
Bull. Aust. Math. Soc. 90 (2014), 427–443
doi:10.1017/S0004972714000562

REMARKS ON VALUE SHARING OF CERTAIN
DIFFERENTIAL POLYNOMIALS OF

MEROMORPHIC FUNCTIONS

XIAO-MIN LI� and HONG-XUN YI

(Received 1 February 2014; accepted 20 March 2014; first published online 28 August 2014)

Abstract

We use Zalcman’s lemma to study a uniqueness question for meromorphic functions where certain
associated nonlinear differential polynomials share a nonzero value. The results in this paper extend
Theorem 1 in Yang and Hua [‘Uniqueness and value-sharing of meromorphic functions’, Ann. Acad. Sci.
Fenn. Math. 22 (1997), 395–406] and Theorem 1 in Fang [‘Uniqueness and value sharing of entire
functions’, Comput. Math. Appl. 44 (2002), 823–831]. Our reasoning in this paper also corrects a
defect in the reasoning in the proof of Theorem 4 in Bhoosnurmath and Dyavanal [‘Uniqueness and value
sharing of meromorphic functions’, Comput. Math. Appl. 53 (2007), 1191–1205].
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1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic functions
in the complex plane. We adopt the standard notation in the Nevanlinna theory of
meromorphic functions as explained in the references [7, 10, 15, 16]. It will be
convenient to let E denote any set of positive real numbers of finite linear measure,
not necessarily the same at each occurrence. For a nonconstant meromorphic function
h, we denote by T (r, h) the Nevanlinna characteristic of h and by S (r, h) any quantity
satisfying S (r, h) = o(T (r, h)), as r→∞ and r < E.

Let f and g be two nonconstant meromorphic functions and let a be a finite complex
number. We say that f and g share a CM if f − a and g − a have the same zeros, with
the same multiplicities. Similarly, we say that f and g share a IM if f − a and g − a
have the same zeros, ignoring multiplicities. In addition, we say that f and g share ∞
CM if 1/ f and 1/g share 0 CM, and we say that f and g share ∞ IM if 1/ f and 1/g
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share 0 IM. These definitions can be found, for example, in the book by Yang and
Yi [15]. We say that a is a small function of f if a is a meromorphic function satisfying
T (r, a) = S (r, f ). This definition can also be found, for example, in [15]. Throughout
this paper, we denote by µ( f ), ρ( f ) and λ( f ) the lower order of f , the order of f and the
exponent of convergence of zeros of f , respectively (see, for example, [7, 10, 15, 16]).
Throughout this paper, we denote by ρ( f ) and λ( f ) the order of f and the exponent of
convergence of zeros of f , respectively (see, for example, [7, 10, 15, 16]). In addition,
we need the following three definitions.
Definition 1.1 [9, Definition 1]. Let p be a positive integer and a ∈ C ∪ {∞}. Then
we denote by Np)(r, 1/( f − a)) the counting function of those zeros of f − a (counted
with proper multiplicities) whose multiplicities are not greater than p, and by N p)(r,
1/( f − a)) the corresponding reduced counting function (ignoring multiplicities). We
denote by N(p(r, 1/( f − a)) the counting function of those zeros of f − a (counted with
proper multiplicities) whose multiplicities are not less than p, and by N(p(r, 1/( f − a))
the corresponding reduced counting function (ignoring multiplicities).
Definition 1.2. Let a be an any value in the extended complex plane and let k be an
arbitrary nonnegative integer. We define

δk(a, f ) = 1 − lim sup
r−→∞

Nk(r, (1/ f − a))
T (r, f )

, (1.1)

where

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+ N(2

(
r,

1
f − a

)
+ · · · + N(k

(
r,

1
f − a

)
. (1.2)

Remark 1.3. From (1.1) and (1.2) we have 0 ≤ δk(a, f ) ≤ δk−1(a, f ) ≤ δ1(a, f ) ≤
Θ(a, f ) ≤ 1.
Definition 1.4 [5, Definition 1.1] or [6, Definition 3.1]. A nonconstant monic
polynomial P(w) is called a uniqueness polynomial for meromorphic functions (or
entire functions) in a broad sense if P( f ) = P(g) implies f = g for two nonconstant
meromorphic functions (or entire functions) f and g.

In 1997, Lahiri [8] posed the following question. What can be said about
the relationship between two meromorphic functions f , g when two differential
polynomials, generated by f and g respectively, share certain values? In this direction,
Fang [3], Yang and Hua [17] and Bhoosnurmath and Dyavanal [1] respectively proved
the following results.

Theorem 1.5 [3, Theorem 2]. Let f and g be two nonconstant entire functions, and let
n, k be two positive integers satisfying n ≥ 2k + 8. If ( f n( f − 1))(k) and (gn(g − 1))(k)

share 1 CM, then f = g.

Theorem 1.6 [1, Theorem 4]. Let f and g be two nonconstant meromorphic functions
such that Θ(∞, f ) > 3/(n + 1), and let n, k be two positive integers satisfying
n ≥ 3k + 13. If ( f n( f − 1))(k) and (gn(g − 1))(k) share 1 CM, then f = g.

Yang and Hua [17] and Bhoosnurmath and Dyavanal [1] respectively, proved
Theorem 1.6 for k = 1 and for k ≥ 1, respectively. However, there is a defect in the
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proof of Theorem 4 in [1] which is discussed in Section 4 of the present paper. As far
as we know, the following question is still open by now.

Question 1.7. What can be said about the relationship between two meromorphic
functions f and g, when ( f n( f − 1))(k) and (gn(g − 1))(k) share 1 CM, where n and
k ≥ 1 are two positive integers satisfying n ≥ 3k + 13?

We will prove the following results to deal with Question 1.7.

Theorem 1.8. Let f and g be nonconstant meromorphic functions such that ρ( f ) > 2.
Suppose that ( f n( f − 1))(k) and (gn(g − 1))(k) share 1 CM, where n, k are two positive
integers satisfying n > 3k + 11. If Θ(∞, f ) > 2/n, then f = g.

Proceeding as in the proof of Theorem 1.8 and using Lemma 2.3 in Section 2 below,
we get the following result which is an IM analogue of Theorem 1.8.

Theorem 1.9. Let f and g be nonconstant meromorphic functions such that ρ( f ) > 2.
Suppose that ( f n( f − 1))(k) and (gn(g − 1))(k) share 1 IM, where n, k are two positive
integers satisfying n > 9k + 20. If Θ(∞, f ) > 2/n, then f = g.

The following example shows that the assumption that Θ(∞, f ) > 2/n in
Theorems 1.8 and 1.9 is necessary.

Example 1.10. Let

f (z) = g(z)ez3
, g(z) =

1 + ez3
+ e2z3

+ · · · + e(n−1)z3

1 + ez3
+ e2z3

+ · · · + enz3 ,

where n is any positive integer. Then

f n( f − 1) = gn(g − 1), (1.3)

f (z) − 1 = −
1

1 + ez3
+ e2z3

+ · · · + enz3 (1.4)

and

g(z) − 1 = −
enz3

1 + ez3
+ e2z3

+ · · · + enz3 . (1.5)

From (1.3)–(1.5) we have Θ(∞, f ) = Θ(∞, g) = 0 and ρ( f ) = ρ(g) = 3. Moreover,
( f n( f − 1))(k) and (gn(g − 1))(k) share 1 CM, where n and k are positive integers. But
f . g.

Finally, we will prove the following result to complement Theorems 1.8 and 1.9.

Theorem 1.11. Let f and g be nonconstant meromorphic functions such that ρ( f ) > 2.
Suppose that ( f ( f n − 1))(k) and (g(gn − 1))(k) share 1 CM, that 0 is a Picard exceptional
value of f and g, and that every pole of f and g is of multiplicity greater than or equal
to 2k + 1. If

(n + 1)(δ(0, f n+1 − f ) + δ(0, gn+1 − g)) + (k + 2)(Θ(∞, f ) + Θ(∞, g)) > n + 2k + 5,
(1.6)

where n ≥ 4 and k are two positive integers, then f = g.
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Proceeding as in the proof of Theorem 1.11 and using Lemmas 2.12 and 2.15, we
get the following result which is an IM-analogue of Theorem 1.11.

Theorem 1.12. Let f and g be nonconstant meromorphic functions such that ρ( f ) > 2.
Suppose that ( f ( f n − 1))(k) and (g(gn − 1))(k) share 1 IM, that 0 is a Picard exceptional
value of f and g, and that every pole of f and g is of multiplicity ≥ 2k + 1. If

3(n + 1)(δ(0, f n+1 − f ) + δ(0,gn+1 − g)) + (2k + 4)(Θ(∞, f ) + Θ(∞,g)) > 5n + 4k + 13,

where n ≥ 4 and k are two positive integers, then f = g.

From Theorems 1.11 and 1.12 and their proof in Section 3 below we get the
following results, respectively.

Corollary 1.13. Let f and g be nonconstant entire functions such that ρ( f ) > 2.
Suppose that ( f ( f n − 1))(k) and (g(gn − 1))(k) share 1 CM, and that 0 is a Picard
exceptional value of f and g. If δ(0, f n+1 − f ) + δ(0, gn+1 − g) > 1, where n ≥ 3 and k
are two positive integers, then f = g.

Corollary 1.14. Let f and g be nonconstant entire functions such that ρ( f ) > 2.
Suppose that ( f ( f n − 1))(k) and (g(gn − 1))(k) share 1 IM, and that 0 is a Picard
exceptional value of f and g. If δ(0, f n+1 − f ) + δ(0, gn+1 − g) > 5/3, where n ≥ 3
and k are two positive integers, then f = g.

2. Preliminaries

In this section, we introduce some important lemmas to prove the main results in
this paper. First of all, we introduce the following result from Valiron–Mokhon’ko.

Lemma 2.1 (Valiron–Mokhon’ko lemma [12]). Let f be a nonconstant meromorphic
function, and let

F =

∑p
k=0 ak f k∑q
j=0 b j f j

be an irreducible rational function in f with constant coefficients {ak} and {b j}, where
ap , 0 and bq , 0. Then T (r, F) = d T (r, f ) + O(1), where d = max{p, q}.

The following two results were established by Li and Yi [11], which is used to prove
Theorems 1.8 and 1.9 respectively.

Lemma 2.2 [11, Lemma 2.5]. Let F and G be two nonconstant meromorphic functions
such that F(k) − P and G(k) − P share 0 CM, where k ≥ 1 is a positive integer and P is
a nonzero polynomial. If

∆1 = (k + 2)Θ(∞,F) + 2Θ(∞,G) + Θ(0,F) + Θ(0,G) + δk+1(0,F) + δk+1(0,G) > k + 7

and

∆2 = (k + 2)Θ(∞,G) + 2Θ(∞,F) + Θ(0,G) + Θ(0,F) + δk+1(0,G) + δk+1(0,F) > k + 7,

then F(k)G(k) = P2 or F = G.
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Lemma 2.3 [11, Lemma 2.4]. Let F and G be two transcendental meromorphic
functions such that F(k) − P and G(k) − P share 0 IM, where k ≥ 1 is a positive integer
and P is a nonzero polynomial. If

∆3 = (2k + 3)Θ(∞, F) + (2k + 4)Θ(∞,G) + Θ(0, F) + Θ(0,G)
+ 2δk+1(0, F) + 3δk+1(0,G) > 4k + 13

and

∆4 = (2k + 3)Θ(∞,G) + (2k + 4)Θ(∞, F) + Θ(0,G) + Θ(0, F)
+ 2δk+1(0,G) + 3δk+1(0, F) > 4k + 13,

then F(k)G(k) = P2 or F = G.

To prove Lemma 2.11 below, we need the following result.

Lemma 2.4 [7, Lemma 3.5]. Suppose that F is meromorphic in a domain D and set
f = F′/F. Then, for n ≥ 1,

F(n)

F
= f n +

n(n − 1)
2

f n−2 f ′ + an f n−3 f ′′ + bn f n−4 f ′2 + Pn−3( f ),

where an = 1
6 n(n − 1)(n − 2), bn = 1

8 n(n − 1)(n − 2)(n − 3), and Pn−3( f ) is a differential
polynomial with constant coefficients, which vanishes identically for n ≤ 3 and has
degree n − 3 when n > 3.

Next we introduce some other results related to Zalcman’s lemma, which can be
found, for example, in [7, 16]. We will use Zalcman’s lemma to prove our Lemma 2.10
which plays an important role in the proof of the main results of this paper.

First, we introduce the notation of the spherical derivative. Let f be a nonconstant
meromorphic function. The spherical derivative of f at z ∈ C is given as f #(z) =

(| f ′(z)|/1 + | f (z)|2), and the order of f is defined as ρ( f ) = lim supr→∞ (log T (r, f )/logr)
(see, for example, [7, 16]).

Lemma 2.5 [2, Lemma 1]. Let f be a meromorphic function on C. If f has bounded
spherical derivative on C, f is of order at most 2. If, in addition, f is entire, then the
order of f is at most 1.

Lemma 2.6 [15, Theorem 1.24]. Suppose that f is a nonconstant meromorphic function
in the complex plane and k is a positive integer. Then

N
(
r,

1
f (k)

)
≤ N

(
r,

1
f

)
+ kN(r, f ) + O(log T (r, f ) + log r),

as r→∞, outside of a possible exceptional set of finite linear measure.

Lemma 2.7 [15, Theorem 2.11]. Let f be a transcendental meromorphic function in
the complex plane such that ρ( f ) > 0. If f has two distinct Borel exceptional values in
the extended complex plane, then µ( f ) = ρ( f ) and ρ( f ) is a positive integer or∞.
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Lemma 2.8 (Zalcman’s Lemma [13, 19]). Let F be a family of meromorphic functions
in the unit disc 4 and α be a real number satisfying −1 < α < 1. Then if F is not
normal at a point z0 ∈ 4, there exist, for each α with −1 < α < 1:

(i) points zn ∈ 4, zn → z0;
(ii) positive numbers ρn, ρn → 0+; and
(iii) functions fn ∈ F;

such that ρ−αn fn(zn + ρnζ)→ g(ζ) spherically uniformly on compact subset of C, where
g is a nonconstant meromorphic function. The function g may be taken to satisfy the
normalisation g#(ζ) ≤ g#(0) = 1.

Remark 2.9. Suppose additionally in Lemma 2.8 that F is a family of zero-free
meromorphic functions in the domain D. Then the real number α in Lemma 2.8 can
be such that −1 < α <∞.

Lemma 2.10. Let f and g be two nonconstant meromorphic functions and let n and k
be positive integers such that n > 2k and k ≥ 1. If ( f n)(k)(gn)(k) = 1, then f and g are
transcendental entire functions such that f (z) = c1ecz and g(z) = c2e−cz, where c1, c2

and c are nonzero constants satisfying (−1)k(c1c2)n(nc)2k = 1.

Proof. Suppose that z0 ∈ C is a zero of f with multiplicity m. Then from the
assumption ( f n)(k)(gn)(k) = 1, we see that z0 is a pole of g with multiplicity, say p,
such that mn − k = np + k, and so (m − p)n = 2k, which contradicts the assumptions
that n > 2k and that m, p are positive integers. Therefore 0 is a Picard exceptional
value of f . Similarly, we can prove that 0 is a Picard exceptional value of g.

Suppose that f and g are nonconstant rational functions. Then f = 1/P and
g = 1/Q, where P, Q are some two nonconstant polynomials. Combining this with
the assumption that ( f n)(k)(gn)(k) = 1, we have

( f n)(k)

f n ·
(gn)(k)

gn = (PQ)n. (2.1)

By Lemma 2.4, f = 1/P and g = 1/Q, we see that

lim
|z|→∞

( f n(z))(k)

f n(z)
·

(gn(z))(k)

gn(z)
= 0. (2.2)

On the other hand, we have

lim
|z|→∞

(P(z)Q(z))n =∞. (2.3)

From (2.1)–(2.3) we have a contradiction.
Next we suppose that f and g are transcendental meromorphic functions. To

complete the proof of Lemma 2.10, we next set F = { fω} and G = {gω}, where
fω(z) = f (z + ω) and gω(z) = g(z + ω), z ∈ C. Evidently, F and G are two families
of meromorphic functions defined on C. We discuss the following two cases.
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Case 1. Suppose that one of the families F and G, say F, is normal on C. Then,
by Marty’s theorem, f #(ω) = f #

ω(0) ≤ M for some M > 0 and for all ω ∈ C. Hence, it
follows from Lemma 2.5 that f is of order at most 2. This, together with the reasoning
in Whittaker [14, page 82] and the assumption ( f n)(k)(gn)(k) = 1, gives

ρ( f ) = ρ( f n) = ρ(( f n)(k)) = ρ((gn)(k)) = ρ(gn) = ρ(g) ≤ 2. (2.4)

Noting that 0 is a Picard exceptional value of g, we get from (2.4), Lemma 2.6 and the
assumption ( f n)(k)(gn)(k) = 1 that

(n + k)N(r, f ) ≤ N(r, ( f n)(k)) = N
(
r,

1
(gn)(k)

)
≤ N

(
r,

1
gn

)
+ kN(r, gn) + O(log r)

≤ kN(r, g) + O(log r), (2.5)

as r→∞. Similarly,

(n + k)N(r, g) ≤ kN(r, f ) + O(log r), (2.6)

as r→∞. From (2.5) and (2.6) we have

N(r, f ) + N(r, g) ≤ O(log r),

as r→∞. This implies that f and g have at most finitely many poles. Noting that f
and g are transcendental meromorphic functions, we can see from (2.4) and Lemma 2.7
that µ( f ) = ρ( f ) = 1 or µ( f ) = ρ( f ) = 2. Next we set

f =
1
P

eα, g =
1
Q

eβ, (2.7)

where P and Q are nonzero polynomials and α and β are nonconstant polynomials
with degree at most 2. From (2.7) we have

( f n)(k) =

((
α′ −

P′

P

)k
+ Pk−1

(
α′ −

P′

P

)) A
Pn enα (2.8)

and

(gn)(k) =

((
β′ −

Q′

Q

)k
+ Pk−1

(
β′ −

Q′

Q

)) B
Qn enβ, (2.9)

where A, B are nonzero constants and Pk−1(α′ − P′/P) (Pk−1(β′ − Q′/Q)) is a
differential polynomial of degree at most k − 1 in α′ − P′/P (β′ − Q′/Q). By
substituting (2.8) and (2.9) into ( f n)(k)(gn)(k) = 1 we have

AB
((
α′ −

P′

P

)k
+ Pk−1

(
α′ −

P′

P

))((
β′ −

Q′

Q

)k
+ Pk−1

(
β′ −

Q′

Q

))
en(α+β) = (PQ)n. (2.10)

Noting that P, Q, α, β are nonconstant polynomials, we deduce from (2.10) that

α + β = c, (2.11)
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where c is some constant. Therefore, (2.10) can be rewritten as

AB
((
α′ −

P′

P

)k
+ Pk−1

(
α′ −

P′

P

))((
β′ −

Q′

Q

)k
+ Pk−1

(
β′ −

Q′

Q

))
enc = (PQ)n. (2.12)

From (2.11) we have α′ + β′ = 0. Combining this with (2.12) and letting |z| → ∞, we
see that

2k deg(α′) = n deg(PQ). (2.13)

Noting that deg(α′) ≤ 1, we can deduce from (2.13) and the assumption n > 2k that
P and Q reduce to constants. This, together with (2.7), implies that ∞ is a Picard
exceptional value of f and g. Combining this with Theorem 1 in Fang [3] and the
assumption n > 2k, we get the conclusion of Lemma 2.10.

Case 2. Suppose that one of the families F and G, say F, is not normal on C. Then,
by Marty’s theorem, we find that there exists a sequence of meromorphic functions
f j(z) ⊂ F, where f j(z) = f (ω j + z), z ∈ {z : |z| < 1}, and {ω j} ⊂ C is some infinite
sequence of complex values, such that

f #
j (0) = f #(ω j)→∞,

as |ω j| → ∞. By Lemma 2.8 we see that there exist:

(i) points z j → 0, |z j| < 1;
(ii) positive numbers ρ j, ρ j → 0+;
(iii) a subsequence of functions f j(z j + ρ jζ) = f (ω j + z j + ρ jζ) of { f (ω j + z)};

such that
ρ−k/n

j f j(z j + ρ jζ) =: h j(ζ)→ h(ζ) (2.14)

spherical uniformly on compact subsets of C, where h(ζ) is some nonconstant
meromorphic function such that h#(ζ) ≤ h#(0) = 1. Moreover, from Lemma 2.5 we
can see that ρ(h) ≤ 2, ρ j is a positive number satisfying

ρ j =
1

f #
j (z j)

=
1

f #(b j)
(2.15)

and
f #(b j) = f #

j (z j) ≥ f #
j (0) = f #(ω j), (2.16)

where b j = ω j + z j, and (2.15), (2.16) can be found in the proof of Zalcman’s lemma
(see [13, 19]). From (2.14) we find that

(hn
j(ζ))(k) = ( f n

j (z j + ρ jζ))(k) → (hn(ζ))(k) (2.17)

spherical uniformly on compact subsets of C \ h−1(∞) with respect to the spherical
metric.

We claim that (gn)(k) is not a constant. In fact, if (gn)(k) is a constant, then gn = Pk,
where Pk is a nonconstant polynomial with degree at most ≤ k, which contradicts the
assumption that n > 2k. Next we set

h̃ j(ζ) = ρ−k/n
j g j(z j + ρ jζ). (2.18)
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Then
(h̃n

j(ζ))(k) = (gn
j(z j + ρ jζ))(k). (2.19)

From (2.17), (2.19) and the assumption ( f n)(k)(gn)(k) = 1 we get

(hn
j(ζ))(k)(h̃n

j(ζ))(k) = 1. (2.20)

From (2.17), (2.20) and the formula of higher derivatives we can deduce that

h̃n
j(ζ)→ ĥ(ζ), (2.21)

spherical uniformly on compact subsets of C, where ĥ(ζ) is some nonconstant
meromorphic function in the complex plane. Moreover, by Hurwitz’s theorem
we can see that the multiplicity of every pole of ĥ(ζ) is a multiple of n.
Combining (2.14), (2.18), (2.21) and Hurwitz’s theorem, we find that 0 is a Picard
exceptional value of f and we can deduce ĥ = h̃n, where h̃ is some nonconstant
meromorphic function in the complex plane. Therefore (2.21) can be rewritten as

h̃n
j(ζ)→ h̃n(ζ),

spherical uniformly on compact subsets of C, and so

(h̃n
j(ζ))(k) → (h̃n(ζ))(k), (2.22)

spherical uniformly on compact subsets of C \ h̃−1(∞) with respect to the spherical
metric. From (2.17), (2.20) and (2.22) we get

(hn(ζ))(k)(h̃n(ζ))(k) = 1 (2.23)

for all ζ ∈ C \ {h−1(∞) ∪ h̃−1(∞)}. Proceeding as in the proof of (2.4), we get
from (2.23) and ρ(h) ≤ 2 that

ρ(h) = ρ(h̃) ≤ 2. (2.24)

Next, in the same manner as in Case 1, we get from (2.23) and (2.24) that

h(z) = c̃1ec̃z, h̃(z) = c̃2e−c̃z, (2.25)

where c̃1, c̃2 and c̃ are nonzero constants satisfying (−1)k(c̃1c̃2)n(nc̃)2k = 1. On the
other hand, from (2.14) and the left equality of (2.25) we have

h′j(ζ)

h j(ζ)
=
ρ j f ′(ω j + z j + ρ jζ)

f (ω j + z j + ρ jζ)
→

h′(ζ)
h(ζ)

= c̃, (2.26)

spherical uniformly on compact subsets of C. From (2.15) and (2.26) we get

ρ j

∣∣∣∣∣ f ′(ω j + z j)
f (ω j + z j)

∣∣∣∣∣ =
1 + | f (ω j + z j)|2

| f ′(ω j + z j)|
·
| f ′(ω j + z j)|
| f (ω j + z j)|

=
1 + | f (ω j + z j)|2

| f (ω j + z j)|
→

∣∣∣∣∣h′(0)
h(0)

∣∣∣∣∣ = |c̃|,

which implies that
lim
j→∞

f (ω j + z j) , 0,∞. (2.27)
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From (2.14) and (2.27) we deduce that

h j(0) = ρ−k/n
j f j(z j) = ρ−k/n

j f (ω j + z j)→∞. (2.28)

Again from (2.14) and the left equality of (2.25) we have

h j(0)→ h(0) = c̃1. (2.29)

From (2.28) and (2.29) we have a contradiction. This completes the proof of
Lemma 2.10. �

Lemma 2.11. Let f and g be two nonconstant meromorphic functions, and let n, k be
positive integers such that n > 2k. If

( f n( f − 1))(k)(gn(g − 1))(k) = 1, (2.30)

then f and g are of order at most 2.

Proof. Suppose that one of f and g is rational function. Then from (2.30) we have
ρ( f ) = ρ(g) = 0. Next we suppose that f and g are transcendental meromorphic
functions. To complete the proof of this lemma, we set F = { fω} and G = {gω}, where
fω(z) = f (z + ω) and gω(z) = g(z + ω), z ∈ C. Evidently, F and G are two families of
meromorphic functions defined on C. We discuss the following two cases.

Case 1. Suppose that one of the families F and G, say F, is normal on C. Then,
by Marty’s theorem, f #(ω) = f #

ω(0) ≤ M for some M > 0 and for all ω ∈ C. Hence, it
follows from Lemma 2.5 that f is of order at most 2.

Case 2. Suppose that one of the families F and G, say F, is not normal on C.
Then, by Marty’s theorem, we find that there exists a sequence of meromorphic
functions f j(z) ⊂ F, where f j(z) = f (ω j + z), z ∈ {z : |z| < 1}, and {ω j} ⊂ C is some
infinite sequence of complex values, such that

f #
j (0) = f #(ω j)→∞,

as |ω j| → ∞. By Lemma 2.8 we find that there exist:

(i) points z j → 0, |z j| < 1;
(ii) positive numbers ρ j, ρ j → 0+;
(iii) a subsequence of functions f j(z j + ρ jζ) = f (ω j + z j + ρ jζ) of f (ω j + z);

such that
ρ−k/n

j f j(z j + ρ jζ) =: h j(ζ)→ h(ζ) (2.31)

spherical uniformly on compact subsets of C, where h(ζ) is some nonconstant
meromorphic function such that h#(ζ) ≤ h#(0) = 1. Moreover, from Lemma 2.5 we
can see that ρ(h) ≤ 2, ρ j is a positive number satisfying

ρ j =
1

f #
j (z j)

=
1

f #(b j)
(2.32)
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and
f #(b j) = f #

j (z j) ≥ f #
j (0) = f #(ω j), (2.33)

where b j = ω j + z j, and (2.32), (2.33) can be found in the proof of Zalcman’s lemma
(see [13, 19]). From (2.31) we find that

(ρk/n
j hn+1

j (ζ) − hn
j(ζ))(k) = ( f n+1

j (z j + ρ jζ) − f n
j (z j + ρ jζ))(k) → −(hn(ζ))(k) (2.34)

spherical uniformly on compact subsets of C \ h−1(∞) with respect to the spherical
metric.

We claim that (gn+1 − gn)(k) is not a constant. In fact, if (gn+1 − gn)(k) is a constant,
then gn+1 − gn = Pk, where Pk is a nonconstant polynomial with degree at most k,
which contradicts the assumption n > 2k. Next we set

h̃ j(ζ) = ρ−k/n
j g j(z j + ρ jζ).

Then
(ρk/n

j h̃n+1
j (ζ) − h̃n

j(ζ))(k) = (gn+1
j (z j + ρ jζ) − gn

j(z j + ρ jζ))(k). (2.35)

From (2.30), (2.34) and (2.35) we get

(ρk/n
j hn+1

j (ζ) − hn
j(ζ))(k)(ρk/n

j h̃n+1
j (ζ) − h̃n

j(ζ))(k) = 1. (2.36)

Letting j→∞, we get from (2.34) and (2.36) that

(hn(ζ))(k)(ĥ(ζ))(k) = 1

for all ζ ∈ C \ {h−1(∞) ∪ ĥ−1(∞)}, where ĥ is a meromorphic function such that

ρk/n
j h̃n+1

j (ζ) − h̃n
j(ζ)→ −ĥ(ζ), (2.37)

spherical uniformly on compact subsets of C \ ĥ−1(∞), which is deduced by the
formula for higher derivatives, and ĥ(ζ) is some nonconstant meromorphic function in
the complex plane. Moreover, by Hurwitz’s theorem we can see that the multiplicity
of every zero and every pole of ĥ(ζ) is a multipler of n. Hence ĥ = h̃n, where h̃ is
some nonconstant meromorphic function in the complex plane. Therefore (2.37) can
be rewritten as

ρk/n
j h̃n+1

j (ζ) − h̃n
j(ζ)→ −h̃n(ζ), (2.38)

spherical uniformly on compact subsets of C \ h̃−1(∞). From (2.34), (2.38) and (2.36)
we get

(hn(ζ))(k)(h̃n(ζ))(k) = 1 (2.39)

for all ζ ∈ C \ {h−1(∞) ∪ h̃−1(∞)}. Next, in the same manner as in Case 2 of the proof
of Lemma 2.10, we get a contradiction from (2.39). This completes the proof of
Lemma 2.11. �
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Proceeding as in the proof of Lemma 2.11, we get the following result by
Remark 2.9.

Lemma 2.12. Let f and g be two nonconstant meromorphic functions, and let n, k be
positive integers. Suppose that 0 is a Picard exceptional value of f and g, and that
every pole of f and g is of multiplicity 2k + 1 or greater. If

( f ( f n − 1))(k)(g(gn − 1))(k) = 1,

then f and g are of order at most 2.

Lemma 2.13 [20]. If s (> 0) and t are relatively prime integers, and if c is a finite
complex number such that cs = 1, then there exists one and only one common zero of
ωs − 1 and ωt − c.

The following results are due to Yi [18], and will be used to prove Theorems 1.11
and 1.12 above.

Lemma 2.14 [18, Theorem 2]. Let f and g be two nonconstant meromorphic
functions such that f (k) and g(k) share the value 1 CM, where k ≥ 1 is a positive
integer. If δ(0, f ) + δ(0, g) + (k + 2)(Θ(∞, f ) + Θ(∞, g)) > 2k + 5, then either f = g or
f (k)g(k) = 1.

Lemma 2.15 [18, Theorem 4]. Let f and g be two nonconstant meromorphic functions
such that f (k) and g(k) share the value 1 IM, where k ≥ 1 is a positive integer.
If 3(δ(0, f ) + δ(0, g)) + (2k + 4)(Θ(∞, f ) + Θ(∞, g)) > 4k + 13, then either f = g or
f (k)g(k) = 1.

3. Proofs of the theorems

Proof of Theorem 1.8. First of all, we set

F1 = f n( f − 1), G1 = gn(g − 1). (3.1)

Then, from (3.1), Lemma 2.1 and the assumption n > 3k + 11,

Θ(∞, F1) = 1 − lim sup
r→∞

N(r, F1)
T (r, F1)

= 1 − lim sup
r→∞

N(r, f )
(n + 1)T (r, f ) + O(1)

≥ 1 − lim sup
r→∞

T (r, f )
(n + 1)T (r, f ) + O(1)

= 1 −
1

n + 1
, (3.2)

Θ(0, F1) = 1 − lim sup
r→∞

N(r, 1
F1

)

T (r, F1)
= 1 − lim sup

r→∞

N(r, 1
f ) + N(r, 1

f−1 )

(n + 1)T (r, f ) + O(1)

≥ 1 − lim sup
r→∞

2T (r, f ) + O(1)
(n + 1)T (r, f ) + O(1)

= 1 −
2

n + 1
(3.3)
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and

δk+1(0, F1) = 1 − lim sup
r→∞

Nk+1(r, (1/F1))
T (r, F1)

= 1 − lim sup
r→∞

(k + 1)N(r, (1/ f )) + N(r, (1/ f − 1))
(n + 1)T (r, f ) + O(1)

≥ 1 − lim sup
r→∞

(k + 2)T (r, f ) + O(1)
(n + 1)T (r, f ) + O(1)

= 1 −
k + 2
n + 1

. (3.4)

Similarly, from the second equality of (3.1),

Θ(∞,G1) ≥ 1 −
1

n + 1
, Θ(0,G1) ≥ 1 −

2
n + 1

, δk+1(0,G1) ≥ 1 −
k + 2
n + 1

. (3.5)

Next we set

∆1 = (k + 2)Θ(∞, F1) + 2Θ(∞,G1) + Θ(0, F1) + Θ(0,G1) + δk+1(0, F1) + δk+1(0,G1)
(3.6)

and

∆2 = (k + 2)Θ(∞,G1) + 2Θ(∞, F1) + Θ(0,G1) + Θ(0, F1) + δk+1(0,G1) + δk+1(0, F1).
(3.7)

Then, from (3.2)–(3.7),

∆1 ≥ (k + 4)
(
1 −

1
n + 1

)
+ 2

(
1 −

2
n + 1

)
+ 2

(
1 −

k + 2
n + 1

)
(3.8)

and

∆2 ≥ (k + 4)
(
1 −

1
n + 1

)
+ 2

(
1 −

2
n + 1

)
+ 2

(
1 −

k + 2
n + 1

)
. (3.9)

By (3.8), (3.9) and the assumption n > 3k + 11 we get ∆1 > k + 7 and ∆2 > k + 7.
Combining this with Lemma 2.2 and the assumption that F(k)

1 and G(k)
1 share 1 CM, we

get F(k)
1 G(k)

1 = 1 or F1 = G1. We consider the following two cases.

Case 1. Suppose that F(k)
1 G(k)

1 = 1. Then, from (3.1), we have (2.30). Combining this
with Lemma 2.11, we have ρ( f ) ≤ 2, which contradicts the assumption ρ( f ) > 2 of
Theorem 1.8.

Case 2. Suppose that F1 = G1. Then, from (3.1), we have

f n( f − 1) = gn(g − 1). (3.10)

Let
H =

f
g
. (3.11)

We discuss the following two subcases.
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Subcase 2.1. Suppose that H is a nonconstant meromorphic function. Then,
from (3.10) and (3.11), we get

g =
1 − Hn

1 − Hn+1 . (3.12)

Noting that n and n + 1 are two relatively prime integers, we know that ω = 1 is the
only common zero of ωn − 1 and ωn+1 − 1. Therefore, from (3.11), (3.12), Lemma 2.1
and Lemma 2.13 we get

T (r, f ) = T (r,Hg) = nT (r,H) + O(1). (3.13)
From (3.11)–(3.13) and the second fundamental theorem we get

N(r, f ) =

n∑
j=1

N
(
r,

1
H − λ j

)
≥ (n − 2)T (r,H) + S (r,H), (3.14)

where λ1, λ2, . . . , λn are finite complex numbers satisfying λ j , 1 and λn+1
j = 1 for

1 ≤ j ≤ n. From (3.13) and (3.14) we get

Θ(∞, f ) = 1 − lim sup
r−→∞

N(r, f )
T (r, f )

≤ 1 − lim sup
r−→∞

(n − 2)T (r,H) + S (r,H)
nT (r,H)

≤ 1 −
n − 2

n
=

2
n
,

which contradicts the condition Θ(∞, f ) > 2/n.

Subcase 2.2. Suppose that H is a constant. If Hn+1 , 1, then from (3.10) and (3.11)
we get (3.12). From (3.12) we know that g is a constant, which is impossible. Thus
Hn+1 = 1. From (3.10) and (3.11) we get

(Hn+1 − 1)g = Hn − 1. (3.15)
From (3.15) and Hn+1 = 1 we get Hn+1 = Hn = 1, which implies H = 1. This, together
with (3.11), completes the proof of Theorem 1.8. �

Proof of Theorem 1.11. First of all, we set
F2 = f ( f n − 1), G2 = g(gn − 1). (3.16)

Then, from (3.16) and Lemma 2.1,

Θ(∞, F2) = 1 − lim sup
r→∞

N(r, F2)
T (r, F2)

= 1 − lim sup
r→∞

N(r, f )
(n + 1)T (r, f ) + O(1)

≥ 1 − lim sup
r→∞

T (r, f )
(n + 1)T (r, f ) + O(1)

= 1 −
1

n + 1
(3.17)

and
Θ(∞,G2) ≥ 1 −

1
n + 1

. (3.18)

Next we set
∆3 = δ(0, F2) + δ(0,G2) + (k + 2)(Θ(∞, F2) + Θ(∞,G2)). (3.19)

Then, from (3.16)–(3.19) and Lemma 2.1, we find that the assumption (1.6) implies
∆3 > 2k + 5. Combining this with Lemma 2.14, we have f ( f n − 1) = g(gn − 1) or
( f ( f n − 1))(k)(g(gn − 1))(k) = 1. We consider the following two cases.
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Case 1. Suppose that ( f ( f n − 1))(k)(g(gn − 1))(k) = 1. Then, from Lemma 2.12, we
have ρ( f ) ≤ 2, which contradicts the assumption ρ( f ) > 2.

Case 2. Suppose that f ( f n − 1) = g(gn − 1). Then P( f ) = P(g), where P(z) = zn+1 − z.
From the assumption n ≥ 4 and Fujimoto [4, Theorem 4.1] we can deduce that
P(z) = zn+1 − z is a uniqueness polynomial. Therefore, P( f ) = P(g) implies that f = g,
and so we get the conclusion of Theorem 1.11. An alternate demonstration that
P( f ) = P(g) implies that f = g goes as follows. Suppose that f . g, and let H be
defined as in (3.11). We consider the following two subcases.

Subcase 2.1. Suppose that H is a nonconstant meromorphic function. From the fact
that 1 and n + 1 are two relatively prime integers, we know from Lemma 2.13 that
ω = 1 is the only common zero of ωn+1 − 1 and ω − 1. This, together with (3.11) and
the assumption f ( f n − 1) = g(gn − 1), gives

gn =
H − 1

Hn+1 − 1
=

1
Hn + Hn−1 + · · · + H + 1

. (3.20)

From (3.20) we find that every zero of H − ω j is of multiplicity n ≥ 4 for 1 ≤ j ≤ n,
where ω1, ω2, . . . , ωn are n distinct roots of ωn+1 = 1 such that ω j , 1 for 1 ≤ j ≤ n.
Therefore,

n∑
j=1

Θ(ω j,H) =

n∑
j=1

(
1 − lim sup

N(r, (1/H − ω j))
T (r,H)

)
≥

n∑
j=1

(
1 − lim sup

N(r, (1/H − ω j))
nT (r,H)

)

≥

n∑
j=1

(
1 −

1
n

)
≥

4∑
j=1

(
1 −

1
4

)
= 3,

which is impossible.

Subcase 2.2. Suppose that H is a constant. If Hn+1 , 1, from (3.11) and the
assumption f ( f n − 1) = g(gn − 1) we have (3.20), which implies that g is a constant,
which is impossible. Therefore,

Hn+1 = 1. (3.21)

Again from (3.11) and the assumption f ( f n − 1) = g(gn − 1) we have (Hn+1 − 1)gn =

H − 1. Combining this with (3.21), we have H = 1. This together with (3.11)
completes the proof of Theorem 1.11. �

4. Comments on the proof of Theorem 4 [1]

There are two errors in the proof of Theorem 4 in the paper by Bhoosnurmath and
Dyavarna [1, page 1203]. We comment on these points as follows.

Bhoosnurmath and Dyavanal wrote: ‘Suppose that f , g are two nonconstant
meromorphic functions satisfying ( f n( f − 1))(k)(gn(g − 1))(k) = 1, where n, k are two
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positive integers such that n ≥ 3k + 13. Then any zero z1 of f − 1 of order p1 is a zero
of ( f n( f − 1))(k) of order p1 − k.’

Indeed, if z1 is a zero of f − 1 of order p1 ≥ k, then z1 is a zero of ( f n( f − 1))(k) of
order p1 − k, and this reasoning is correct. But if z1 is a zero of f − 1 of order at most
k − 1, then z1 is possibly not a zero of ( f n( f − 1))(k). Moreover, even if z1 is a zero
of ( f n( f − 1))(k), the order of z1 as a zero of ( f n( f − 1))(k) may not be equal to p1 − k.
Hence the reasoning of Bhoosnurmath and Dyavanal is defective for p1 ≤ k − 1.

Bhoosnurmath and Dyavanal also wrote: ‘Let z2 be a zero of f ′ of order p2 that is
not a zero of f ( f − 1), then z2 is a zero of ( f n( f − 1))(k) of order p2 − (k − 1).’

Obviously, if z2 is a zero of f ′ of multiplicity p2 ≥ k − 1, then z2 is a zero of
( f n( f − 1))(k) of order p2 − (k − 1), and this is correct. But if z2 is a zero of f ′ of
order ≤ k − 2, then z2 is possibly not a zero of ( f n( f − 1))(k). Moreover, even if z2 is
a zero of ( f n( f − 1))(k), the order of z2 as a zero of ( f n( f − 1))(k) may not be equal to
p2 − (k − 1). Hence the above reasoning of Bhoosnurmath and Dyavanal is defective
for p2 ≤ k − 2.

5. Concluding remarks

Regarding Theorems 1.8 and 1.9, we propose the following question.

Question 5.1. What can be said about the relationship between f and g, if the
assumption that ρ( f ) > 2 in Theorems 1.8–1.12 is replaced with ρ( f ) ≤ 2?
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