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Abstract

Suppose that G is a second countable, locally compact Hausdorff groupoid with abelian stabiliser
subgroups and a Haar system. We provide necessary and sufficient conditions for the groupoid C∗-algebra
to have Hausdorff spectrum. In particular, we show that the spectrum of C∗(G) is Hausdorff if and only
if the stabilisers vary continuously with respect to the Fell topology, the orbit space G(0)/G is Hausdorff,
and, given convergent sequences χi→ χ and γi · χi→ ω in the dual stabiliser groupoid Ŝ where the γi ∈G
act via conjugation, if χ and ω are elements of the same fibre then χ = ω.

2010 Mathematics subject classification: primary 22A22; secondary 47A67, 46L99.
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1. Introduction

One of the reasons why C∗-algebras are so well studied is that they have a very
deep representation theory. Understanding the spectrum or primitive ideal space of a
C∗-algebra, and in particular the topology on these spaces, can reveal a great deal of
information about the underlying algebra. For example, if a separable C∗-algebra A
has Hausdorff spectrum Â then A is naturally isomorphic to the C0-section algebra
of a bundle over Â such that each fibre of the bundle is isomorphic to the compact
operators. Given a class of C∗-algebras, it is an interesting problem to characterise
those algebras which have Hausdorff spectrum. For example, in [14] Williams proves
the following result. Suppose that we are given a transformation group (H, X) such
that H is abelian and the group action satisfies any of the conditions in the Mackey–
Glimm dichotomy [11]. Then the transformation group C∗-algebra will have Hausdorff
spectrum if and only if the stabiliser subgroups of the action vary continuously with
respect to the Fell topology and the orbit space X/H is Hausdorff.

In this paper we would like to extend the work of [14] from transformation
groups to groupoids. The most straightforward generalisation is the conjecture
that, given a groupoid G with abelian stabiliser subgroups which satisfies the
conditions of the Mackey–Glimm dichotomy, the groupoid C∗-algebra will have
Hausdorff spectrum if and only if the stabilisers vary continuously in G and G(0)/G
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is Hausdorff. Interestingly, we will show that this ‘naive’ generalisation fails and
that characterising the groupoid C∗-algebras with Hausdorff spectrum requires a
third condition. Furthermore, the correct generalisation, presented in Section 2
as Theorem 2.11, is in some ways stronger than the results of [14], even for
transformation groups. We finish the paper by providing some further examples in
Section 3. In addition, we also prove that, unlike the T0 or T1 case, in the Hausdorff
case working with the dual stabiliser groupoid is necessary.

Before we begin we should review some preliminary material. Throughout the
paper we will let G denote a second countable, locally compact Hausdorff groupoid
with a Haar system {λu}. We will use G(0) to denote the unit space, r to denote the
range map, and s to denote the source map. We will let S = {γ ∈G : s(γ) = r(γ)} be
the stabiliser, or isotropy, subgroupoid of G. Observe that on S the range and source
maps are equal and that r = s : S →G(0) gives S a bundle structure over G(0). Given
u ∈G(0), the fibre S u = r|−1

S (u) is a group called the stabiliser subgroup at u. Since
S is a closed subgroupoid of G, it is always second countable, locally compact and
Hausdorff. However, S will have a Haar system if and only if the stabilisers vary
continuously. That is, if and only if the map u 7→ S u is continuous with respect to the
Fell topology on closed subsets of S [13, Lemma 1.3].

One of the primary examples of groupoids consists of those built from
transformation groups. If a second countable locally compact Hausdorff group H
acts on a second countable locally compact Hausdorff space X then we can form
the transformation groupoid H n X in the usual fashion. The properties of the
transformation groupoid are closely tied to those of the group action. For instance, the
orbit space of the groupoid H n X(0)/H n X is homeomorphic to the orbit space of the
action X/H. Furthermore, the stabiliser groups Sx of H n X can be naturally identified
with the stabiliser subgroups Hx of H and the stabilisers will vary continuously in
H n X if and only if they vary continuously in H.

Given a groupoid G, we can construct the groupoid C∗-algebra C∗(G) as a universal
completion of the convolution algebra Cc(G) [12]. Of particular interest to us will be
the spectrum C∗(G)∧ of the groupoid algebra. One special case which will play a key
role in our results is the spectrum of the stabiliser subgroupoid. We paraphrase the
following results from [8, Section 3].

P 1.1. Let G be a second countable, locally compact Hausdorff groupoid
with abelian stabiliser subgroups. If the stabilisers vary continuously then S has
a Haar system and the groupoid C∗-algebra C∗(S ) is abelian. The spectrum of
C∗(S ), denoted by Ŝ , is a second countable, locally compact Hausdorff space which
is naturally fibred over G(0). Furthermore, the fibre of Ŝ over u ∈G(0), which we will
write as Ŝ u, is the Pontryagin dual of the fibre S u. We refer to Ŝ as the dual stabiliser
groupoid.

One of the things that makes Ŝ so useful is that its topology is relatively well
understood; [8] gives a complete description of the convergent sequences in Ŝ . Since
we will use this characterisation quite a bit we have restated it below.
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P 1.2 [8, Proposition 3.3]. Suppose that the groupoid G has continuously
varying abelian stabilisers and that {χn} is a sequence in Ŝ with χn ∈ Ŝ un for all n.
Given χ ∈ Ŝ u, we have χn→ χ if and only if:

(a) un→ u in G(0); and
(b) given sn ∈ S un for all n and s ∈ S u, if sn→ s then χn(sn)→ χ(s).

The final thing we need to review is the notion of a groupoid action. A groupoid G
can only act on spaces X which are fibred over G(0). If there is a surjective function
rX : X→G(0) then we define a groupoid action via a map {(γ, x) : s(γ) = rX(x)} → X
such that for composable γ and η we have γ · (η · x) = γη · x. Among other things, this
implies that rX(x) · x = x for all x ∈ X and rX(γ · x) = r(γ). We will use the following
three actions in this paper.
• Any groupoid G acts on G(0) by γ · u := γuγ−1 = r(γ) for u ∈G(0).
• Any groupoid G acts on S by γ · s := γsγ−1 for s ∈ S .
• If S has abelian fibres which vary continuously then there is an action of G on

Ŝ . For γ ∈G and χ ∈ Ŝ s(γ) we define γ · χ(s) := χ(γ−1sγ) for s ∈ S r(γ).
Given an action of G on a space X, we will use G · x to denote the orbit of x in X and
[x] to denote the corresponding element of X/G. We would also like to recall that the
orbit space X/G is locally compact, but not necessarily Hausdorff, and that the quotient
map q : X→ X/G is open if G has a Haar system [7, Lemma 2.1].

2. Groupoid C∗-algebras with Hausdorff spectrum

As mentioned in the introduction, we would like to generalise the main result
of [14], which has been restated below, from transformation groups to groupoids.

T 2.1 [14, p. 320]. Suppose that (H, X) is an abelian transformation group
and that the maps of H/Hx onto H · x are homeomorphisms for each x ∈ X. Then the
spectrum of the transformation group C∗-algebra C∗(H, X) is Hausdorff if and only if
the map x 7→ Hx is continuous with respect to the Fell topology and X/H is Hausdorff.

R 2.2. The condition that the maps of H/Hx onto H · x are homeomorphisms for
each x ∈ X is one of the equivalent conditions in the Mackey–Glimm dichotomy [11].
Following [3], we will refer to groupoids and transformation groups which satisfy one,
and hence all, of the conditions of the Mackey–Glimm dichotomy as regular.

R 2.3. An important question is how to generalise the hypothesis that the group
H is abelian. The most natural replacement is to assume that the stabiliser subgroups
S u are abelian for all u ∈G(0). Since, as we will see, the regularity hypothesis can
be removed completely, we may conjecture that, given a groupoid G with abelian
stabilisers, C∗(G) will have Hausdorff spectrum if and only if the stabilisers vary
continuously and G(0)/G is Hausdorff. However, we will find that this conjecture
fails and the assumption that G has abelian stabilisers is a weaker condition, even
for transformation groups.
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We begin by restating the following result.

L 2.4 [8, Proposition 3.1] . Suppose that G is a second countable, locally
compact Hausdorff groupoid with abelian stabilisers. If the spectrum C∗(G)∧ is
Hausdorff then the stabilisers vary continuously.

Next consider the following useful lemma.

L 2.5. Suppose that G is a second countable, locally compact Hausdorff
groupoid with continuously varying abelian stabilisers. Then the following are
equivalent:

(a) C∗(G) has T0 spectrum;
(b) C∗(G) is GCR;
(c) G(0)/G is T0.

Furthermore, if any of these conditions hold then the map [γ] 7→ r(γ) from Gu/S u to
G · u is a homeomorphism for all u ∈G(0) and G is regular.

P. The groupoid algebra is separable since G is second countable. In this case
the equivalence of the first two conditions follows from [9, Theorem 6.8.7]. Since the
stabilisers are abelian, and therefore amenable and GCR, the equivalence of the second
two conditions now follows from the main result of [1]. Finally, if G(0)/G is T0 then it
follows from [11] that the map [γ] 7→ r(γ) from Gu/S u onto G · u is a homeomorphism
for all u ∈G(0) and hence G is regular in the sense of [3]. �

We may now use Lemmas 2.4 and 2.5, in conjunction with [3, Theorem 3.5], to
conclude that if C∗(G)∧ is Hausdorff then C∗(G)∧ is homeomorphic to Ŝ /G. A brief
argument shows that G(0)/G is homeomorphic to its image in Ŝ /G equipped with the
relative topology. Thus G(0)/G is Hausdorff if C∗(G)∧ is Hausdorff. This proves the
following generalisation of the forward direction of Theorem 2.1.

P 2.6. Suppose that G is a second countable, locally compact Hausdorff
groupoid with abelian stabilisers. If C∗(G) has Hausdorff spectrum then the stabilisers
vary continuously and G(0)/G is Hausdorff.

Assuming that G has continuously varying stabilisers, the following proposition
shows that a converse statement holds in the T0 and T1 case.

P 2.7. Suppose that G is a second countable, locally compact Hausdorff
groupoid with continuously varying abelian stabilisers. Then the spectrum C∗(G)∧ is
T1 (respectively T0) if and only if G(0)/G is T1 (respectively T0).

P. It follows from Lemma 2.5 that C∗(G)∧ is T0 if and only if G(0)/G is. Now
suppose that C∗(G)∧ is T1. Then Lemma 2.5 and [3, Theorem 3.5] imply that C∗(G)∧ is
homeomorphic to Ŝ /G. As noted above, G(0)/G is homeomorphic to its image in Ŝ /G,
and as such G(0)/G is T1. Next suppose that G(0)/G is T1. Again using Lemma 2.5 and
[3, Theorem 3.5], we have C∗(G)∧ � Ŝ /G. Thus we will be done if we can show that
Ŝ /G is T1.
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Suppose that we are given elements [ρ], [χ] ∈ Ŝ /G such that [ρ] , [χ]. Let p : Ŝ →
G(0) be the bundle map and p̃ : Ŝ /G→G(0)/G its factorisation. Set [u] = p̃([ρ]) and
[v] = p̃([χ]). Suppose that [u] , [v]. Since G(0)/G is T1 we can find open sets U and V
such that [u] ∈ U, [v] ∈ V and [u] < V , [v] < U. Then p̃−1(U) is an open set containing
[ρ] and not [χ] and p̃−1(V) is an open set containing [χ] and not [ρ]. Next suppose that
[u] = [v]. Since the fibres of S are abelian,

s · χ(t) = χ(s−1ts) = χ(t) for all s ∈ S . (2.1)

Hence the action of G on S is trivial when fixed to a single fibre and we can assume
without loss of generality that ρ, χ ∈ Ŝ u with ρ , χ. Let q : Ŝ → Ŝ /G be the quotient
map and recall that it is open. Fix a neighbourhood U of ρ. If χ <G · U then [χ] < q(U)
and q(U) separates [ρ] from [χ]. Now suppose that χ ∈G · U for all neighbourhoods
U of ρ. Then for each U there exists γU ∈G and ρU ∈ U such that ρU = γU · χ.
If we direct ρU by decreasing U then it is clear that ρU → ρ. This implies that
γU · u = r(γU) = p(ρU)→ u. Since G is regular, [γ] 7→ r(γ) is a homeomorphism and
we must have [γU]→ [u] in Gu/S u. However, the quotient map on Gu/S u is open
so that we may pass to a subnet, relabel, and choose rU ∈ S u such that γUrU → u.
Using (2.1),

γUrU · χ = γU · χ = ρU → u · χ = χ.

Thus ρ = χ, which is a contradiction. It follows that we must have been able to separate
[ρ] from [χ]. This argument is completely symmetric so that we can also find an open
set around [χ] which does not contain [ρ]. It follows that Ŝ /G, and hence C∗(G)∧,
is T1. �

R 2.8. The essential component of this proof is the argument that Ŝ /G is T1 if
G(0)/G is T1. If we could extend this to the Hausdorff case then we would have proven
the converse to Proposition 2.6. Unfortunately there are topological obstructions, as
we will see.

We start by recalling Green’s famous example of a free group action that is not
proper.

E 2.9 [4]. The space X ⊂ R3 will consist of countably many orbits, with the
points x0 = (0, 0, 0) and xn = (2−2n, 0, 0) for n ∈ N as a family of representatives. The
action of R on X is described by defining maps φn : R→ X such that φn(s) = s · xn. In
particular, we let φ0(s) = (0, s, 0) and, for n ≥ 1,

φn(s) =


(2−2n, s, 0) s ≤ n

(2−2n − (s − n)2−2n−1, n cos(π(s − n)), n sin(π(s − n))) n < s < n + 1

(2−2n−1, s − 1 − 2n, 0) s ≥ n + 1.

For instance, brief computations show that

2n + 1 · (2−2n, 0, 0) = (2−2n−1, 0, 0) (2.2)
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[6] Groupoid C∗-algebras with Hausdorff spectrum 237

for all n. It is straightforward to observe that the orbit space X/R is homeomorphic to
the subset {xn}

∞
n=0 of R3.

We may now build an example of a transformation groupoid G with continuously
varying abelian stabilisers such that G(0)/G is Hausdorff and Ŝ /G is not.

E 2.10. Let R act on X as in Example 2.9. Now restrict this action to the
action of Z on the subset Y = {φn(m) : n ∈ N, m ∈ Z}. Let H = QD oφ Z be the semidirect
product, whereQD denotes the rationals equipped with the discrete topology and where
we define

φ(n)(r) = r2n

for all n ∈ Z and r ∈ Q. It is easy to show that φ is a homomorphism from Z into
the automorphism group of QD. Thus H is a locally compact Hausdorff group which
is second countable because it is a countable discrete space. Recall that the group
operations are given by

(q, n)(p, m) = (q + 2n p, n + m) (q, n)−1 = (−2−nq, −n).

Let the second factor of H act on Y as in Example 2.9. In other words, let (q, n) · x :=
n · x. It is straightforward to show that this is a continuous group action. It follows
that the transformation groupoid G = H n Y is a second countable, locally compact
Hausdorff groupoid with a Haar system. Furthermore, the stabiliser subgroup of H
at x is Hx = {(q, 0) : q ∈ Q} for all x ∈ Y . Since (q, 0)(r, 0) = (q + r20, 0) = (q + r, 0),
the stabilisers are abelian, and since the stabilisers are also constant they must vary
continuously in both H and G. It will be important for us to observe that S is
isomorphic to QD × Y via the map ((q, 0), x) 7→ (q, x). Finally, {xn}

∞
n=0 forms a set

of representatives for the orbit space and it is not difficult to show that Y/G is actually
homeomorphic to {xn}

∞
n=0 and is therefore Hausdorff.

To show that Ŝ /G is not Hausdorff we must first compute the dual. Since S is
isomorphic to QD × Y we can identify Ŝ with Q̂D × Y . While Q̂D is fairly mysterious
we do know that since r̂(s) = eirs is a character on R for all r ∈ R it must also be a
character on QD. Now suppose that ((q, n), x) ∈G and (r̂, −n · x) ∈ QD × Y . We have

((q, n), x) · (r̂, −n · x)(p, x) = (r̂, −n · x)(((q, n), x)−1((p, 0), x)((q, n), x))

= (r̂, −n · x)((−2−nq, −n)(p, 0)(q, n), −n · x)

= (r̂, −n · x)((2−n p, 0), −n · x)

= eirp2−n
= (2̂−nr, x)(p, x).

Or, more succinctly,
((q, n), x) · (r̂, −n · x) = (2̂−nr, x). (2.3)

Next let γn = ((0, 2n + 1), (2−2n−1, 0, 0)) for all n. Using the inverse of (2.2),

r(γn) = (2−2n−1, 0, 0) and s(γn) = (2−2n, 0, 0).
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If we set χn = (1̂, (2−2n, 0, 0)) then clearly χn→ χ = (1̂, (0, 0, 0)). Using (2.3), we
compute γn · χn = ( ̂2−(2n+1), (2−2n−1, 0, 0)). A quick calculation shows that γn · χn→

ω = (0̂, (0, 0, 0)). Hence [χn]→ [χ] and [χn]→ [ω]. Since the action of G is trivial
on fixed fibres this implies that Ŝ /G, and hence C∗(G)∧, is not Hausdorff. Thus the
converse to Proposition 2.6 is false.

The previous example shows that we will need to introduce an additional hypothesis
to generalise Theorem 2.1. The appropriate condition is given below and forms the
main result of the paper.

T 2.11. Suppose that G is a second countable, locally compact Hausdorff
groupoid with a Haar system and abelian stabilisers. Then C∗(G) has Hausdorff
spectrum if and only if the following conditions hold:

(a) the stabilisers vary continuously, that is, u 7→ S u is continuous with respect to
the Fell topology;

(b) the orbit space G(0)/G is Hausdorff; and
(c) given sequences {χi} ⊂ Ŝ and {γi} ⊂G with χi ∈ Ŝ s(γi), if χi→ χ and γi · χi→ ω

such that χ and ω are in the same fibre then χ = ω.

R 2.12. Even in the case of transformation groups Theorem 2.11 is in some
ways stronger than Theorem 2.1. The main advantage is that we only require the
stabiliser groups to be abelian, and not the whole group. Furthermore, we also removed
the regularity hypothesis. The price is that we have added a slightly technical condition
that, while not easy to say, is simple enough to check in practice.

P. It follows from Proposition 2.6, and its proof, that if C∗(G)∧ is Hausdorff then
conditions (a) and (b) hold and Ŝ /G is Hausdorff. Now suppose that we have χi→ χ
and γi · χi→ ω as in condition (c). Then [χi]→ [χ] and [χi]→ [ω]. Since Ŝ /G is
Hausdorff this implies [ω] = [χ]. However, χ and ω live in the same fibre and the
action of G on a fixed fibre is free by (2.1) so that χ = ω.

Now suppose that conditions (a)–(c) are satisfied. Then the first two conditions,
together with Lemma 2.5 and [3, Theorem 3.5], imply that C∗(G)∧ is homeomorphic
to Ŝ /G. Now suppose that [χi]→ [χ] and [χi]→ [ω] in Ŝ /G. Using the fact that
the quotient map is open we can pass to a subsequence, relabel, and choose new
representatives χi so that χi→ χ. As before, let p : Ŝ →G(0) be the bundle map and
let p̃ : Ŝ /G→G(0)/G be the natural factorisation. Define ui = p(χi) and u = p(χ) and
observe that [ui]→ [u]. Furthermore, if p(ω) = v then [ui]→ [v] as well. Since G(0)/G
is Hausdorff we have [u] = [v] and we may assume, without loss of generality, that
u = v. Now pass to a subsequence again, relabel, and find γi ∈G such that γi · χi→ ω.
These sequences satisfy the hypothesis of (c), so ω = χ. It follows that [ω] = [χ] and
that Ŝ /G, and hence C∗(G)∧, is Hausdorff. �

It should be noted that there are a variety of situations in which condition (c) is
guaranteed to hold.

https://doi.org/10.1017/S0004972713000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000129


[8] Groupoid C∗-algebras with Hausdorff spectrum 239

P 2.13. Let G be a second countable, locally compact Hausdorff groupoid
with continuously varying abelian stabilisers. Then condition (c) of Theorem 2.11
automatically holds if G satisfies any of the following:

(a) G = H n X is an abelian transformation groupoid;
(b) G is principal;
(c) G is proper;
(d) G is Cartan; or
(e) G is transitive.

P. Let χi→ χ and γi · χi→ ω be as in condition (c) of Theorem 2.11. Set ui =

s(γi), vi = r(γi), u = p(χ) = p(ω) and observe that ui→ u and vi→ u. Now suppose
that G = H n X where H is abelian. Then we must have γi = (ti, vi) with ui = t−1

i · vi.
Given s in the stabiliser subgroup Hu, we can use the fact that the stabilisers vary
continuously to pass to a subsequence, relabel, and find si ∈ Hui such that si→ s in H.
Consequently (si, ui)→ (s, u) and, by Proposition 1.2, χi(si, ui)→ χ(s, u).On the other
hand, since the group is abelian, we also have si ∈ Hvi = Hti·ui for all i. It follows that
(si, vi)→ (s, u) in S and therefore

(ti, vi) · χi(si, vi) = χi(t−1
i siti, ui) = χi(si, ui)→ ω(s, u).

Hence χ = ω and condition (c) automatically holds for abelian transformation groups.
Moving on, condition (c) trivially holds if G is principal. For the next two conditions

observe the following. Suppose that we can pass to a subsequence, relabel, and find
γ ∈G such that γi→ γ. It follows that γi · χi→ γ · χ and therefore γ · χ = ω. However,
the range and source maps are continuous so we must have r(γ) = s(γ) = u and hence
γ ∈ S u. The fibres of S are abelian so that, by (2.1), ω = γ · χ = χ. Thus it will suffice
to show that we can prove γi has a convergent subsequence. However, if G is either
proper or Cartan then this follows almost by definition.

Finally, suppose that G is transitive. Since G is also second countable, [6, Theorem
2.2] implies that the map γ 7→ (r(γ), s(γ)) is open. Thus we can pass to a subsequence,
relabel, and find ηi ∈G such that r(ηi) = vi, s(ηi) = ui and ηi→ u. Observe that η−1

i γi ∈

S ui for all i so that γi · χi = ηi · (η−1
i γi · χi) = ηi · χi. Thus γi · χi = ηi · χi→ u · χ = χ. It

follows that χ = ω and condition (c) holds in this case as well. �

3. Examples and duality

In this section we would like to begin by applying Theorem 2.11 to several
examples.

E 3.1. Let H = SO(3, R), X = R3 \ {(0, 0, 0)} and let H act on X by rotation. It
is clear that H is not abelian, and therefore we cannot apply Theorem 2.1. However, it
does have abelian stabiliser subgroups. Given a vector v ∈ X, it is easy to see that S v is
the set of rotations about the line described by v. In particular, this is isomorphic to the
circle group and is therefore abelian. What is more, some computations show that the
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stabilisers vary continuously and that the stabiliser subgroupoid S is homeomorphic
to X × T. This in turn implies that the dual groupoid is homeomorphic to X × Z. Now
suppose that (U−1

i vi, χi)→ (v, χ) and (Ui, vi) · (U−1
i vi, χi)→ (v, ω) as in condition (c).

Given θi→ θ in T, we have from Proposition 1.2 that

(U−1
i vi, χi)(U−1

i vi, θi) = χi(θi)→ (v, χ)(v, θ) = χ(θ).

Using the fact that conjugating rotation about an axis w by V ∈ H gives us the
corresponding rotation about Vw, we also have

(Ui, vi) · (U−1
i vi, χi)(vi, θi) = (U−1

i vi, χi)(U−1
i vi, θi) = χi(θi)→ (v, ω)(v, θ) = ω(θ).

It follows that χ = ω and condition (c) of Theorem 2.11 holds. Finally, the orbit space
X/H is homeomorphic to the open half-line and is therefore Hausdorff. Thus we can
conclude that C∗(H n X) has Hausdorff spectrum. In fact [3, Theorem 3.5] shows that
C∗(H n X) is homeomorphic to Ŝ /(H n X) = (0,∞) × Z.

E 3.2. Let E be a row finite directed graph with no sources. Recall that we can
build the graph groupoid G as in [5]. Elements of G are triples (x, n, y) where x and y
are infinite paths which are shift equivalent with lag n, and elements of G(0) are infinite
paths. (We will be using the Raeburn convention [10] for path composition.) It is
known that the groupoid C∗-algebra C∗(G) is isomorphic to the graph C∗-algebra. Let
us consider the conditions of Theorem 2.11. First, the stabilisers are all subgroups of Z
and hence abelian. Furthermore, the groupoid G will have nontrivial stabilisers if and
only if there exists an infinite path which is shift equivalent to itself. In other words, if
and only if there is a cycle. Suppose that a cycle on the graph has an entry. Let x be
the path created by following the cycle an infinite number of times. For each i ∈ N, let
xi be the path which, at its head, follows the cycle i times and then has a noncyclic tail
leading off from the entry. Because xi eventually agrees with x on any finite segment
we have xi→ x. However, none of the xi are cycles so that Sxi is trivial for all i. On
the other hand, Sx � nZ where n is the length of the cycle. Thus the stabilisers do not
vary continuously. This shows that in order for the stabilisers to vary continuously no
cycles in the graph can have entries. A similar argument shows that the converse holds
as well.

For the second condition we require that the orbit space G(0)/G be Hausdorff. In
this case the orbit space is the space of shift equivalence classes. Recall that the basic
open sets in G(0) are the cylinder sets Va. More specifically, a is a finite path and Va is
the set of all infinite paths which are initially equal to a. Given [x] ∈G(0)/G, we will
have x ∈G · Va if and only if x is shift equivalent to a path with initial segment a. This
is equivalent to there being a path from any vertex on x to the source of a. Conversely,
y <G · Va if and only if there is no path from any vertex on y to the source of a. Using
these facts, it follows from a brief argument that G(0)/G will be Hausdorff if and only
if, given nonshift equivalent paths x and y, there exist vertices u and v such that there
is a path from a vertex on x to u, a path from a vertex on y to v, and no vertex w which
has a path to both u and v.
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Finally, for the third condition we observe that, given (y, n, x) ∈G, (y, m, y) ∈ S and
χ ∈ Ŝ x,

(y, n, x) · χ(y, m, y) = χ((x, −n, y)(y, m, y)(y, n, x)) = χ(x, m, x). (3.1)

Now suppose that χi→ χ and (yi, ni, xi) · χi→ ω in Ŝ with χ, ω ∈ Ŝ x. Notice that
this implies that we must have xi→ x and yi→ x in G(0). Let (x, n, x) ∈ Sx. Then
(xi, n, xi)→ (x, n, x) and, by Proposition 1.2, χi(xi, n, xi)→ χ(x, n, x). On the other
hand, we also know that (yi, n, yi)→ (x, n, x) so that, using (3.1) and Proposition 1.2,

(yi, ni, xi) · χi(yi, n, yi) = χi(xi, n, xi)→ ω(x, n, x).

This implies that χ(x, n, x) = ω(x, n, x). Hence χ = ω and condition (c) is
automatically satisfied. Put together this shows that the graph groupoid algebra, and
therefore the graph algebra, will have Hausdorff spectrum if and only if:
• no cycle has an entry; and
• given nonshift equivalent paths x and y, we can find vertices u and v such that

there is a path from a vertex on x to u, a path from a vertex on y to v, and no
vertex w which has a path to both u and v.

R 3.3. One annoyance of Theorem 2.11 is that condition (c) requires us to
deal with the dual stabiliser groupoid. Using the same technique as the proof of
Theorem 2.11, one can show that if G(0)/G is Hausdorff and if condition (c) holds
for sequences in S (not Ŝ ) then S/G is Hausdorff. If Ŝ /G were Hausdorff whenever
S/G is Hausdorff then one could verify (c) on S instead of Ŝ . This would allow us to
avoid the use of Ŝ altogether.

As in the previous section, let us first consider the T0 and T1 case. Using the fact

that ̂̂S = S [2], as well as the topological argument given in Proposition 2.7, one can
prove the following result.

P 3.4. Let G be a second countable, locally compact Hausdorff groupoid
with continuously varying abelian stabilisers. Then either G(0)/G, S/G, and Ŝ /G are
all T1 (respectively T0) or none of them is T1 (respectively T0).

Unfortunately, again similar to the previous section, this proposition does not extend
to the Hausdorff case, as we demonstrate below.

E 3.5. Let H, Y and G be as in Example 2.10. Recall that we have already
shown that in this case Ŝ /G is not Hausdorff. The computations from Example 2.10
also show that condition (c) does not hold on Ŝ . Now we will show that S/G
is Hausdorff and that S does satisfy condition (c). First, given ((q, n), y) ∈G and
(r, x) ∈ S , a computation similar to the one preceding (2.3) shows that

((q, n), y) · (r, x) = (r2n, y). (3.2)

Suppose that [si]→ [s] and [si]→ [t] in S/G. Since Y/G is Hausdorff we can
follow the same argument given in Theorem 2.11 to pass to subsequences, choose
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new representatives, and find γi ∈G so that si→ s and γi · si→ t where s, t ∈ S u.
In particular, this implies that s = (r, u) and t = (q, u) for r, q ∈ Q. Suppose that
si = (ri, xi) and γi = ((pi, ni), yi). Then it follows from (3.2) that γi · si = (ri2ni , yi).
Hence ri→ r and ri2ni → q. However, we gave QD the discrete topology so that,
eventually, q = 2ni ri = 2ni r. Now, if either r = 0 or q = 0 then s = t. If r, q , 0 we know
that eventually ni = n = log2(q/r). We may as well pass to a subnet and assume that
this is always true. Then ni · xi→ n · x and, since ni · xi = γi · xi = yi→ x, we have
n · x = x. The action of Z is free so that n = 0. Thus log2(q/r) = 0 and q = r. It follows
that s = t and that S/G is Hausdorff. This demonstrates that Ŝ /G is not necessarily

Hausdorff if S/G is Hausdorff. Using the fact that ̂̂S = S [2], the reverse implication
fails as well. What is more, the above argument also shows that condition (c) holds for
sequences in S . Hence it is not enough to verify (c) on S and working with the dual is
necessary.
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