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MINIMAL PENCIL REALIZATIONS
OF RATIONAL MATRIX FUNCTIONSWITH SYMMETRIES

ILYA KRUPNIK AND PETER LANCASTER

ABSTRACT. A theory of minimal realizations of rational matrix functions W(A) in
the “pencil” form W(\) = C(AA; — A;) 1B is developed. In particular, properties of
the pencil AA; — A, are discussed when W(\) is hermitian on the real line, and when
W(}) is hermitian on the unit circle.

1. Introduction. The modern theory of systems and control relies on detailed
knowledge of the properties of rational matrix functions; namely, r x n matrix valued
functions W(\) where entries are scalar rational functions. Much of this detailed infor-
mation can be obtained from “realizations’ of W()\). In this note we follow Wimmer
([10] and [11]), and choose to define arealization as a representation of the form

(1.2) W(\) = COA — A) 1B

where \A; — A isaregular pencil of square matrices over C, i.e. det(A\A; — Az) £ 0.
Representations of the form (1.1) with A; = | (so that ||W()\)|| — 0 as|\| — oo) have
been intensively studied and, to avoid confusion, a representation of the form (1.1) is
termed a p-realization (for “pencil” realization). When ||W()\)|| — 0 as |A\| — oo, W())
issaid to be strictly proper. A p-realization (1.1) is said to be minimal if A1, A, havethe
smallest possible size.

The main purpose of thisnoteis to reveal what symmetriesare implied for aminimal
p-realization when:

(@ WI()) ishermitian onthered line.
(b) W(X) is hermitian on the unit circle.

Both these questions are of considerable practical significance and, although this
short paper contains new and interesting results, it is written so that the non-expert can
appreciate the arguments. The answer to question (a) is elegant and is the main result
of this work. A regular pencil AA; — A, is said to be H-selfadjoint (or H-unitary), if
there is a nonsingular hermitian matrix H for which AJHA; is hermitian (for which
AjHA; = ASHA,). Such pencils have been studied recently in [7] and [6] and some
details of canonical forms can be found in the latter work.

It is not difficult to see that, if A; and A, are hermitian (when the pencil A\A; — Az is
said to be hermitian) then thereisan H in which AA; — A, isH-selfadjoint. Furthermore,
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every H-selfadjoint pencil is strictly equivalent to an hermitian pencil (Theorem 2.1 of
[6]). Similarly, if \A; — A isH-unitary then AA; — A, and AAS — A; arestrictly equivalent
(Theorem 3.2 of [6]).

The following theorems will be established.

THEOREM 1.1. If W(}\) is hermitian on the real line, then the regular pencil of any
minimal p-realization is H-selfadjoint in some H.

THEOREM 1.2. If W()\) is hermitian on the unit circle then the regular pencil of a
minimal p-realization is H-unitary in some H if and only if W()) is strictly proper.

In many cases, (but not exclusively) p-realizations are of interest because they admit
a singular matrix A;. (Otherwise they can be reduced to the classical case by writing
(A\AL— A)~ = (Al — ATTA) AL They also admit the association of W()\) with a
singular differential system

(1.2) AX() = Aox(t) + Bu®),  y(t) = Cx(1).

sometimes known as a descriptor system. This aspect of the theory has driven several
earlier investigations. In most of the earlier papers on descriptor systems (see [3] and
[8], for example) preliminary simplifying transformations are applied to the system and
have the effect of obscuring symmetries that may be present. We therefore eschew this
approach in favour of a direct approach consistent with that of Zhou et al. [12] and of
the broad generalizations contained in the recent work of Alpay and Dym [1].

2. Minimal p-realizations. Theusual approach to the realization of aregular ratio-
nal matrix function W()) isto write

(2.1) W(A) = Wi(A) +Wa())

where Wy () isstrictly proper and Wx () isapolynomial matrix function. BecauseW; (\)
is strictly proper it is well-known that there is arealization

(2.2) Wi(\) = C(Al — A)B.

(see Theorem 7.1.2 of [5], for example). Furthermore, this realization is minimal if and
only if (A, B) isafull-range pair, and (C. A) isanull-kernel pair. That is, if Ahassizen,

n—1 n—1

S Im(AB)=C", () Ker(CA) = {0},

j=0 j=0
(see Sections 2.7 and 2.8 of [5]). Theterms “full-range” and “null-kernel” were coined
for the work [5] and are more frequently replaced by “controllable” and “observable”,
respectively. The latter terms originate with underlying differential systems (asin (1.2))
and, asthe notions of controllability and observability are more sophisticated in the con-
text of asingular systems(see[3] and[12], for example), we stay with the mathematically
motivated terminol ogy.

The argument used in the following theorem is natural and can be traced back to

Rosenbrock [9] in 1974 (see also Wimmer [10]). Since the construction is important for
the sequel we reproduce the argument here.
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THEOREM 2.1. Everyr x nrational matrix function has a p-realization.

PrROOF. Let W()\) bearational matrix function, decomposeW()\) asin (2.1), and note
therealization (2.?) of Wi().

The function W()\) := A"*W,(A 1) is also strictly proper rational and so has a real-
ization
(2.3) W(\) = —E(\l — N)"F

(Theorem 7.1.2 of [5]). Furthermore, N is nilpotent, otherwise W()) (and hence Wa())),
would have afinite nonzero pole. It follows that

(2.4) Wa(\) = EQN — 1)~1F
and, combining (2.2) and (2.4),

Al —A 0
(2.5) W) =[C E]

0 AN — |

Note that we have proved a little more than is required by the theorem statement;
namely, that there is a p-realization of the special form (2.5), in which N is nilpotent.

THEOREM 2.2 (cf. THEOREM 3.1 0OF [1]). Let W()\) beannx nrational matrixfunction
for which W(\o) is nonsingular, Ao € C. Then a p-realization W()\) = C(A\A; — A;) !B
isminimal if and only (A1K. B) is a full-range pair and (C, KA;) is a null-kernel pair,
whereK = ()\oAj_ — Az)_l.

PrROOF. Define W()\) by:

W) = AW + A Y = A IC{Oo + A HAL — A2} 1B
(2.6) = a7l AL+ KTH)TIB = C(AL + AKTHTIB
= CK(A +AK) "B,
so that \7V()\) isstrictly proper. Cl earNIy, thep-realization for W(\) isminimal if and only if
therealization (2.6) isminimal for W()), i.e. (using the classical result above) if and only
if (A1K,B) is afull-range pair and (CK, A;K) is a null-kernel pair. However, the latter
condition is easily seen to be equivalent to the statement that (C, KA;) is a null-kernel
pair. "

LEMMA 2.3. Let W()\) bean n x n rational matrix function with det W(\o) # O for
some Ao € C and define Wy ()\), Wo()\) asin equation (2.1). Then the realizations

(2.7) Wi(\) = C\l — A)IB,  AMWL(\) = —E(Al — N)IF

(of equations (2.2) and (2.3)) areminimal if and only if the realization (2.5) for W(}) is
minimal.
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PrROOF. Apply Theory 2.2 to the p-realization (2.5) of W()\), so that

ely &) ~ele 2]

Then the matrix K of Theorem 2.2 takesthe form

=[S )

and (AK. [E]) isclearly afull-range pair if and only if both
(ol =A).B).  (N(AN—1)"1F)

are full-range pairs.

Now the minimality of the realizations (2.7) implies that (A. B) and (N, F) are full-
range pairs. Furthermore, since A; and f (A1) (where f()\) = (Ao — A\)™1) have the same
invariant subspaces (see Theorem 2.11.3 of [5]), it follows that (Aol — A)™%.B) is a
full-range pair. Using the function g(\) = A(A\oA — 1)~* in asimilar way, it follows that
(N(AoN — 1)~%. F) is afull-range pair. The full-range property follows for (AK. [?]).

Similarly, it follows that when the redizations (2.7) are minimal, the pair
([C E],KAy) is null-kernel. The minimality of realization (2.5) now follows from
Theorem 2.2.

The converse statement is apparent. ]

LEMMA 2.4. Let W()\) bean n x n rational matrix function with W(\q) nonsingular
and two minimal realizations,

W(\) = COAL — A)) 1B = C(\AL — Ay) !B.
Then AA1 — A, and MA; — A, arestrictly equivalent.

PrROOF. A minimal realization can be used to reconstruct the strictly proper and
polynomial parts of W()) (see the technique described in Proposition A.3 of [6], and
Theorem 6.3.3 of [7], for example). Then the zero and pole structures of Wi (A), Wa(A)
uniquely definethe elementary divisorsof both AA; — A, and AA; — A, (including those at
infinity). The strict equivalencethen follows from the Kronecker theory (see Section A.5
of [5], for example). n

3. Thesizeof minimal p-realizations. Consider the decomposition (2.1). Thelocal
degree 6(Wa, 00) of Wh()) (and of W())) at infinity is defined to be the local degree at
zero of Wo(A 1) (see Section 4.1 of [2]). Thus, if

(3.1) Wo(A 1) = fj NW, W_q#0,
i=q
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in aneighbourhood of the origin, then

W - W W,
5(Ws,00) =rank | O Woo
0 . 0 Wﬁq

Aslong as W,(\) # 0 the function W(A) = A~"W,(A~1) introduced in the construction
of Theorem 2.1 will obviously have higher local degree at infinity than W,, namely,

W -+ Wi W
§(W,00) =rank | O " Wor
0 A 0 W_q

It follows that the size of a minimal p-realization will exceed the McMillan degree of
W(A) by
5(W. 00) — §(Wh, 00).

(The McMillan degreeis the sum of all local degrees, finite or infinite, see Section 4.2
of [2].) In particular, if Wx(}) is finite at infinity (g = 0 in (3.1)), then the size of a
p-realization exceedsthe McMillan degree of W(\) by rank Wp.

EXAMPLE 1. Let W()\) = A + A~L. Then the McMillan degree of W()) is two. The
procedure of Theorem 2.1 producesa minimal p-realization

100 0 0 0]\ '11
001}—{010D {01.
000 0 01 -1

The minimality is readily confirmed using Theorem 2.2.

(3.2) W) =[1 1 0] (A

EXAMPLE 2. Let

ATH1+ ) 0
(3.3) W(\) = { 1
0 A1

withMcMillan degreethree, and singular polynomial part W»(A). A minimal p-realization
has size four. For example

= O O
= O O

1
1t o -1 oyf, o
WQ)‘{Ol 0 0})‘0

oor o
coooo
oooo
coooo
N eoNoNe)
PR OR
coor o

0

o
o

isaminimal p-realization obtained by the methods of this section.
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4. Rational functionshermitian on thereal line. Thefirst theorem of this section
is due to Wimmer [11] and is amajor step in the proof of Theorem 1.1. Our proof is by
different methods and is included in the interests of a self-contained presentation

THEOREM 4.1. If W()\) is arational matrix function which is hermitian on the real
line then thereis a self-adjoint minimal p-realization for W()), i.e. there exist hermitian
A; and A; and a matrix B such that

(4.1 W(\) = B*(0\AL — A) 1B

isaminimal p-realization.

PrOOF. Itisclear that in the decomposition (2.1), Wi (A\) and Wx(A\) will be hermitian
ontheredl lineif and only if W(\) hasthis property. Then Theorem11.3.1 of [4] showsthat
there are minimal realizations (2.2) and (2.4) with N nilpotent, and unique nonsingular
hermitian matrixes H; and H, such that

(4.2 A =H;AHY, B =CH,
(4.3 N* = H,NH;:,  F*=EH;L

Writing H = diag[H1, H2] and using Lemma 2.3 we obtain the minimal p-realization

(4.4) W) =[C E][MEA ANO—I}lm'
= [B F*]PHllsAHll ANHglo—Hzl}l{E}'

It follows from (4.2) and (4.3) that AH* and NH ! are hermitian and so (4.4) has the
symmetry required. L]

Note that Wimmer also provesin [11] that a hermitian minimal p-realization of the
form (4.1) is unique up to a natural congruence transformation.
Theorem 1.1 is now readily proved. Let

(4.5) W(\) = COAL — A) !B
be an arbitrary minimal p-realization and
(4.6) W) =E'(A\S — S)E

be a self-adjoint minimal p-realization. Define Hy = (A\oS; — $) ! wherethereal \q is
chosen so that the inverse exists. Then A0S — & is self-adjoint with respect to Hg. To
seethis, write

St = SiHoHp ! = SiHo(AoS1 — ) = MoSiHoSE — SiHeS.
Since § and AoS;HoS; are hermitian, sois SHeS, = S{HoS, as required.
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Now Lemma 2.4 shows that there exist nonsingular X and Y such that
M — A = YIS — X
It iseasily verified that \A; — Ay is self-adjoint with respect to Y*HpY. n
A conversefor Theorem 1.11s:

THEOREM 4.2. Let AA; — A; be an n x n H-selfadjoint pencil and pA; — A, be
nonsingular where i, € R. Let B be an n x m matrix and define C = B*H(uA1 — A).
Then the function

W(\) = CAAL — Ay) 1B

is hermitian on thereal line.
Proor. Define T = (uA; — A5)H sothat C = B*T* and
W(A) = B T* (\AL — Ap) "B = B* (AA(T) ™ — AZ(T*)—l)’ls.

Now verify that TA; and TA, (and hence Aq(T*) ™2, Ax(T*)~1) are hermitian.

ExampLE 3. The function W(\) of Example 2 is hermitian on the rea line. The
regular pencil of (3.3) is H-selfadjoint where

[eoNeNel
[eoNeoN e}
O OOoO
O, OO

5. Rational functionshermitian on theunit circle. The property W(\)* = W()T*l)
ensures that the poles of W()\) are located in the complex plane symmetrically with
respect to the unit circle. This appliesalso to the pair of points 0 and co. Furthermore, if
there are poles at these two points then, by definition, they will have the same algebraic
multiplicities, say p.

Now our construction of minimal p-realizations shows that when p > 0 the function
(M1 — A2)™! has pole multiplicities p(co) > p and p(0) = p (see the discussion of
Section 3). However, if \A; — A, is an H-unitary pencil the pole multiplicities of
(AL — Az)*l_at zero and infinity must agree (Theorem 4.2 of [6]). Conseguently, if
W()* = W(A™1), and W()) has poles at 0 and oo, then the pencil of a minimal p-
realization cannot be H-unitary for any H.

The last statement means that the proof of Theorem 1.2 can be confined to the case
when W(A)* = W(A~1) and W()\) is strictly proper. But this is a relatively well-known
case and thereis arealization

(5.1) W(\) = C(\l — A)1B.
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and a nonsingular hermitian H for which A*HA = H and C = iB*HA (see the argument
of Section 6.6 of [7], for example). In particular, the pencil Al — A is H-unitary. This
completesthe proof of Theorem 1.2.

ExAMPLE 4. Noticethat the function W(}) = A + A~1 of Example 1 hasthe property
that W()\)* = W(A1). An easy direct computation verifiesthat the pencil of the minimal
p-realization (3.2) is not H-unitary for any H.

EXAMPLE 5. The function W(X) =i\ /() +i)? is strictly proper, is hermitian on the
unit circle, and hasaminimal p-realization

I N+i 1 1710
W) =[—i 0] 0 A+ {1}
_[—-i —17. _[0 17. . . e S A
Thus A = o il (5.1).IfH = 10 it is easily verified that A"HA = H, i.e.

Al — Alis H-unitary.

REMARK. Our analysisin this note has been over the complex numbers. However, it
has been proved in Theorem 7.1 of [6] that if the entries of W()) are real polynomials
(and W()) is hermitian on the unit circle), then the pole multiplicities of W(A) at +1 (if
any) are constrained by the symmetries so that the number of partial pole multiplicities
of even order is even. The partial pole multiplicities of odd order are not constrained.
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