(K), where K is an algebraically closed field of characteristic prime to |G|, where G
satisfies the hypotheses of one of the theorems; and let (.S, s) be a singularity over a field k that
is stably equivalent to (A% /G, [0]). By extending K we may assume that k¥ C K, and (S, s)x is
equivalent to (A% /[0]); under these hypotheses we need to show that (.5, s) is liftable.

Let P C G be the subgroup generated by pseudoreflexions. Under the hypothesis of
Theorem 6.18, P is trivial, since either P or G is perfect, so that the composite P C G —

GL4(K) e K* is trivial. Under the hypothesis of Theorem 6.19, by Lemma 6.3 applied to
[A%./G] we have that the fundamental group of (S, s) is a quotient of G and hence it is abelian
of order prime to d!. We may thus replace G with the fundamental group of (.5, s) and assume
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that P is trivial by Corollary 6.4. Hence, in both cases we may assume that G is the fundamental
group of (5, s).
Let ¢ be the fundamental gerbe of (5, s); we have ¥k ~ BkG.

Proof of Theorem 6.18. The gerbe ¢ satisfies the hypotheses of Lemma 4.4, hence ¥ is neutral
and (S, s) is liftable. O

Proof of Theorem 6.19. First, we may assume that G is abelian, because of the following
elementary lemma, which was pointed out to us by Janos Kollar.

LEMMA 6.22. Let K be a field, d a positive integer, and G C GL4(K) a finite subgroup whose
order is not divisible by char K and prime to d!. Then G is abelian.

Proof. We can assume that K is algebraically closed. Since char K does not divide |G| we have
that K¢ decomposes as a sum of irreducible representations. However, the degree of any irre-
ducible representation divides |G|: this is standard in characteristic 0, and follows from [Ser77,
§15.5] if char K > 0. Thus, K decomposes as a sum of one-dimensional representations, and we
obtain the result. g

Let us proceed by induction on d, starting from the case d = 1, which is trivial. Assume
that the theorem holds in dimension d — 1, and let (S, s) be a d-dimensional G-singularity with
fundamental gerbe ¥; we want to show that ¢ is neutral.

Since G is abelian, then ¢ is associated with a cohomology class ¢ € H?(k,G"), where G’ is
a twisted form of G over k. Because of this, it is enough to prove that there exists a finite field
extension &’ /k of degree prime with |G| which splits ¢: this would imply that [k : k]c € H*(k, G")
is trivial and, hence, that c is trivial too.

Let E be the associated variety of (S,s); since Ex ~P%"!/G where G is the image of G
in PGLy4(K), we have that E has liftable singularities by the inductive hypothesis. Thanks to
Proposition 6.10 it is enough to find a finite field extension k'/k of degree prime with |G| and
such that FE(k') # 0.

There exists a finite separable extension k;/k such that ¥, is isomorphic to %, G, and that
the characters of G are defined over k;. Let .4 be the normal bundle of & in S. The pullback of A
to Ay, G corresponds to a d-dimensional representation V' of G, with an eigenspace decomposition
V= @X ca Vx, where G denotes the group of characters of G.

Define a functor I': (Aff/k)°P — (Set) as follows. If T' is a k-scheme, then I'(T) is the set
of subbundles .# C A7 — %p, with the property that there exist an fppf cover {¢;: T; — T'}
and morphisms v;: T; — Spec k1, such that for each i there exists a x € G such that Vy # 0 and
G1M = VIV in GEN =iV

Clearly, I' is an fppf sheaf. The pullback I'y,: (Aff/k1)°? — (Set) is easily checked to be
represented by the disjoint union of copies of Speck;, one for each x for which V) # 0; this
implies that I'" is represented by a finite étale scheme over k, of degree at most d, because there
are at most d characters x with V; # ). So there exists a finite extension k'/k of degree at most
d, hence prime with |G|, such that T'(k) # 0.

After replacing k with &/, we can assume that there exists a non-zero subbundle .# C .4
whose pullback to ¥k = i G is V,, # 0. Consider the projective subbundle P(.Z) C P(A) = &.
Calling P the moduli space of P(.#), we have P C FE; extending the scalars to k1 we see that
Py, =P(Vy)/G = P(Vy), since the action of G on P(V,) is trivial. Hence, P is a Brauer-Severi
variety of dimension at most d — 1, and it has index at most d. This means that there exists a finite
extension k'/k of degree at most d such that P(k’) # (). Then E(k') # 0, and we conclude. O
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6.8 Isolated Cs-singularities in odd dimension

The proof of Theorem 6.19 can be adapted to prove that singularities of type Ad/G are
R-singularities for many cases that are not covered in the statement of the theorem. Here we
give just one example, which has an interesting application.

THEOREM 6.23. Let n be a positive integer which is not divisible by char K, and consider the
standard action of w,, on Aﬁ{ by multiplication. If n and d are relatively prime, then A}l( /1y, 1S
an R-singularity.

If d is odd, char K # 2, G C GLy4(K) is a finite subgroup of order 2, and A% /G has an
isolated singularity, then G = pyId C GL4(K). Thus, from the theorem we get the following.

COROLLARY 6.24. An isolated, odd-dimensional Cq-singularity is an R-singularity.
Plugging this into our main result we get the following.

COROLLARY 6.25. Let .4 be a category of pointed structured spaces, (X, p,&) a tame object
of # (k), such that X is d-dimensional and integral. Assume that the automorphism group of
(X, p,&) is cyclic of order 2, and that p is an isolated fixed point for its action on X. Then if d
is odd, (X, p,&) is defined over its field of moduli.

Thus, for example, we get that an odd-dimensional abelian variety A with automorphism
group as small as possible, that is, cyclic of order 2, is defined over its field of moduli, recovering
in particular Shimura’s result on odd-dimensional generic abelian varieties that has already been
mentioned (see [Shi72]).

Proof of Theorem 6.23. Under the hypotheses of the Theorem, the associated variety F is a
Brauer—Severi variety of dimension d — 1, hence it is split by a finite extension &’ of k of degree
dividing d. By Proposition 6.10, k' splits the fundamental gerbe ¢, which is banded by a twisted
version of w,,. The result follows from the fact that pu,, is abelian of degree prime to [k': k]. O

If d is a positive integer, what finite groups have the property that if G acts linearly on A%,
where K is algebraically closed, with characteristic not dividing |G|, and (A%)¢ = {0}, we have
that A% /G has an R-singularity at the origin, without being R4? We do not have any other
example.
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