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MINIMAL PENCIL REALIZATIONS
OF RATIONAL MATRIX FUNCTIONS WITH SYMMETRIES

ILYA KRUPNIK AND PETER LANCASTER

ABSTRACT. A theory of minimal realizations of rational matrix functions W(ï) in
the “pencil” form W(ï) = C(ïA1 � A2)�1B is developed. In particular, properties of
the pencil ïA1 � A2 are discussed when W(ï) is hermitian on the real line, and when
W(ï) is hermitian on the unit circle.

1. Introduction. The modern theory of systems and control relies on detailed
knowledge of the properties of rational matrix functions; namely, r ð n matrix valued
functions W(ï) where entries are scalar rational functions. Much of this detailed infor-
mation can be obtained from “realizations” of W(ï). In this note we follow Wimmer
([10] and [11]), and choose to define a realization as a representation of the form

(11) W(ï) = C(ïA1 � A2)�1B

where ïA1 � A2 is a regular pencil of square matrices over C, i.e. det(ïA1 � A2) 6� 0.
Representations of the form (1.1) with A1 = I (so that kW(ï)k ! 0 as jïj ! 1) have
been intensively studied and, to avoid confusion, a representation of the form (1.1) is
termed a p-realization (for “pencil” realization). When kW(ï)k ! 0 as jïj ! 1, W(ï)
is said to be strictly proper. A p-realization (1.1) is said to be minimal if A1, A2 have the
smallest possible size.

The main purpose of this note is to reveal what symmetries are implied for a minimal
p-realization when:

(a) W(ï) is hermitian on the real line.
(b) W(ï) is hermitian on the unit circle.
Both these questions are of considerable practical significance and, although this

short paper contains new and interesting results, it is written so that the non-expert can
appreciate the arguments. The answer to question (a) is elegant and is the main result
of this work. A regular pencil ïA1 � A2 is said to be H-selfadjoint (or H-unitary), if
there is a nonsingular hermitian matrix H for which AŁ1HA2 is hermitian (for which
AŁ1HA1 = AŁ2HA2). Such pencils have been studied recently in [7] and [6] and some
details of canonical forms can be found in the latter work.

It is not difficult to see that, if A1 and A2 are hermitian (when the pencil ïA1 � A2 is
said to be hermitian) then there is an H in which ïA1 �A2 is H-selfadjoint. Furthermore,
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PENCIL REALIZATIONS 179

every H-selfadjoint pencil is strictly equivalent to an hermitian pencil (Theorem 2.1 of
[6]). Similarly, if ïA1�A2 is H-unitary then ïA1�A2 andïAŁ2�AŁ1 are strictly equivalent
(Theorem 3.2 of [6]).

The following theorems will be established.

THEOREM 1.1. If W(ï) is hermitian on the real line, then the regular pencil of any
minimal p-realization is H-selfadjoint in some H.

THEOREM 1.2. If W(ï) is hermitian on the unit circle then the regular pencil of a
minimal p-realization is H-unitary in some H if and only if W(ï) is strictly proper.

In many cases, (but not exclusively) p-realizations are of interest because they admit
a singular matrix A1. (Otherwise they can be reduced to the classical case by writing
(ïA1 � A2)�1 = (ïI � A�1

1 A2)�1A�1
1 .) They also admit the association of W(ï) with a

singular differential system

(12) A1ẋ(t) = A2x(t) + Bu(t)Ò y(t) = Cx(t)Ò

sometimes known as a descriptor system. This aspect of the theory has driven several
earlier investigations. In most of the earlier papers on descriptor systems (see [3] and
[8], for example) preliminary simplifying transformations are applied to the system and
have the effect of obscuring symmetries that may be present. We therefore eschew this
approach in favour of a direct approach consistent with that of Zhou et al. [12] and of
the broad generalizations contained in the recent work of Alpay and Dym [1].

2. Minimal p-realizations. The usual approach to the realization of a regular ratio-
nal matrix function W(ï) is to write

(21) W(ï) = W1(ï) + W2(ï)

where W1(ï) is strictly proper and W2(ï) is a polynomial matrix function. Because W1(ï)
is strictly proper it is well-known that there is a realization

(22) W1(ï) = C(ïI � A)�1BÒ

(see Theorem 7.1.2 of [5], for example). Furthermore, this realization is minimal if and
only if (AÒB) is a full-range pair, and (CÒA) is a null-kernel pair. That is, if A has size n,

n�1X
j=0

Im(AjB) = CnÒ
n�1\
j=0

Ker(CAj) = f0gÒ

(see Sections 2.7 and 2.8 of [5]). The terms “full-range” and “null-kernel” were coined
for the work [5] and are more frequently replaced by “controllable” and “observable”,
respectively. The latter terms originate with underlying differential systems (as in (1.2))
and, as the notions of controllability and observability are more sophisticated in the con-
text of a singular systems (see [3] and [12], for example), we stay with the mathematically
motivated terminology.

The argument used in the following theorem is natural and can be traced back to
Rosenbrock [9] in 1974 (see also Wimmer [10]). Since the construction is important for
the sequel we reproduce the argument here.
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THEOREM 2.1. Every r ð n rational matrix function has a p-realization.

PROOF. Let W(ï) be a rational matrix function, decompose W(ï) as in (2.1), and note
the realization (2.2) of W1(ï).

The function Ŵ(ï) := ï�1W2(ï�1) is also strictly proper rational and so has a real-
ization

(23) Ŵ(ï) = �E(ïI � N)�1F

(Theorem 7.1.2 of [5]). Furthermore, N is nilpotent, otherwise Ŵ(ï) (and hence W2(ï)),
would have a finite nonzero pole. It follows that

(24) W2(ï) = E(ïN � I)�1F

and, combining (2.2) and (2.4),

(25) W(ï) = [ C E ]

2
64 ïI � A 0

0 ïN � I

3
75
�1 "

B
F

#

Note that we have proved a little more than is required by the theorem statement;
namely, that there is a p-realization of the special form (2.5), in which N is nilpotent.

THEOREM 2.2 (cf. THEOREM 3.1 OF [1]). Let W(ï) be an nðn rational matrix function
for which W(ï0) is nonsingular, ï0 2 C. Then a p-realization W(ï) = C(ïA1 � A2)�1B
is minimal if and only (A1KÒB) is a full-range pair and (CÒKA1) is a null-kernel pair,
where K = (ï0A1 � A2)�1.

PROOF. Define W̃(ï) by:

W̃(ï) = ï�1W(ï0 + ï�1) = ï�1Cf(ï0 + ï�1)A1 � A2g
�1B

= ï�1C(ï�1A1 + K�1)�1B = C(A1 + ïK�1)�1B(2.6)

= CK(ïI + A1K)�1BÒ

so that W̃(ï) is strictly proper. Clearly, the p-realization for W(ï) is minimal if and only if
the realization (2.6) is minimal for W̃(ï), i.e. (using the classical result above) if and only
if (A1KÒB) is a full-range pair and (CKÒA1K) is a null-kernel pair. However, the latter
condition is easily seen to be equivalent to the statement that (CÒKA1) is a null-kernel
pair.

LEMMA 2.3. Let W(ï) be an n ð n rational matrix function with det W(ï0) 6= 0 for
some ï0 2 C and define W1(ï), W2(ï) as in equation (2.1). Then the realizations

(27) W1(ï) = C(ïI � A)�1BÒ ï�1W2(ï) = �E(ïI � N)�1F

(of equations (2.2) and (2.3)) are minimal if and only if the realization (2.5) for W(ï) is
minimal.
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PROOF. Apply Theory 2.2 to the p-realization (2.5) of W(ï), so that

A1 =
"

I 0
0 N

#
Ò A2 =

"
A 0
0 I

#


Then the matrix K of Theorem 2.2 takes the form

K =
"

(ï0I � A)�1 0
0 (ï0N � I)�1

#
Ò

and (A1KÒ [ B
F ]) is clearly a full-range pair if and only if both

�
(ï0I � A)�1ÒB

�
Ò

�
N(ï0N � I)�1ÒF

�

are full-range pairs.
Now the minimality of the realizations (2.7) implies that (AÒB) and (NÒF) are full-

range pairs. Furthermore, since A1 and f (A1) (where f (ï) = (ï0 � ï)�1) have the same
invariant subspaces (see Theorem 2.11.3 of [5]), it follows that

�
(ï0I � A)�1ÒB

�
is a

full-range pair. Using the function g(ï) = ï(ï0ï � 1)�1 in a similar way, it follows that�
N(ï0N � I)�1ÒF

�
is a full-range pair. The full-range property follows for (A1KÒ [ B

F ]).
Similarly, it follows that when the realizations (2.7) are minimal, the pair

([ C E ]ÒKA1) is null-kernel. The minimality of realization (2.5) now follows from
Theorem 2.2.

The converse statement is apparent.

LEMMA 2.4. Let W(ï) be an n ð n rational matrix function with W(ï0) nonsingular
and two minimal realizations,

W(ï) = C(ïA1 � A2)�1B = Ĉ(ïÂ1 � Â2)�1B̂

Then ïA1 � A2 and ïÂ1 � Â2 are strictly equivalent.

PROOF. A minimal realization can be used to reconstruct the strictly proper and
polynomial parts of W(ï) (see the technique described in Proposition A.3 of [6], and
Theorem 6.3.3 of [7], for example). Then the zero and pole structures of W1(ï), W2(ï)
uniquely define the elementary divisors of bothïA1�A2 andïÂ1�Â2 (including those at
infinity). The strict equivalence then follows from the Kronecker theory (see Section A.5
of [5], for example).

3. The size of minimal p-realizations. Consider the decomposition (2.1). The local
degree é(W2Ò1) of W2(ï) (and of W(ï)) at infinity is defined to be the local degree at
zero of W2(ï�1) (see Section 4.1 of [2]). Thus, if

(31) W2(ï�1) =
1X

j=�q
ïjWjÒ W�q 6= 0Ò
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in a neighbourhood of the origin, then

é(W2Ò1) = rank

2
6666664

W�q Ð Ð Ð W�2 W�1

0
. . . W�2

...
. . .

. . .
...

0 Ð Ð Ð 0 W�q

3
7777775 

As long as W2(ï) 6� 0 the function Ŵ(ï) = ï�1W2(ï�1) introduced in the construction
of Theorem 2.1 will obviously have higher local degree at infinity than W2, namely,

é(ŴÒ1) = rank

2
6666664

W�q Ð Ð Ð W�1 W0

0
. . . W�1

...
. . .

. . .
...

0 Ð Ð Ð 0 W�q

3
7777775 

It follows that the size of a minimal p-realization will exceed the McMillan degree of
W(ï) by

é(ŴÒ1) � é(W2Ò1)

(The McMillan degree is the sum of all local degrees, finite or infinite, see Section 4.2
of [2].) In particular, if W2(ï) is finite at infinity (q = 0 in (3.1)), then the size of a
p-realization exceeds the McMillan degree of W(ï) by rank W0.

EXAMPLE 1. Let W(ï) = ï + ï�1. Then the McMillan degree of W(ï) is two. The
procedure of Theorem 2.1 produces a minimal p-realization

(32) W(ï) = [ 1 1 0 ]

0
B@ï

2
64 1 0 0

0 0 1
0 0 0

3
75�

2
64 0 0 0

0 1 0
0 0 1

3
75
1
CA
�1 264 1

0
�1

3
75 

The minimality is readily confirmed using Theorem 2.2.

EXAMPLE 2. Let

(33) W(ï) =

2
64ï

�1 + 1 + ï 0

0 ï�1

3
75

with McMillan degree three, and singular polynomial part W2(ï). A minimal p-realization
has size four. For example

W(ï) =
"

1 0 �1 0
0 1 0 0

# 0BBB@ï
2
6664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

3
7775�

2
6664

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

3
7775
1
CCCA
�1 2
6664

1 0
0 1
1 0
1 0

3
7775

is a minimal p-realization obtained by the methods of this section.

https://doi.org/10.4153/CMB-1998-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-027-8


PENCIL REALIZATIONS 183

4. Rational functions hermitian on the real line. The first theorem of this section
is due to Wimmer [11] and is a major step in the proof of Theorem 1.1. Our proof is by
different methods and is included in the interests of a self-contained presentation

THEOREM 4.1. If W(ï) is a rational matrix function which is hermitian on the real
line then there is a self-adjoint minimal p-realization for W(ï), i.e. there exist hermitian
A1 and A2 and a matrix B such that

(41) W(ï) = BŁ(ïA1 � A2)�1B

is a minimal p-realization.

PROOF. It is clear that in the decomposition (2.1), W1(ï) and W2(ï) will be hermitian
on the real line if and only if W(ï) has this property. Then Theorem II.3.1 of [4] shows that
there are minimal realizations (2.2) and (2.4) with N nilpotent, and unique nonsingular
hermitian matrixes H1 and H2 such that

AŁ = H1AH�1
1 Ò BŁ = CH�1

1 Ò(4.2)

NŁ = H2NH�1
2 Ò FŁ = EH�1

2 (4.3)

Writing H = diag[H1ÒH2] and using Lemma 2.3 we obtain the minimal p-realization

W(ï) = [ C E ]
"
ïI � A 0

0 ïN � I

#
�1 "B

F

#
Ò(4.4)

= [ BŁ FŁ ]
"
ïH�1

1 � AH�1
1 0

0 ïNH�1
2 � H�1

2

#
�1 "B

F

#


It follows from (4.2) and (4.3) that AH�1
1 and NH�1

2 are hermitian and so (4.4) has the
symmetry required.

Note that Wimmer also proves in [11] that a hermitian minimal p-realization of the
form (4.1) is unique up to a natural congruence transformation.

Theorem 1.1 is now readily proved. Let

(45) W(ï) = C(ïA1 � A2)�1B

be an arbitrary minimal p-realization and

(46) W(ï) = EŁ(ïS1 � S2)E

be a self-adjoint minimal p-realization. Define H0 = (ï0S1 � S2)�1 where the real ï0 is
chosen so that the inverse exists. Then ï0S1 � S2 is self-adjoint with respect to H0. To
see this, write

S1 = S1H0H�1
0 = S1H0(ï0S1 � S2) = ï0S1H0S1 � S1H0S2

Since S1 and ï0S1H0S1 are hermitian, so is S1H0S2 = SŁ1H0S, as required.
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Now Lemma 2.4 shows that there exist nonsingular X and Y such that

ïA1 � A2 = Y�1(ïS1 � S2)X

It is easily verified that ïA1 � A2 is self-adjoint with respect to YŁH0Y.

A converse for Theorem 1.1 is:

THEOREM 4.2. Let ïA1 � A2 be an n ð n H-selfadjoint pencil and ñA1 � A2 be
nonsingular where ñ 2 R. Let B be an n ð m matrix and define C = BŁH(ñA1 � A2).
Then the function

W(ï) = C(ïA1 � A2)�1B

is hermitian on the real line.

PROOF. Define T = (ñAŁ1 � AŁ2)H so that C = BŁTŁ and

W(ï) = BŁTŁ(ïA1 � A2)�1B = BŁ
�
ïA1(TŁ)�1 � A2(TŁ)�1

�
�1

B

Now verify that TA1 and TA2 (and hence A1(TŁ)�1, A2(TŁ)�1) are hermitian.

EXAMPLE 3. The function W(ï) of Example 2 is hermitian on the real line. The
regular pencil of (3.3) is H-selfadjoint where

H =

2
6664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3
7775 

5. Rational functions hermitian on the unit circle. The property W(ï)Ł = W(ï̄�1)
ensures that the poles of W(ï) are located in the complex plane symmetrically with
respect to the unit circle. This applies also to the pair of points 0 and1. Furthermore, if
there are poles at these two points then, by definition, they will have the same algebraic
multiplicities, say ö.

Now our construction of minimal p-realizations shows that when ö Ù 0 the function
(ïA1 � A2)�1 has pole multiplicities ö(1) Ù ö and ö(0) = ö (see the discussion of
Section 3). However, if ïA1 � A2 is an H-unitary pencil the pole multiplicities of
(ïA1 � A2)�1 at zero and infinity must agree (Theorem 4.2 of [6]). Consequently, if
W(ï)Ł = W(ï̄�1), and W(ï) has poles at 0 and 1, then the pencil of a minimal p-
realization cannot be H-unitary for any H.

The last statement means that the proof of Theorem 1.2 can be confined to the case
when W(ï)Ł = W(ï̄�1) and W(ï) is strictly proper. But this is a relatively well-known
case and there is a realization

(51) W(ï) = C(ïI � A)�1B
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and a nonsingular hermitian H for which AŁHA = H and C = iBŁHA (see the argument
of Section 6.6 of [7], for example). In particular, the pencil ïI � A is H-unitary. This
completes the proof of Theorem 1.2.

EXAMPLE 4. Notice that the function W(ï) = ï + ï�1 of Example 1 has the property
that W(ï)Ł = W(ï̄�1). An easy direct computation verifies that the pencil of the minimal
p-realization (3.2) is not H-unitary for any H.

EXAMPLE 5. The function W(ï) = iïÛ(ï + i)2 is strictly proper, is hermitian on the
unit circle, and has a minimal p-realization

W(ï) = [�i 0 ]
"
ï + i 1

0 ï + i

#
�1 "0

1

#


Thus A =
"
�i �1
0 �i

#
in (5.1). If H =

"
0 1
1 0

#
it is easily verified that AŁHA = H, i.e.

ïI � A is H-unitary.

REMARK. Our analysis in this note has been over the complex numbers. However, it
has been proved in Theorem 7.1 of [6] that if the entries of W(ï) are real polynomials
(and W(ï) is hermitian on the unit circle), then the pole multiplicities of W(ï) at š1 (if
any) are constrained by the symmetries so that the number of partial pole multiplicities
of even order is even. The partial pole multiplicities of odd order are not constrained.
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