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Abstract. We investigate a connection between the differential of polylogarithms (as considered
byCathelineau) and a¢nitevariantof them.This allows to answer a question raisedbyKontsevich
concerning the construction of functional equations for the ¢nite analogs, using in part the p-adic
version of polylogarithms and recent work of Besser. Kontsevich’s original unpublished note is
supplied (with his kind permission) in an ‘Appendix’ at the end of the paper.
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1. Introduction and Motivation

In an unpublished note [22] (included as an Appendix) Kontsevich de¢ned the
‘1 1

2-logarithm’, associated to a prime p, as the truncated power series of
� logð1 � xÞ (for which we propose the ‘truncated’ letter », pronounced ‘sterling’)
as a function from Z=p to Z=p:

»1ðxÞ ¼ »ðpÞ
1 ðxÞ ¼

Xp�1

k¼1

xk

k
ðmod pÞ:

For reasons which become apparent below we refer to it as the ¢nite 1-logarithm.
Kontsevich observed that it satis¢es a functional equation which is known in the
literature as the fundamental equation of information theory (see [1]), and provided
a cohomological interpretation of the equation.

Cathelineau [8] was led to the same equation by considering an ‘in¢nitesimal’
version of a one-valued cousin of the dilogarithm function which is de¢ned over
C. He had encountered the fundamental equation of information theory already
in [6] where, motivated by questions arising from Hilbert’s third problem, he
deduced an in¢nitesimal version of the famous Bloch^Suslin complex (which
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calculates certain algebraic K-groups of a ¢eld). Furthermore, he provided a
homological interpretation of the equation. Cathelineau extended his results to
in¢nitesimal versions of higher polylogarithms, and in particularCby mimicking
Goncharov’s setup [19] which generalizes the Bloch^Suslin complexCdeduced an
in¢nitesimal analogue of Goncharov’s complexes. In the process, he produced
the generic functional equation for the in¢nitesimal trilogarithm which contains
22 terms in three variables.

Kontsevich had asked explicitly in [22] for functional equations similar to the
fundamental equation of information theory for the next case, i.e. for the case
of the ¢nite dilogarithm »2ðxÞ ¼

Pp�1
k¼1 x

k=k2. Guided by the analogy between ¢nite
1-logarithm and the in¢nitesimal dilogarithm, it was found that Cathelineau’s
equation for the in¢nitesimal trilogarithm is also satis¢ed by »2 and provides an
answer to Kontsevich’s question. Furthermore, »2 is characterized by the latter
equation (actually, it is already characterized by certain specializations).

In fact we get a stronger statement: each of the functional equations for the
in¢nitesimal n-logarithm in this paper;and this includes the distribution formulas
for any n;has been proved for the ¢nite ðn � 1Þ-logarithm (whose de¢nition should
be clear by the above).

What is more, there is a whole machinery to obtain this type of functional
equations: on the one hand, Cathelineau had given a tangential procedure
for elements in Z½F � (for certain ¢elds F ) which is compatible with the passage
from functional equations for the dilogarithm to equations for the in¢nitesimal
dilogarithm. It turns out (see Section 6) that the same is true for higher
polylogarithms, and we will show how we can get a functional equation for
an in¢nitesimal n-logarithm by ‘taking the derivative’ of a functional equation
for the classical n-logarithm relatively to an absolute derivation over F . On
the other hand, since p-adic polylogarithms in the sense of Coleman [10] satisfy
the same functional equations as the classical ones by work of Wojtkowiak [34]
(for a more precise statement cf. Section 7), one arrives via Cathelineau’s
tangential procedure (proved by him in characteristic 0) at its p-adic equivalent
and one could hope that there is a version of p-adic polylogarithms whose
appropriate differential reduces to the ¢nite polylogarithms. This hope (vaguely
anticipated in [14]) has been made precise by Kontsevich (private
communication) and was subsequently proved (in a slightly modi¢ed form)
by Besser [2]. Combining the above, we obtain a recipe for deducing functional
equations for »n�1 from functional equations for the n-logarithm, and thus
we get analogues of distribution relations for each n and further ‘nontrivial’
ones at least up to n ¼ 7 (cf. [37], [17]).

The properties stated motivate the terminology of ‘poly(ana)logs’ for the different
analogues of polylogs. To help the reader understand the interdependencies between
the notions already discussed, we give the following picture, which can serve as a
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guideline for the paper:

The present paper investigates the basic properties of the in¢nitesimal version of
polylogarithms, including the p-adic ones, and their relationship with the ¢nite
polylogarithms and also with the classical polylogarithms via the ‘derivation map’
(Section 6). In particular, the answer to Kontsevich’s question can be found in
Section 4 (Theorem 5.12), together with a proof of the unicity of »2
(Theorem 5.23). The sequel paper [15] exhibits interrelationships among the poly-
logarithmic groups and also among their in¢nitesimal versions, introduces ¢nite
versions of the so-called ‘multiple polylogarithms’ (cf., e.g., [21]) and in particular
some multiplicative structure related to them: it turns out that the proofs of the
identities for the ¢nite ¢eld case are far from trivial, and especially the most con-
ceptual one found for Cathelineau’s 22-term equation involves an identity expressing
»1ðaÞ»1ðbÞ in terms of »2 only. The special case of a ¼ b in the latter product is an
identity found by Mirimanoff which is crucial for proving his criteria for Fermat’s
last theoremCthe ¢nite polylogarithms have appeared in the literature prominently
in the guise of ‘Mirimanoff polynomials’ (cf. Ribenboim’s 13 Lectures [27]). Others
of Mirimanoff’s identities can be reinterpreted in terms of functional equations
of ¢nite polylogarithms (actually, ‘multiple polylogarithms’) which might nurture
the hope that further knowledge concerning the latter could provide more obstacles
for a solution of FLT to exist (but this may well turn out to be a too pollyanna*
attitude) . . .

The organisation of the present work is as follows:

*Pollyanna.The name of the heroine of stories written by Eleanor Hodgman Porter (1868^
1920), American children’s author, used with allusion to her skill at the ‘glad game’of finding
cause for happiness in the most disastrous situations; onewho is unduly optimistic orachieves hap-
piness through self-delusion. [Oxford English Dictionary 2].
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Part I is dedicated to the introduction of classical and in¢nitesimal polylogarithms
(in characteristic 0) and their associated functional equations and groups. In par-
ticular we re-introduce several notions of Cathelineau [6, 8] and give complementary
properties.

Part II introduces the ¢nite polylogs, the functional equations that they satisfy and
give their characterizations (Section 5). We also introduce in Section 6 the con-
struction of the ‘derivation map’ and show that functional equations for classical
polylogs give rise to functional equations for in¢nitesimal polylogs. The last section
of this part (Section 7) introduces the p-adic methods, and shows
(Corollary 7.12), via Besser’s result, that functional equations for in¢nitesimal p-adic
polylogs produce functional equations for ¢nite polylogs (under mild assumptions).

Finally, the main proofs of Part II are given in Part III.
The paper ends with a reproduction of the note of Kontsevich [22], originally

written for a private booklet dedicated to Friedrich Hirzebruch on the occasion
of his ‘Emeritierung’ (retirement). We are grateful to him for letting us include
it as an appendix.

PART I: PRELIMINARY BACKGROUND

2. De¢nitions of Polylogarithms and their Analogues (in Characteristic 0)

In the following we will recall some standard, and some less standard, facts about
polylogarithms and their functional equations. The main references will be Zagier
[36] and Goncharov [20] (for the classical case) as well as Cathelineau [8] (for
the in¢nitesimal case).

2.1. CLASSICAL AND ONE-VALUED POLYLOGARITHMS

Let nX 1 , and Dn:C ! Rðn � 1Þ be the Bloch/Wigner/Ramakrishnan/Zagier/
Wojtkowiak function [8, 20, 33, 36], or modi¢ed nth polylogarithm, de¢ned by

DnðzÞ ¼ <n

Xn�1

k¼0

2kBk

k!
logkjzjLin�kðzÞ

 !
;

where <n denotesRe or i Im, and RðnÞ ¼ R or iR , depending on whether n is even
or odd. The Bk are the Bernoulli numbers (B0 ¼ 1, B1 ¼ � 1

2, B2 ¼ 1
6, B3 ¼ 0, . . .),

and Lim denotes the classical m-logarithm

LimðzÞ ¼
X1
n¼1

zn

nm
; jzj < 1;

which can be analytically continued to the cut plane C � ½1;1Þ [36]. For example,
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we have,

D1ðzÞ ¼ � log j1 � zj;

D2ðzÞ ¼ i Im
�
Li2ðzÞ þ logð1 � zÞ log jzj

�
;

D3ðzÞ ¼ Re
�
Li3ðzÞ � log jzjLi2ðzÞ � 1

3 log
2
jzj logð1 � zÞ

�
:

Remark 2.1. (1) The virtue of these modi¢cations of classical polylogarithms lies in
the fact that they are one-valued functions on the whole complex plane (at the points
0 and 1 they are de¢ned by continuity)Cas opposed to the multi-valued classical
polylogarithm functionsCand that they satisfy ‘clean’ functional equations (i.e.
without lower order terms such as products of polylogarithms of lower degrees).

(2) Instead of the above Dn there is also the closely related real-valued function Pn

(originally introduced by Zagier [36]) widely used, and also denoted Ln, e.g. [19]. It
differs from Dn only by a possible factor of i.

(3) Polylogarithms of a real variable. In a similar manner one can de¢ne
real-valued functions as given by Zagier [36] (eq. (31), p. 412), cf. also Lewin [25]
(eq. (16), p. 7), which could be called Rogers polylogarithms in view of Rogers’s
investigations in the case n ¼ 2 [28]: for jxjW 1, they are de¢ned by

LnðxÞ ¼
Xn�1

j¼0

ð� log jxjÞj

j!
Lin�jðxÞ þ

ð� log jxjÞn�1

n!
log j1 � xj;

and for jxj > 1 via the inversion relation

Ln
1
x

� �
¼ ð�1Þn�1LnðxÞ:

2.2. INFINITESIMAL POLYLOGARITHMS

We mainly follow the presentation in Cathelineau [8]. Differentiating the functions
Dn gives (see [8], p. 1328)

@

@z
DnðzÞ ¼ �

Xn�1

k¼1

2k�1Bk

k!
logk�1

jzj
z

Dn�kðzÞ þ
2n�2Bn�1

ðn � 1Þ!
logn�1

jzj
1 � z

;

and

@

@�zz
DnðzÞ ¼ ð�1Þn�1 @

@z
DnðzÞ:

ON POLY(ANA)LOGS I 165

https://doi.org/10.1023/A:1013757217319 Published online by Cambridge University Press

https://doi.org/10.1023/A:1013757217319


Finally we can deduce the expression for dDnðzÞ

dDnðzÞ ¼
@

@z
DnðzÞ dz þ

@

@�zz
DnðzÞ d�zz

¼ �
Xn�1

k¼1

2kBk

k!
logk�1

jzj Dn�kðzÞUkðzÞ
� �

�

�
2n�1Bn�1

ðn � 1Þ!
logn�1

jzjUn�1ð1 � zÞ:

If k is even : UkðzÞ ¼ d logjzj , and if k is odd : UkðzÞ ¼ di argðzÞ . The main examples
are

dD1ðzÞ ¼ �d log j1 � zj;

dD2ðzÞ ¼ � log j1 � zj di argðzÞ þ log jzj di argð1 � zÞ;

dD3ðzÞ ¼ D2ðzÞdi argðzÞ þ 1
3 log jzj

�
log j1 � zj d log jzj � log jzj d log j1 � zj

�
Remark 2.2. Goncharov [19] (Prop. 1.18) had deduced a slightly different, but

equivalent, formula earlier (the terms which seem a priori differentChe wrote
d logjzj instead of d argðzÞCturn out to be multiplied by a Bernoulli number Bk

which is zero since k is odd).

3. Groups Related to Polylogarithms

In the following, F denotes a ¢eld, and we abbreviate F �� ¼ F � f0; 1g. We can think
of it as a doubly punctured af¢ne line over F .

3.1. THE SCISSORS CONGRUENCE GROUP

We de¢ne the scissors congruence group pðF Þ as the quotient of Z½F ��� by the
subgroup generated by the elements

a½ � � b½ � þ
b
a

	 

�

1 � a�1

1 � b�1

	 

þ

1 � a
1 � b

	 

;

whenever such an expression makes sense. The relation is the famous ¢ve term
equation for the dilogarithm (¢rst stated by Abel, cf. [23]). This group, which
has a geometric origin (see for instance [11]), captures the algebraic properties
of the dilogarithm. More precisely, one has

PROPOSITION 3.1. If F � C, then the dilogarithm D2 is de¢ned on pðF Þ.
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Suslin’s de¢nition of the Bloch group of a ¢eld is given by the following exact
sequence (see [30])

0 ! BðF Þ ! pðF Þ !
l

ðF� �Z F�Þs ! KM
2 ðF Þ ! 0; ð3:1Þ

where KM
2 ðF Þ is the Milnor K2 of the ¢eld F (see [29], chapter 4), ðF� �Z F�Þs is the

quotient of F� �Z F� by the subgroup generated by the elements of the kind
x � y þ y � x. The map l is then de¢ned by lð½a�Þ ¼ a � ð1 � aÞ and the Bloch group
of F is de¢ned as the kernel of this map.

Remark 3.2. (1) In [11], Dupont and Sah have studied in detail the scissors congru-
ence group and also its connection to the dilogarithm.

(2) If F is an in¢nite ¢eld, the precise relationship between K3ðF Þ and BðF Þ is
described by Suslin in [30], and rationally we have K3ðF ÞQ ffi BðF ÞQ which gives
a description of K3ðF ÞQ in terms of generators and relations.

(3) Weibel [32] has computed the group BðF Þ if F is a ¢nite ¢eld and has shown that
it has the same relationship to K3 as in the case of in¢nite ¢elds.

(4) The original de¢nition of Bloch [4] (Lecture 6, p. 59) is given by the following
exact sequence

0 ! BðF Þ ! AðF Þ !
l
F� �Z F� ! K2ðF Þ ! 0;

where AðF Þ is just the group Z½F ���. Notice that he also generalized the de¢nition to
rings in order to prove some rigidity property [4] (pp. 62^68). Moreover, he obtained
a map between BðF Þ and K ind

3 ðF Þ=TorZ1 ðF�;F�Þ for any algebraically closed ¢eld F
[4] (pp. 71^72). (Here, K ind

3 ðF Þ denotes the quotient of K3ðF Þ by the image of
KM

3 ðF Þ in K3ðF Þ.) Later, Suslin [30] showed that we have an analogous map with
BðF Þ and that, modulo 2-torsion, this map is an isomorphism.

(5) In fact the exact sequence (3.1) holds also for ‘rings with many units’, such as
semilocal rings with in¢nite residue ¢elds (this is a consequence of results in [12]).

3.2. POLYLOGARITHMIC GROUPS AND GONCHAROV COMPLEXES

Zagier has generalized in [36] (‰8) the construction of the Bloch group of a ¢eld F to
higher n and de¢ned higher Bloch groups, on whichCfor number ¢elds FCthe cor-
responding polylogarithm functions Dn are de¢ned. Goncharov [19] found a much
more conceptual approach which enabled him to de¢ne very similar higher Bloch
groups as cohomology groups of some ‘motivic’ complexes. Both authors de¢ne
the groups via an inductive procedure, but it should be emphasized that the pro-
cedures are different, although closely related, and that it is not known whether
the resulting groups coincide rationally (it is known to hold assuming certain stan-
dard conjectures).

Here we adopt Goncharov’s framework. Let P1
ðF Þ be the projective line over F .

The construction of an intermediate group BnðF Þ, descriptively called
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polylogarithmic group in [7], proceeds by induction on nX 2. We ¢rst need to con-
struct certain subgroups AnðF Þ and RnðF Þ of Z½P1

ðF Þ�. Suppose that RnðF Þ is
de¢ned, then we set

BnðF Þ ¼ Z½P1
ðF Þ�=RnðF Þ:

De¢ne the morphisms

d2 ¼ d2;F : Z½P1
ðF Þ� !

V2
Z F�

ð2-torsionÞ
;

½x� 7!
0; if x ¼ 0; 1;1;

ð1 � xÞ ^ x; otherwise;

�
and for nX 3

dn ¼ dn;F :Z½P1
ðF Þ� ! Bn�1ðF Þ � F�;

½x� 7!
0; if x ¼ 0; 1;1;

fxgn�1 � x; otherwise;

�
where fxgn denotes the class of x in BnðF Þ.

Although it is not used in the inductive de¢nition, let us de¢ne R1ðF Þ to be the
group generated by ½1� and ½x þ y � xy� � ½x� � ½y�, where x; y 2 Fnf1g. Then
B1ðF Þ ffi F�.

For nX 2, we de¢ne AnðF Þ as the kernel of dn and RnðF Þ as the subgroup of
Z½P1

ðF Þ� spanned by ½0�, ½1� and the elements
P

nið½fið0Þ� � ½fið1Þ�Þ, where the fi
are rational fractions in the indeterminate T , such that

P
ni½fi� 2 AnðF ðT ÞÞ.

Goncharov proved the following basic

LEMMA 3.3. For all nX 2, the group RnðF Þ is contained in the kernel of dn.
Proof. See [19] (Lemma 1.16, p. 221) and also [8] (Proposition 1, p. 1330). &

We then have a (cochain) complex, due to Goncharov [19, 20], with the group
BnðF Þ put in degree 1,

BnðF Þ !
d

Bn�1ðF Þ � F� !
d

Bn�2ðF Þ �
V2

F�!
d
���

� � � !
d

B2ðF Þ �
Vn�2 F� !

d
Vn F�

ð2-torsionÞ
;

with

dðfxgn�i � y1 ^ � � � ^ yiÞ ¼ fxgn�i�1 � x ^ y1 ^ � � � ^ yi ; i ¼ 0; . . . ; n � 3;

and

dðfxg2 � y1 ^ � � � ^ yn�2Þ ¼ ð1 � xÞ ^ x ^ y1 ^ � � � ^ yn�2:

Goncharov’s higher Bloch groups [19] arise in this context as the ¢rst cohomology
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group of the above complex, namely

BnðF Þ ¼
AnðF Þ

RnðF Þ
:

Note the typographical difference: one has BnðF Þ � BnðF Þ. (There are in the litera-
ture several similar de¢nitions of the ‘set of relations’ RnðF Þ, denoted also CnðF Þ

in [36].)

Remark 3.4. (1) According to Zagier’s main conjecture, the groups BnðF Þ in the
case of a number ¢eld F are presumably rationally isomorphic to K2n�1ðF ÞQ. Using
his complex above, Goncharov was able to formulate a corresponding conjecture
for any ¢eld, which moreover involves the full g-¢ltration of the K-theory of F .

(2) A corollary of Zagier’s conjecture is the expressibility of the Dedekind zeta
function zF ðnÞ for the number ¢eld F at integers nX 2 in terms of Dn. One of
the major achievements concerning the above complexes was Goncharov’s proof
[19] of this corollary for n ¼ 3, in the course of which he has given an explicit
set of relations for (some version of) R3ðF Þ which enabled him to relate B3ðF Þ

to (some graded piece of) the algebraic K-group K5ðF Þ . It is not known, however,
whether his relations generate all functional equations for the 3-logarithm.

3.2.1. Functions on the Polylogarithmic Groups

The following proposition relates functional equations for polylogarithms and
relations in BnðF Þ. (It is essentially the content of [36], Prop. 3, in the form given
in [19].)

CRITERION 3.5. The function Dn vanishes on RnðF Þ, assuming that F � C.

Let us end this subsection with a characterization of functions which actually can
be de¢ned on the corresponding BnðF Þ. For nW 3, one knows from work of Bloch
and Goncharov, respectively, a characterization of the measurable functions which
are de¢ned on BnðCÞ :

PROPOSITION 3.6 (Characterization of D1 , D2 and D3 ).

(1) The function D1ðzÞ ¼ � log j1 � zj is (up to a constant factor) the only measurable
function de¢ned on B1ðCÞ .

(2) The function D2 is (up to a constant factor) the only measurable function: C ! R

which vanishes on R2ðCÞ and thus de¢nes a morphism on B2ðCÞ .
(3) The space of measurable functions:C ! R which vanish on R3ðCÞ and thus de¢ne

a morphism on B3ðCÞ , is two-dimensional, spanned by D3 and z 7! log jzj D2ðzÞ.

Proof. (1) is classical, (2) has been proved by Bloch [4], and (3) was given by
Goncharov [19]. &
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3.3. THE INFINITESIMAL POLYLOGARITHMIC GROUPS

Cathelineau [8] has given analogues of the Goncharov complexes for in¢nitesimal
polylogarithms whose cohomology is expected to be computed by some graded piece
of Hochschild homology (the latter can be viewed in a sense as arising from applying
a certain tangent functor to algebraic K-theory).

One de¢nes the group b2ðF Þ , for F any in¢nite ¢eld, as follows

b2ðF Þ ¼
F ½F ���

r2ðF Þ
;

where r2ðF Þ is the kernel of the map

F ½F ��� ! Fþ � F�; ½a� 7! a � a þ ð1 � aÞ � ð1 � aÞ:

If D2 denotes the Bloch^Wigner dilogarithm function, as de¢ned in (2.1), and if
F � C , then gdD2dD2 , a somewhat modi¢ed differential de¢ned below, is zero on r2ðF Þ.

For nX 3, one de¢nes inductively

bnðF Þ ¼
F ½F ���

rnðF Þ
;

where rnðF Þ is the kernel of the map

@n ¼ @n;F :F ½F ��� ! ðbn�1ðF Þ � F�Þ � ðBn�1ðF Þ � F Þ;

½a� 7! hain�1 � a þ fagn�1 � ð1 � aÞ;

and where haik and fagk denote the class of ½a� in bkðF Þ and BkðF Þ, respectively.
The F -vector spaces bnðF Þ can be viewed as in¢nitesimal analogues of the groups

BnðF Þ. The previous de¢nition still makes sense in the case of a ¢nite ¢eld F ,
but it would give b2ðF Þ ¼ 0. Yet there is also a presentation of b2ðF Þ in terms of
generators and relations given in [6] (Section 1, pp. 52^53). As we are mainly
interested in the structural properties of in¢nitesimal polylogarithms, we introduce
the following group.

DEFINITION 3.7. Let F be an arbitrary ¢eld. The group b2ðF Þ is de¢ned as the
F -vector space generated by symbols hai, a 2 F ��, subject to the relation

hai � hbi þ a
b
a

� �
þ ð1 � aÞ

1 � b
1 � a

� �
¼ 0;

for a 6¼ b.

We should notice that we always have a natural map b2ðF Þ ! b2ðF Þ. In charac-
teristic 0, using [8] (Section 4.2, pp. 1336^1337), we have

PROPOSITION 3.8. If F is a ¢eld of characteristic 0, then the groups b2ðF Þ and b2ðF Þ

are isomorphic.
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Remark 3.9. (1) It is not obvious that for a ¢nite ¢eld F of characteristic p we have
b2ðF Þ 6¼ 0. It will be proven later that this is actually the case. As a counterpoint, if F
is a ¢nite ¢eld or, more generally, a perfect ¢eld of characteristic p 6¼ 2, we then have
b2ðF Þ ¼ 0 (see [6] (The¤ ore' me 1, p. 57)).

(2) The in¢nitesimal analogue (in the sense of Cathelineau) of the above higher
Bloch group BnðF Þ would be ðker @nÞ=rnðF Þ which turns out to be 0 for n ¼ 2; 3,
if F is any ¢eld of characteristic 0. In fact we can show that the analogue of the
Bloch group B2ðF Þ is given by the second Harrison homology group [13], proving
that it is zero for any smooth Q-algebra. The results and problems described in [13,
9] illustrate the (presumably) close connection between in¢nitesimal Bloch groups
and smoothness properties.

OBSERVATION 3.10 (Possible extension of generators in characteristic 0).

(1) If we allow the symbols h1in and h0in in bnðF Þ then, in view of the distribution
relation (4.9) below, we necessarily have h1in ¼ h0in ¼ 0 if n ¼ 2, 3.

(2) We have h�1i2kþ1 ¼ 0 by virtue of the inversion relation (4.8) below.

3.3.1. Functions on In¢nitesimal Polylogarithmic Groups

The following proposition from [8] relates, for F ¼ C, functional equations for the
in¢nitesimal polylogarithms and relations in the corresponding groups.

PROPOSITION 3.11 ([8]). For nX 2, the morphism of R-vector spaces

ddDndDn:C½C
��

��!Rðn � 1Þ;

b½a� 7! dDnðaÞðað1 � aÞbÞ;

is zero on rnðCÞ, hence we get a morphism

gdDndDn: bnðCÞ�!Rðn � 1Þ:

Remark 3.12. The de¢nition is to be understood as follows: consider C as a
2-dimensional R-vector space with basis ð1; iÞ and with multiplication induced
by the one in C. Then Dn is seen as a map from R2

! R, dDnðaÞ is given by
the Jacobian matrix in a (i.e., a row matrix of length 2). Identifying að1 � aÞb as
a column vector relative to the basis ð1; iÞ, the expression dDnðaÞðað1 � aÞbÞ is just
the evaluation of the linear map dDnðaÞ in að1 � aÞb (i.e. the product of a row matrix
of length 2 by a column vector of the same size).

PROPOSITION 3.13 (Characterization of dD2). The function dD2, restricted toR, is
(up to a constant factor) the only continuous function G : R��

! Rwhich satis¢es the
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equation

að1 � aÞGðaÞ � bð1 � bÞGðbÞ þ
bða � bÞ

a
G

b
a

� �
þ

ð1 � bÞða � bÞ
1 � a

G
1 � b
1 � a

� �
¼ 0:

whenever the terms are de¢ned.
Proof. De¢ne

HðaÞ ¼ að1 � aÞGðaÞ; a 2 R��; and Hð0Þ ¼ Hð1Þ ¼ 0;

then the above functional equation is reduced to the equation from 3.7, for which it is
well-known (cf., e.g., [22]) that only the differentiable function

HðxÞ ¼ �x log jxj � ð1 � xÞ log j1 � xj

(up to a multiplicative constant) satis¢es the latter equation. &

Remark 3.14. Acze¤ l and Dhombres [1] (Section 5.4, pp. 66^69) have shown that if g
is a real function locally integrable on �0; 1½ and if, moreover, g ful¢lls the Funda-
mental Equation of Information Theory, namely

gðxÞ þ ð1 � xÞg
y

1 � x

� �
� gðyÞ � ð1 � yÞg

x
1 � y

� �
¼ 0;

then there exists c 2 R such that g ¼ cH, where H: �0; 1½! R, is the function
HðxÞ ¼ �x logðxÞ � ð1 � xÞ logð1 � xÞ. For more detail on this topic see [16].

4. Functional Equations

In view of Criterion 3.5, we propose the following de¢nition:

DEFINITION 4.1. A functional equation of the n-logarithm, resp. in¢nitesimal
n-logarithm, over the ¢eld F is an element in RnðF Þ resp. in rnðF Þ (cf. Subsection 3.2).

Let F ¼ Kðt1; . . . ; trÞ and K 0 be an extension of K. We will say that
t1 ¼ z1; . . . ; tr ¼ zr, with zi 2 K 0, is an admissible K 0-specialisation for a functional
equation xðt1; . . . ; trÞ 2 RnðF Þ (resp. rnðF Þ), if xðz1; . . . ; zrÞ is well de¢ned as an
element of kerðdn;K 0 Þ (resp. kerð@n;K 0 Þ).

Remark 4.2. The restriction in the de¢nition of a functional equation for the
n-logarithm to rational arguments (in the de¢nition of RnðF Þ), as opposed to
algebraic arguments, is probably not a serious one, since the corresponding
polylogarithmic groups are expected to be rationally isomorphic (cf., e.g., [19],
p. 225, Conjecture 1.20). The above de¢nition has the advantage of being more
directly accessible to calculations.
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4.1. FUNCTIONAL EQUATIONS FOR CLASSICAL POLYLOGARITHMS

We ¢rst list the equations which are true for general n: the inversion and distribution
relations.

PROPOSITION 4.3 (Functional equations for Dn, any n).

(1) The inversion relation

1
a

� �
n
¼ ð�1Þn�1

fagn:

(2) The distribution relation

amf gn ¼ mn�1
X
zm¼1

zaf gn

holds in BnðCÞ for m 2 Z and reduces to the inversion relation for m ¼ �1.

Remark 4.4. There is another symmetry coming from the complex conjugation:

DnðzÞ ¼ ð�1Þn�1
DnðzÞ:

Note that this does not come from a functional equation in the above sense, since the
corresponding relation fzgn þ ð�1Þnfzgn is in general not zero in BnðCÞ.

4.1.1. The Case n ¼ 2

The following functional equations are well-known for the dilogarithm: apart from
the distribution relation above it satis¢es a 2-term relation relating the arguments
x and 1 � x, while the most important equation (which actually characterizes
D2) is the ¢ve term relation which allows a formulation as a 3-cocycle equation.

PROPOSITION 4.5 (Functional equations for D2)
(1) A 2-term relation:

fxg2 ¼ �f1 � xg2: ð4:1Þ

(2) The 5-term relation.We give two di¡erent formulations:
(a) (as a cocycle relation in ¢ve variables): denote

crða; b; c; dÞ ¼
a � c
a � d

b � d
b � c

:
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Then

X5
i¼1

ð�1Þifcrðx1; . . . ; x̂ixi; . . . ; x5Þg2 ¼ 0: ð4:2Þ

(b) in two variables (using the arguments as in Suslin’s de¢nition of the Bloch
group; this equation is a specialization of, and yet equivalent to, (a), putting
ðx1; . . . ; x5Þ ¼ ð1; 0; 1; a; bÞ):

af g2 � bf g2 þ
b
a

� �
2
�

1 � a�1

1 � b�1

� �
2
þ

1 � a
1 � b

� �
2
¼ 0: ð4:3Þ

4.1.2. The Case n ¼ 3

For the trilogarithm one has, in addition to the inversion and distribution relations,
an equation with 3ðþ1Þ terms (in one variable), the well-known Kummer^Spence
equation with 9ðþ1Þ terms (in two variables) and, most important, Goncharov’s
equation with 22ðþ1Þ terms (in three variables); here the ‘þ1’ refers to some constant
term.

PROPOSITION 4.6 (Functional equations for D3).

(1) There is a 3-term relation

f1 � xg3 þ fxg3 þ 1 �
1
x

� �
3
¼ f1g3: ð4:4Þ

(2) The Kummer^Spence equation:

að1 � bÞ
bð1 � aÞ

� �
3
þ

ð1 � aÞa
bð1 � bÞ

� �
3
þ

ab
ð1 � bÞð1 � aÞ

� �
3
�

� 2
1 � a
1 � b

� �
3
�2

b
b � 1

� �
3
�2

a
a � 1

n o
3
�

� 2
b
a

� �
3
�2

a
1 � b

n o
3
�2

1 � a
b

� �
3
þ2f1g3 ¼ 0: ð4:5Þ

An equivalent version is given by

xð1 � yÞ2

yð1 � xÞ2

( )
3

þfxyg3 þ
x
y

� �
3
�
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� 2
yð1 � xÞ
y � 1

� �
3
�2

1 � x
1 � y

� �
3
�2

yð1 � xÞ
xð1 � yÞ

� �
3
�

� 2
x � 1

xð1 � yÞ

� �
3
�2fxg3 � 2fyg3 þ 2f1g3 ¼ 0: ð4:6Þ

(3) Goncharov’s equation: Set

f ða; b; cÞ ¼ fag3 þ
bð1 � aÞ
b � 1

� �
3
þ

að1 � bÞ
a � 1

� �
3
þ

1 � a
1 � abc

� �
3
þ

þ
cbð1 � aÞ
1 � abc

� �
3
�fabg3 � �

að1 � bÞð1 � cÞ
ð1 � aÞð1 � abcÞ

� �
3
: ð4:7Þ

Then

f ða; b; cÞ þ f ðb; c; aÞ þ f ðc; a; bÞ þ fabcg3 ¼ 3f1g3:

4.1.3. The case n > 3

For general n, there are only the inversion relation and the distribution relations
known (they are the so-called trivial ones), while the existence of non-trivial
equations has only been established up to nW 7 (cf. [17, 18]).

4.2. FUNCTIONAL EQUATIONS FOR INFINITESIMAL POLYLOGARITHMS

Most of the functional equations for dDn stated in this section can be viewed as
analogues of equations for the corresponding Dn. The main example which cannot
be interpreted in this way (so far) is Cathelineau’s equation for dD3.

We ¢rst list the equations which are true for general n: the analogues of the
inversion and distribution relations.

PROPOSITION 4.7 (Functional equations for dDn, any n).

(1) The inversion relation

a
1
a

� �
n
¼ ð�1Þn�1

hain: ð4:8Þ

(2) The distribution relation

hamin ¼ mn�2
X
zm¼1

1 � am

1 � za
hzain ð4:9Þ
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holds in bnðCÞ for m 2 Z and reduces to the inversion relation for m ¼ �1.When
m ¼ 2, we call this equation the duplication formula.

4.2.1. The Case n ¼ 2

The following functional equations are true for the in¢nitesimal dilogarithm:

PROPOSITION 4.8 (Functional equations for dD2).

(1) The 2-term relation.

hxi2 ¼ h1 � xi2: ð4:10Þ

(2) A 6-term relation. Let s 2 F. Then

ð1 � yÞ
x � s
1 � y

� �
2
þy

s
y

� �
2
þhyi2 ð4:11Þ

is symmetric in x and y. Speci¢cally, we have for s ¼ 0 the fundamental equation of
information theory

ð1 � yÞ
x

1 � y

� �
2
�hxi2 ¼ ð1 � xÞ

y
1 � x

D E
2
�hyi2 ð4:12Þ

which is equivalent to Cathelineau’s version, also called 4-term relation,

hai2 � hbi2 þ a
b
a

� �
2
þ ð1 � aÞ

1 � b
1 � a

� �
2
¼ 0: ð4:13Þ

(3) A family of 5-term relations is given by taking linear combinations of the following
two equations in ¢ve variables: denote

crða; b; c; dÞ ¼
a � c
a � d

b � d
b � c

and denomða; b; c; dÞ ¼ ða � dÞðb � cÞ:

Then one has

X5
i¼1

ð�1Þi denomðx1; . . . ;bxixi; . . . ; x5Þhcrðx1; . . . ;bxixi; . . . ; x5Þi2 ¼ 0; ð4:14Þ

and

X5
i¼1

ð�1Þixi denomðx1; . . . ;bxixi; . . . ; x5Þhcrðx1; . . . ;bxixi; . . . ; x5Þi2 ¼ 0: ð4:15Þ
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(4) The same family of 5-term relations can be stated with less parameters in the
arguments:

ðb þ tÞhai2 � ða þ tÞhbi2 þ ð1 þ tÞa
b
a

� �
2
þtð1 � aÞ

1 � b
1 � a

� �
2
þ

þ bð1 � aÞ
að1 � bÞ
bð1 � aÞ

� �
2
¼ 0: ð4:16Þ

Proof. It is a straightforward matter to check that the above elements lie in the
kernel of @2. Nevertheless, we give some interrelationships between the various
equations.

(1) The symmetry of Equation (4.11) in x and y is equivalent to (4.13): We have to
write the following relation

ð1 � yÞ
x � s
1 � y

� �
2
þy

s
y

� �
2
þhyi2

¼ ð1 � xÞ
y � s
1 � x

D E
2
þx

s
x

D E
2
þhxi2

as a sum of 4-term relations.
On the left-hand side of the equation we add the 4-term relation in the following

form

�y
s
y

� �
2
�hyi2 þ hsi2 þ ð1 � sÞ

1 � y
1 � s

� �
2
¼ 0;

and we do the same on the right-hand side with y replaced by x. This leaves us with
another form of the 4-term relation

ð1 � yÞ
x � s
1 � y

� �
2
þð1 � sÞ

1 � y
1 � s

� �
2

¼ ð1 � xÞ
y � s
1 � x

D E
2
þð1 � sÞ

1 � x
1 � s

� �
2

(to see this we should replace, in (4.13), x by ðx � sÞ=ð1 � sÞ and y by ðy � sÞ=ð1 � sÞ
and use (4.10)), thereby proving the ¢rst claim.

The equivalence of (4.13) and (4.12) is easily shown using the inversion and the
2-term relation.

(2) The second family of 5-term relations is almost direct to deduce: the combi-
nation given is the sum of t times the 4-term relation (4.13) and its following equiv-
alent formulation

bhai2 � ahbi2 þ a
b
a

� �
2
þ bð1 � aÞ

að1 � bÞ
bð1 � aÞ

� �
2
¼ 0 ð4:17Þ

(replace in (4.13) a and b by their inverses, respectively, then multiply the result by
�ab and ¢nally use the inversion relation on three of the ensuing terms).
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From this, we get a very simple proof of the 5-term relations in cocycle form, i.e.
(4.14) and (4.15): in each of the two versions (4.13) and (4.17) of the 4-term relation
we put a ¼ crðx1; x2; x3; x4Þ and b ¼ crðx1; x2; x3; x5Þ. Introducing for the moment
the notation ck :¼ crðx1; . . . ; bxkxk; . . . ; x5Þ, we can rewrite the two equations in a con-
cise way:

hc5i � hc4i þ c5hc3i þ ð1 � c5Þhc2i ¼ 0;

c4hc5i � c5hc4i þ c5hc3i þ c4ð1 � c5Þhc1i ¼ 0:

Given l 2 Z, there is a linear combination of the two equations such that the
coef¢cient of hc2i (which only occurs in the ¢rst equation) and of hc1i (only occurring
in the second equation) is �xl2ðx1 � x5Þðx3 � x4Þ and xl1ðx2 � x5Þðx3 � x4Þ,
respectively. If, for l ¼ 0 and l ¼ 1, we compute the coef¢cients of the other three
arguments, we obtain exactly the expressions given in the claim.

For example, let us compute the coef¢cient of the ¢rst argument in the case l ¼ 1:
the ¢rst equation is multiplied by

�x2ðx1 � x5Þðx3 � x4Þ
ðx1 � x4Þðx3 � x2Þ
ðx1 � x2Þðx3 � x4Þ

;

and the second by

x1ðx2 � x5Þðx3 � x4Þ
ðx1 � x5Þðx2 � x3Þ
ðx1 � x3Þðx2 � x5Þ

ðx1 � x4Þðx3 � x2Þ
ðx1 � x2Þðx3 � x4Þ

;

so the coef¢cient becomes

�x2ðx1 � x5Þ
ðx1 � x4Þ
ðx1 � x2Þ

ðx3 � x2Þ þ x1ðx2 � x5Þ
ðx1 � x4Þ
ðx1 � x2Þ

ðx3 � x2Þ;

which is equal to x5ðx1 � x4Þðx2 � x3Þ :

Remark 4.9. The generalized version (4.11) of the fundamental equation of infor-
mation theory is equivalent to the one given by both Kontsevich and Cathelineau
(referring to Acze¤ l^Dhombres), as was shown in the proof (part 1) above. In par-
ticular, we do not gain new information for information theory.

4.2.2. The Case n ¼ 3

For the in¢nitesimal trilogarithm one has an equation with three terms (in one
variable), a ‘derived version’ of the Kummer^Spence equation with eight terms
(in two variables) and, most important, Cathelineau’s equation with 22 terms (in
three variables).

The proposition below gives complementary information on b3ðF Þ.
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PROPOSITION 4.10. (Functional equations for dD3).

(1) There is a 3-term relation

h1 � xi3 � hxi3 þ x 1 �
1
x

� �
3
¼ 0: ð4:18Þ

(2) The Kummer^Spence analogue: the F -linear combination

ð1 � bÞb
1 � b � a

ð1 � aÞa
bð1 � bÞ

� �
3
þ

ð1 � bÞð1 � aÞ
1 � b � a

ab
ð1 � bÞð1 � aÞ

� �
3
þ

þ ð1 � bÞ
1 � a
1 � b

� �
3
�ð1 � bÞ

b
b � 1

� �
3
�ð1 � aÞ

a
a � 1

D E
3
�

� a
b
a

� �
3
þ

ða � b � 1Þð1 � bÞ
1 � b � a

a
1 � b

D E
3
�

ða � b þ 1Þb
1 � b � a

1 � a
b

� �
3

ð4:19Þ

vanishes in b3ðF Þ. An equivalent version, denoted KSðx; yÞ, is given by

hxyi3 þ y
x
y

� �
3
�ð1 � yÞ

yð1 � xÞ
y � 1

� �
3
þ

þ ð1 � yÞ
1 � x
1 � y

� �
3
�xð1 � yÞ

yð1 � xÞ
xð1 � yÞ

� �
3
þ

þ xð1 � yÞ
x � 1

xð1 � yÞ

� �
3
�ð1 þ yÞhxi3 � ð1 þ xÞhyi3: ð4:20Þ

Proof. The 3-term equation and (4.19) will follow directly from the equation in the
next proposition. The equivalence of the two Kummer^Spence analogues becomes
evident after applying the change of variables

x ¼
a

1 � b
; y ¼

1 � a
b

;

and multiplying the result by ðbð1 � bÞÞ=ð1 � b � aÞ. &

We can also notice the following formal property, that we will give as

LEMMA 4.11. In b3ðF Þ, the inversion formula is a consequence of the 3-term
equation.

Proof.Add the 3-term equation to its variant where x is replaced by 1 � x. Four of
the terms cancel and the remaining two give the inversion relation. &

Cathelineau has given a 22-term equation which completely describes the set of
relations for the in¢nitesimal polylogarithmic group b3ðF Þ: In order to state it con-
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veniently, we use his notation for a distinguished linear combination of seven terms

½½a; b�� ¼ ðb � aÞtða; bÞ þ
1 � b
1 � a

sðaÞ þ
1 � a
1 � b

sðbÞ; ð4:21Þ

where we have set

tða; bÞ ¼
½a�

1 � a
�

½b�
1 � b

þ
a

a � b
b
a

	 

�
1 � a
b � a

1 � b
1 � a

	 

þ
bð1 � aÞ
b � a

að1 � bÞ
bð1 � aÞ

	 

;

(t arises by taking the 5-term relation (4.3) and multiplying each ½zi� with the
coef¢cient 1=ð1 � ziÞ) and

sðaÞ ¼ a½a� þ ð1 � aÞ½1 � a�:

Then we can state Cathelineau’s 22-term relation as follows:

DEFINITION 4.12. We de¢ne the Cathelineau relation as the formal expression
Jða; b; cÞ in the indeterminates a; b; c as

Jða; b; cÞ ¼ ½½a; c�� � ½½b; c�� þ a
b
a
; c

	 
	 

þ ð1 � aÞ

1 � b
1 � a

; c
	 
	 


:

Remark 4.13. (1) Writing out all the terms, we obtain 22 different arguments:

Jða; b; cÞ ¼ c a½ � � c b½ � þ ða � b þ 1Þ c½ �þ

þ ð1 � cÞ 1 � a½ � � ð1 � cÞ 1 � b½ � þ ðb � aÞ 1 � c½ ��

� a
c
a

h i
þ b

c
b

h i
þ ca

b
a

	 

�

� ð1 � aÞ
1 � c
1 � a

	 

þ ð1 � bÞ

1 � c
1 � b

	 

þ cð1 � aÞ

1 � b
1 � a

	 

þ

þ cð1 � aÞ
að1 � cÞ
cð1 � aÞ

	 

� cð1 � bÞ

bð1 � cÞ
cð1 � bÞ

	 

�

� b
ca
b

h i
� ð1 � bÞ

cð1 � aÞ
1 � b

	 

þ

þ ð1 � cÞa
a � b
a

	 

þ ð1 � cÞð1 � aÞ

b � a
1 � a

	 

�

� ða � bÞ
ð1 � cÞa
a � b

	 

� ðb � aÞ

ð1 � cÞð1 � aÞ
b � a

	 

þ

þ cða � bÞ
ð1 � cÞb
cða � bÞ

	 

þ cðb � aÞ

ð1 � cÞð1 � bÞ
cðb � aÞ

	 

:

(2) When a; b; c are elements of an arbitrary ¢eld F , we will still use the notation
Jða; b; cÞ for the evaluation of J at the speci¢ed values.
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THEOREM 4.14 (Cathelineau, [8], Corollaire 1, p. 1345). Let F be a ¢eld of charac-
teristic zero.

(1) The image of Jða; b; cÞ under the projection F ½F ��� ! b3ðF Þ is zero.
(2) Furthermore, Jða; b; cÞ , together with its specializations to c ¼ a; b; a=b or

ð1 � aÞ=ð1 � bÞ, respectively, and the inversion relation generate the set of relations
which de¢ne b3ðF Þ. Here we understand h1i3 ¼ 0.

Remark 4.15. (1) In the presentation of [8], Corollaire 1, one can replace his
equation 1) coming from ½½a; b�� � ½½b; a�� by the shorter inversion relation (4.8).
(Proof. Add his equation 1) to the same relation where a and b are replaced by
1=a and 1=b and where the result is multiplied by ab.)

(2) The combinations ½½a; c�� þ a½½1=a; c�� and ½½a; c�� � ½½1 � a; c�� give versions of
the Kummer^Spence analogue. Since, e.g., the equation hai2 � h1 � ai2 ¼ 0 results
formally from the 4-term relation (at least up to 2-torsion), we get the
Kummer^Spence analogue directly from Jða; b; cÞ.

(3) By Observation 3.10, one can introduce elements ½a� for a ¼ 0; 1 and set their
image in b3ðF Þ equal to zero. What is more, one can add a formal generator
½1� as well and then formally deduce the 3-term equation (27) by specializing
a ¼ 1 in 1=ðb � 1ÞJða; b; cÞ and one obtains the Kummer^Spence analogue (2) by
specializing a ¼ 0 in ð1 � xÞð1 � yÞJða; ð1 � xÞ�1; ð1 � yÞ�1

Þ, (these specializations
are not allowed in Cathelineau’s context, but will make sense in the ‘¢nite polylog’
case below).

(4) A different way to obtain the Kummer^Spence analogue is to symmetrize,
i.e. to form

Jða; b; cÞ þ Jðb; a; cÞ þ c J a; b;
1
c

� �
þ J b; a;

1
c

� �� �
;

giving the difference KSðc; b=aÞ � KSðc; ð1 � bÞ=ð1 � aÞÞ of two Kummer^Spence
analogues.

(5) Alternatively, one can deduce the Kummer^Spence analogue or the 3-term
relation (nonexplicitly) from Jða; b; cÞ by simply checking that the corresponding
linear combinations lie in the kernel of @3, and then use Cathelineau’s theorem
to deduce that each such combination must be a consequence of Jða; b; cÞ.

(6) In the case of the classical trilogarithm, Goncharov has given a new functional
equation in 22ðþ1Þ terms which presumably generates all functional equations for
D3, i.e., the kernel of d3, but there are (in¢nitely many) functional equations (cf.
[18, 35]) which are not known to be formal consequences of it. Cathelineau’s result
in the in¢nitesimal setting is stronger in the sense that it actually generates the kernel
of @3.

One of the major consequences of Theorem 4.14 is that it allows us to give a gen-
eral de¢nition for b3.
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DEFINITION 4.16. Let F be an arbitrary ¢eld. The group b3ðF Þ is de¢ned as the
F -vector space generated by symbols ½a�, a 2 F , subject to the relations Jða; b; cÞ,
together with its specializations to c ¼ a; b; a=b or ð1 � aÞ=ð1 � bÞ, respectively,
the inversion relation and ½1� ¼ ½0� ¼ 0.

If in b3ðF Þ we introduce elements ½a� for a ¼ 0; 1, we then have, by virtue of (3.10),
a surjective map of F -vector spaces b3ðF Þ ! b3ðF Þ, which is an isomorphism in
characteristic 0. As in the case n ¼ 2, if F is a ¢nite ¢eld of characteristic p,
b3ðF Þ ¼ 0 but it will be shown in Part III that b3ðF Þ 6¼ 0. The groups bnðF Þ, for
n ¼ 2; 3, measure how much the group rnðF Þ deviates from being generated by
the main functional equations of in¢nitesimal polylogarithms.

4.2.3. The Case n > 3

For general n, there are only the inversion relation (4.8) and the distribution relations
(4.9) known. For each functional equation of the corresponding classical polylog,
using the ‘derivation map’ described in Section 6, there is associated a functional
equation (actually many) for the in¢nitesimal polylogarithm. From what has been
stated above for the classical case, this means that at least up to n ¼ 7 there are
non-trivial ones.

PART II: THE RESULTS

5. Finite Versions of Polylogarithms and their Functional Equations

In this section we will study what we can call ¢nite analogs of the polylogarithms and
also the groups bnðF Þ for n ¼ 2; 3 in the case where F is a ¢eld of characteristic p 6¼ 2
(eventually ¢nite). We will show that for n ¼ 2; 3 the ¢nite analogs of the
polylogarithms de¢ne functions on bnðF Þ, showing that surprisingly they behave like
the in¢nitesimal polylogarithms. As for the previous cases, we will show, at least in
low dimension, that these ¢nite polylogs are uniquely characterized by their func-
tional equations.

For the remainder of the paper, let us ¢x an odd prime p. We shall work over an
arbitrary ¢eld F of characteristic p.

5.1. DEFINITION AND FIRST PROPERTIES OF FINITE POLYLOGARITHMS

DEFINITION 5.1. For any ¢eld F of characteristic p, the nth ¢nite polylogarithm or
¢nite n-logarithm is given by the following polynomial in F ½T �:

»nðT Þ ¼
Xp�1

k¼1

Tk

kn
:
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NOTATION 5.2. For the remainder of this paper, we will denote by ~PP the function
associated to the polynomial P.

Remarks 5.3. (1) ‘Extension by periodicity’. If F is of characteristic p, it has Fp as
prime sub¢eld, which is ¢xed by the Frobenius morphism x 7! xp. As a result
we have the ðp � 1Þ�periodicity »nþp�1 ¼ »n, and we need only consider 0 < n < p.

(2) It is important to notice that the functions e»n»n are not identically zero on F .

The following differential equation relates the ¢nite polylogarithms of different
orders (just like in the classical case)

d»nðUÞ ¼ »n�1ðUÞ d logðUÞ; ð1Þ

where we denoted dU=U by d logðUÞ. Extending this formally, it is convenient to
introduce the following notation:

DEFINITION 5.4. Let F be a ¢eld of characteristic p. De¢ne the following
‘Frobeniizing’ map

b»»m:F ½F ��� ! F ;

c½f � 7! cp»mðf Þ:

One observes that, for any c and f in F , the differential operator @=@x acts linearly
on the coef¢cient c of b»»m�c½f �� and, as above, like d log on the generator ½f �:

@

@x
b»»mðc½f �Þ ¼b»»m�1ðc½f �Þ

@

@x
logð f Þ:

OBSERVATION 5.5. (0) For n ¼ 0 we have

»0ðT Þ ¼
T � Tp

1 � T
; ð5:1Þ

and therefore

T»0ð1 � T Þ ¼ �ð1 � T Þ»0ðT Þ: ð5:2Þ

(1) For n ¼ 1, by expanding ð1 � T Þ
p and noticing that

1
p

p
k

� �
¼

1
k

p � 1
k � 1

� �
¼

ð�1Þk�1

k
;

we get the simple (and well-known) formula

»1ðT Þ #
1 � Tp � ð1 � T Þ

p

p
ðmod pÞ:

Note that the term on the right-hand side occurs in the polynomials which de¢ne the
sum of the two Witt vectors ð1; 0; . . . ; 0; . . .Þ and ð�T ; 0; . . . ; 0; . . .Þ.
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5.2. FUNCTIONAL EQUATIONS FOR FINITE POLYLOGARITHMS

A priori, there seem to be at least two natural candidates for functional equations for
the ¢nite n-logarithm: we could ask for linear combinations

P
i ci½xi� such that e»n»n

vanishes for all specializations of the parameters which ‘make sense’ (i.e., no term
‘0=0’ occurs); we will call those combinations weak functional equations. But this
de¢nition has the disadvantage that there are too many ambiguities involved (just
think of a coef¢cient that is divisible by xp � x). Instead, we will impose the stronger
property that

P
i ci»nðxiÞ vanishes as a rational expression, and by multiplying with

the common denominator, we can even assume it to vanish as a polynomial.

DEFINITION 5.6. A functional equation in the strong sense for the ¢nite n-logarithm
over a ¢eld F of characteristic p is a ¢nite linear combination

P
i ci
�
xi
�
2 F ðtÞ½F ðtÞ�

whose image under »n vanishes identically as a polynomial.
A functional equation in the weak sense is a ¢nite linear combinationP
i ci
�
xi
�
2 F ðtÞ½F ðtÞ� whose image under »n vanishes for each specialization of par-

ameters which makes sense.

In the following we list a number of equations which are identical to the ones for
the in¢nitesimal polylogarithms, apart from ‘Frobeniizing’ the coef¢cients (i.e., rais-
ing them to the pth power). The proofs will be postponed to Section 8.

5.2.1. General Functional Equations for »n

PROPOSITION 5.7. For arbitrary n 2 Z we have the following identities:

(1) Inversion relation: »nðT Þ ¼ ð�1ÞnTp »n 1=Tð Þ. It can be viewed as a special case
ðm ¼ �1Þ of the following

(2) Distribution relation: assume F contains a primitive mth root of unity. Then

»nðTmÞ ¼ mn�1
X
zm¼1

1 � Tpm

1 � zpTp »nðzT Þ:

(3) Special values: e»n»nð1Þ ¼ 0 if ðp � 1Þ6 jn and ¼ �1 else, while f»2n»2nð�1Þ ¼ 0 for any n.
Let Bj be the jth Bernoulli number and set Gj ¼ 2ð1 � 2jÞBj. Then for
0 < m < p � 1 we have that g»p�m»p�mð�1Þ ¼ Gm=m.

Remark 5.8. Notice that the numbers Gm are integers by virtue of classical results
(for instance, it is a consequence of the Theorem of von Staudt^Clausen [31]
(Theorem 5.10, p. 56)). These numbers are called the Genocchi numbers and we
have mGp�1þm ¼ ðm � 1ÞGm mod p which is nothing else than the famous Kummer
congruence for Bernoulli numbers.
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Still mirroring the set-up in the in¢nitesimal case, we now state several functional
equations speci¢c to n ¼ 1; 2.

5.2.2. Equations for »1

PROPOSITION 5.9. (1) The 2-term relation: »1ðT Þ ¼ »1ð1 � T Þ.
(2) The generalized fundamental equation of information theory: let s, x and y be

indeterminates. The expression

Hðx; y; sÞ ¼ ð1 � yÞp»1
x � s
1 � y

� �
þ yp»1

s
y

� �
þ »1ðyÞ

in F ½x; y; s� is symmetric in x and y. Speci¢cally, we have

»1ðaÞ � »1ðbÞ þ ap »1
b
a

� �
þ ð1 � aÞp »1

1 � b
1 � a

� �
¼ 0: ð5:3Þ

(3) The 5-term relations. Denote

crða; b; c; dÞ ¼
a � c
a � d

b � d
b � c

and

denomða; b; c; dÞ ¼ ða � dÞðb � cÞ:

Then we have the polynomial identities in F ½x1; . . . ; x5�

X5
i¼1

ð�1Þi
�
denomðx1; . . . ;bxixi; . . . ; x5Þ�p »1�crðx1; . . . ;bxixi; . . . ; x5Þ� ¼ 0;

and

X5
i¼1

ð�1Þi xpi
�
denomðx1; . . . ;bxixi; . . . ; x5Þ�p »1�crðx1; . . . ;bxixi; . . . ; x5Þ� ¼ 0:

COROLLARY 5.10. The F-vector space b2ðF Þ, as de¢ned in (3.7), is of dimension at
least 1. If, moreover, F is a perfect ¢eld, then b2ðF Þ ¼ F.

Proof. According to Proposition 5.9, the function e»1»1 is a well-de¢ned function on
b2ðF Þ, and as it is not identically zero on F , the dimension of b2ðF Þ is non-zero.
By [6] (The¤ ore' me 1, p. 57), we know that b2ðF Þ ¼ 0. But as the relations in
b2ðF Þ are given by the 4-term equation (i.e., the Fundamental Equation of Infor-
mation Theory) and the relation

Pp�1
k¼2½k1F �, (see Subsection 1.1 and also Sah’s

Lemma in [6] (pp. 52^53)), and as we further know, again by Sah (see the remark
on p. 53 in op. cit.), that these two relations are independent, we can conclude that

ON POLY(ANA)LOGS I 185

https://doi.org/10.1023/A:1013757217319 Published online by Cambridge University Press

https://doi.org/10.1023/A:1013757217319


the kernel of the map b2ðF Þ ! b2ðF Þ is generated by the element
Pp�1

k¼2½k1F �. Eval-
uating e»1»1 on this element shows that it is nonzero, which ends the proof.

5.2.3. Equations for »2

In this subsection we will give answers to the question raised by Kontsevich in [22].
Notice that we need to assume p > 3 throughout.

PROPOSITION 5.11. The 3-term relation and the Kummer^Spence analogue are
functional equations for »2.

Proof. This is a consequence of the following theorem, together with
Remark 4.15. &

THEOREM 5.12. The image of Jða; b; cÞ under the mapb»»2 is a polynomial which is
identically zero in F ½a; b; c�.

Remarks 5.13. (1) By Section 7, there is a better answer to Kontsevich’s question,
at least ‘quantitatively’: each functional equation for dD3 induces a functional
equation (in the weak sense) for »2. This is true in particular for the 3-term equation
and the Kummer^Spence analogue.

(2) One can ¢nd further equations (in the strong sense) for »2 and in general for »n
with nX 3 in [16].

By similar arguments as in the proof for »1, we get

COROLLARY 5.14. The F-vector space b3ðF Þ is of dimension at least 1.

5.3. CHARACTERIZATION OF FINITE POLYLOGARITHMS

We can characterize »1 and »2 by the functional equations they satisfy.

PROPOSITION 5.15.The space (over F) of solutions of the ‘fundamental equation of
information theory’ is of dimension 1, generated by »1.

Proof. Set f ðT Þ ¼
Pp�1

i¼0 aiT
i 2 F ½T � , and suppose that f veri¢es f ð0Þ ¼ 0 and the

following identity in F ½x; y�:

f ðxÞ þ ð1 � xÞpf
y

1 � x

� �
� f ðyÞ � ð1 � yÞpf

x
1 � y

� �
¼ 0:

Differentiating the previous equation with respect to x gives

df ðxÞ þ
yð1 � xÞp

ð1 � xÞ2
df

y
1 � x

� �
�

ð1 � yÞp

1 � y
df

x
1 � y

� �
¼ 0;

with df ðT Þ ¼ a1 þ
Pp�1

i¼2 iaiT
i�1 and thus df ð0Þ ¼ a1. Setting x ¼ 0 in the previous
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identity gives

a1 þ y df ðyÞ �
1 � yp

1 � y
a1 ¼ 0:

But as ð1 � ypÞ=ð1 � yÞ ¼
Pp�1

i¼0 y
i , the previous equality implies ai ¼ a1=i. In other

words, since f ð0Þ ¼ 0 we have f ¼ a1»1 , which proves the claim. &

In fact we have a stronger statement.

PROPOSITION 5.16. The 2-term equation, the inversion and the duplication relation
characterize altogether »1.

Proof. The statement is a consequence of the following lemma. &

LEMMA 5.17. Suppose that ak is a sequence of integers with k ¼ 1; . . . ; p � 1 (p a
¢xed odd prime), which ful¢lls the following rules

ak ¼

�
1
2

Xp�1

i¼kþ1

ai
i
k

� �
; if k is odd;

1
2
ak=2 otherwise;

8>>><>>>:
and ap�k ¼ �ak for all k ¼ 1; . . . ; p � 1. Then ak ¼ a1=k 2 F for all k ¼ 1; . . . ; p � 1.

Proof. The proof proceeds by descending induction starting from p � 1. First we
notice that, by the third rule, we have ap�1 ¼ �a1 ¼ a1=ðp � 1Þ modulo p. Suppose
that ai ¼ a1=i modulo p for all i > k. Now compute ak modulo p. Observe that
we can assume kW p � 3, since we can compute from the rules ap�1 and ap�2. If
k is odd then by the ¢rst rule we deduce directly ak, but we still have to show that
ak ¼ a1=k modulo p. This is done via the

SUB-LEMMA 5.18. If k is odd and ai ¼ a1=i modulo p for all i > k. Then ak ¼ a1=k
modulo p.

Proof. We have to show that, modulo p,

a1
k

¼ �
1
2

Xp�1

i¼kþ1

a1
i

i
k

� �

or, equivalently, assuming a1 6¼ 0, that

�2 ¼
Xp�1

i¼kþ1

k
i

i
k

� �
:
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But

k
i

i
k

� �
¼

i � 1
k � 1

� �
:

Using the usual rule m
n

� �
¼ 0 if n > m, we have

Xp�1

i¼kþ1

k
i

i
k

� �
¼
Xp�2

i¼0

i
k � 1

� �
� 1:

But
Pp�2

i¼0
i

k�1

� �
¼ p�1

k

� �
, and as, modulo p, we have p�1

k

� �
¼ ð�1Þk, we ¢nally get, using

the fact that k is odd, the desired identity. &

Now return to the proof of the lemma and suppose that k is even. If k ¼ 2, then the
process ends, so we can suppose that k > 3. The idea is to show that we can compute
directly ak�1 and to deduce ak from the ¢rst rule (we will still need to show the desired
property). As k is even, k � 1 is odd and thus p � k þ 1 is even. Thus by the third rule
we have ak�1 ¼ �ap�kþ1 and by the second rule we have

ap�kþ1 ¼ 1
2 ap�kþ1

2
:

There exists j 2 N such that p ¼ k þ j with 3W j < p (because kW p � 3). Hence,
applying once again the third rule gives

ap�kþ1
2

¼ �ap�p�kþ1
2
:

But

p �
p � k þ 1

2
¼

p þ k � 1
2

¼ k þ
j � 1
2

:

And as jX 3, we have ðj � 1Þ=2X 1, which means, applying the induction, that
ap�p�kþ1

2
is already known. We then get the value of ak�1 and by applying the ¢rst

rule to it we deduce the value of ak. Now to ¢nish the proof we need to show that,
in this case ak ¼ a1=k modulo p. Notice that we can also assume by the induction
that ai ¼ a1=i modulo p for all i > k. First we show that in the previous process,
we get ak�1 ¼ a1=ðk � 1Þ modulo p. Indeed, by the induction we have

ap�p�kþ1
2

¼
a1

p �
p�kþ1

2

:

Thus

ap�kþ1
2

¼ �
a1

p �
p�kþ1

2

:
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And ¢nally

ak�1 ¼ �ap�kþ1

¼
1
2

a1
p �

p�kþ1
2

 !
¼

a1
k � 1

:

To conclude, we need to prove a variant of Sub-Lemma 5.18.

SUB-LEMMA 5.19. Suppose that k is even, ai ¼ a1=i modulo p for all i > k and
ak�1 ¼ a1=ðk � 1Þ modulo p. Then ak ¼ a1=k modulo p.

Proof. We have the equality

a1
k � 1

¼ �
1
2
akk �

1
2

Xp�1

i¼kþ1

a1
i

i
k � 1

� �
:

Using the same arguments as in the proof of Sub-Lemma 5.18, we get the following
identities,

Xp�1

i¼kþ1

k � 1
i

i
k � 1

� �
¼
Xp�2

i¼0

i
k � 2

� �
�

k � 1
k � 2

� �
�

k � 2
k � 2

� �
¼ ð�1Þk�1

� ðk � 1Þ � 1

¼ �1 � k; as k is even;

and we ¢nally have

a1
k � 1

¼ �
1
2
akk þ

ð1 þ kÞa1
2ðk � 1Þ

;

from which we deduce ak ¼ a1=k. &

Hence the proof of Lemma 5.17 is complete. &

Back to the proof of Proposition 5.16. Suppose that PðT Þ ¼
Pp�1

i¼0 aiT
i 2 F ½T �

veri¢es the conditions of the proposition. Then applying the three equations to
P gives a0 ¼ 0, and the other coef¢cients ai ful¢ll the rules described in Lemma
5.17. &

Remark 5.20.‘Cohomological characterization of »1’. Kontsevich showed that »1
gives a nonzero 2-cocycle in H2ðZ=p;Z=pÞ. Since the latter group is isomorphic
to Z=p, this characterizes »1 up to a scalar.
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5.4. SPACE OF SOLUTIONS FOR EQUATIONS ASSOCIATED TO »2

As Jða; b; cÞ is the main relation for b3, we can expect that it characterizes »2. In fact,
we can ¢rst give a family of polynomials (which form a space of dimension growing
linearly with p) and then characterize »2 by imposing also the duplication relation
(i.e. the distribution relation for »2 with m ¼ 2). Since these two equations are conse-
quences of the Kummer^Spence analogue, and the latter in turn is a consequence of
Jða; b; cÞ, we are done.

PROPOSITION 5.21. The dimension of the F-space of solutions associated to the
equation

TpP 1 �
1
T

� �
� PðT Þ þ Pð1 � T Þ ¼ 0 ð5:4Þ

grows with p and is at least of dimension ðp � 1Þ=3 þ 1. The family of polynomials

ti;pðT Þ ¼ Tið1 � T Þ
i
ðTp�3i þ ð�1ÞiÞ;

with i 2 N such that the valuation of ti;p is X 0 (for instance if iW b
p
2c), is a solution of

(5.4). Moreover, for i ¼ 0; . . . ; ðp � 1Þ=3, this family is free.
Proof. The fact that ti;p ful¢lls (5.4) is a direct computation. For

i ¼ 1; . . . ; ðp � 1Þ=3, the family is free for degree reasons, since degðti;pÞ ¼ p � i.
Furthermore t0;p does not belong to this family for valuation reasons. &

Remarks 5.22. (1) We already know, by Lemma 4.11, that the inversion formula is
a consequence of the 3-term equation. But a straightforward computation shows that
the polynomials ti;p ful¢ll the inversion formula for »2.

(2) In fact the rank of the family ti;p is greater than ðp � 1Þ=3, but the proof is a little
bit more involved. We can also notice that »2 is never expressible in terms of ti;p if i
only runs through 0; . . . ; ððp � 1Þ=3Þ � 1.

Thus the 3-term equation is insuf¢cient for the characterization of »2. Nevertheless,
we have the following main result, where 0 denotes differentiation in T :

THEOREM 5.23. Let P be a polynomial of F ½T � of degree less than or equal to p � 1.
Set h ¼ TP0. Then if P ful¢lls the duplication relation and the 3-term equation, and if
moreover h ful¢lls the 2-term equation then P is equal, up to a multiplicative constant,
to »2.
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Proof. Let P be a polynomial of degree W p � 1, and suppose that P ful¢lls the
duplication relation and the 3-term relation, namely:

2ð1 þ TpÞPðT Þ þ 2ð1 � TpÞPð�T Þ � PðT 2Þ ¼ 0; ð5:5Þ

TpP 1 �
1
T

� �
� PðT Þ þ Pð1 � T Þ ¼ 0: ð5:6Þ

Then observing that we can deduce the inversion formula as a consequence of the
3-term relation, and taking the derivative with respect to these equations shows that
h ful¢lls the inversion formula and the duplication formula. As, by hypothesis, h
ful¢lls also the 2-term equation, we conclude from Proposition 5.16 that h is »1
(up to a constant), which implies that P is »2 (up to a constant). &

Remark 5.24. We actually expect a slightly stronger result to be true, inasmuch as
already the duplication and 3-term relation characterize »2; this claim has been
veri¢ed for all primes 3 < p < 200.

As we can formally deduce the two equations (5.5) and (5.6) in the proof of
Theorem 5.23 from the Kummer^Spence analogue, and the Kummer^Spence ana-
logue in turn from the Cathelineau equation Jða; b; cÞ (because in this case the
specialisation mentioned in (4.15) is allowed), we get

COROLLARY 5.25. The space of solutions of the Kummer^Spence analogue and the
space of solutions of the Cathelineau equation are both of dimension 1 generated by »2.

Proof.We only need to show that if P 2 F ½T �, assumed to be of degree less than or
equal to p � 1, setting h ¼ TP0, h ful¢lls the 2-term equation. In order to do that, let
KSða; bÞ denote the formal Kummer^Spence analogue, then taking the derivative
with respect to a, rewriting the equation in terms of h and ¢nally specializing to
a ¼ 0, we can see that, modulo the inversion formula for h (which we can get directly
by deriving the inversion formula for P), we have the identity hðbÞ ¼ hð1 � bÞ. &

6. Deriving Functional Equations: Construction of the Derivation Map

The main goal of this section is to prove that one can pass from functional equations
for polylogarithms to functional equations for the corresponding in¢nitesimal
polylogarithms. For this purpose we will construct a family of maps, parametrized
by a given derivation, from BnðF Þ to bnðF Þ. The origin of such maps comes from
the categorical setting which is behind the ‘tangential process’ involved in the con-
struction of the in¢nitesimal polylogarithmic groups, which is to some extent dis-
cussed in [3, 6, 9], and will be treated in more detail in [15].

In Subsection 6.1, we present the ‘derivation map’ from polylogarithmic groups to
in¢nitesimal polylogarithmic groups. In Subsection 6.2, we prove, as an application,
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that the derivation of a functional equation for any polylogarithm gives rise to a
functional equation for the corresponding in¢nitesimal polylogarithm, and we will
show several examples.

6.1. FROM CLASSICAL POLYLOGARITHMIC GROUPS TO INFINITESIMAL

POLYLOGARITHMIC GROUPS

For the construction of the polylogarithmic groups (see Section 3), we gave an
initial procedure for n ¼ 2 and an inductive procedure for higher n. The con-
struction of the ‘derivation map’ follows this principle. We resume the notations
from Section 3.

6.1.1. The Case n ¼ 2

LEMMA 6.1. Let F be a ¢eld and D 2 DerZðF Þ be an absolute derivation. Consider
the well-de¢ned maps

fD:Z½F ��� ! F ½F ���; ½a� 7!DðaÞ½a�;

and

gD:
V2

ðF�Þ ! F� �Z F ; x ^ y 7! � x �
DðyÞ
y

þ y �
DðxÞ
x

:

Then the following diagram

Z½F ��� �!
fD

F ½F ���

d2
??y ??y �@@2

V2
ðF�Þ �!

gD
F� �Z F

is commutative, where

�@@2ð½a�Þ ¼
1
a
�

1
1 � a

þ
1

1 � a
�

1
a
:

Proof. First we observe that the map gD is well de¢ned. Indeed, this is a conse-
quence of the d log property of the map y 7!DðyÞ=y de¢ned on the units of F
and of the fact that gDðx � xÞ ¼ 0 which implies that gDðx ^ xÞ ¼ 0. Then the com-
mutativity of the diagram is a direct check. &

As a direct consequence we get a map from kerðd2Þ to kerð �@@2Þ. Similarly, we can
obtain a map kerðd2Þ to kerð@2Þ by replacing fD by ~ffD : ½a� 7!DðaÞ=ðað1 � aÞÞ½a� which
induces a map t2;D:B2ðF Þ ! b2ðF Þ.
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6.1.2. The Case n > 2

Suppose we have de¢ned the ‘derivation map’ tn�1;D : Bn�1ðF Þ ! bn�1ðF Þ (with
respect to a derivationD) for the level n � 1. Then we can construct tn;D by induction
as follows.

PROPOSITION 6.2. Let D 2 DerZðF Þ be an absolute derivation for the ¢eld F. Then
we have the following commutative diagram:

Z½F ��� �!
~ffD

F ½F ���

dn
??y ??y@n

Bn�1ðF Þ � F� �!
gn;D

bn�1ðF Þ �Z F� � Bn�1ðF Þ �Z F

where ~ffD is de¢ned on generators as ½a� 7!DðaÞ=ðað1 � aÞÞ½a�, while gn;D is given by

gn;D: fxgn�1 � y 7! tn�1;D
�
fxgn�1

�
� y þ fxgn�1 �

DðyÞ
y

and @n by

@nð½a�Þ ¼ hain�1 � a þ fagn�1 � ð1 � aÞ :

Remark 6.3. We want to point out that despite their apparent simplicity, these
crucial commutative diagrams do not show up at ¢rst sight.

This induces a map from kerðdnÞ to kerð@nÞ which in turn induces the desired
‘derivation map’ tn;D:BnðF Þ ! bnðF Þ.

DEFINITION 6.4. Let F be a ¢eld and D 2 DerZðF Þ be an absolute derivation for
the ¢eld F . We will call the map tn;D:BnðF Þ ! bnðF Þ the derivation map from
BnðF Þ to bnðF Þ with respect to D. If x is an element of BnðF Þ, the element
tn;DðxÞ 2 bnðF Þ will be called the derivative of x with respect to D.

As usual, if D is clear from the context we will omit it.

Remark 6.5. We can notice that all the tn;D, and also all the maps involved in
the previous propositions, give rise to an F -linear map tn: DerZðF Þ !

HomZðBnðF Þ; bnðF ÞÞ for all nX 2.

6.2. EXPLICIT DERIVATION OF FUNCTIONAL EQUATIONS

As a consequence of the previous setting, we get

COROLLARY 6.6. Each element in ker dn induces (many) elements in ker @n.

ON POLY(ANA)LOGS I 193

https://doi.org/10.1023/A:1013757217319 Published online by Cambridge University Press

https://doi.org/10.1023/A:1013757217319


The crucial consequence is the following result.

COROLLARY 6.7. Let K be an arbitrary ¢eld and set F ¼ Kðt1; . . . ; trÞ, rX 1, with
ðt1; . . . ; trÞ a transcendence basis over K. Let D 2 DerZðF Þ. Then any functional
equation of the n-logarithm over K induces, via the derivation map tn;D, a functional
equation of the in¢nitesimal n-logarithm over K.

Proof. The statement is a direct consequence of De¢nition 4.1 and of the con-
struction of tn;D. &

Remark 6.8. Notice that, in the above corollary, DerZðF Þ 6¼ 0 since DerK ðF Þ 6¼ 0,
at least if rX 1. In practice it could be interesting to have a differential basis,
and thus we can assume that if K is of characteristic p then ðt1; . . . ; trÞ is a so-called
p-basis over K .

It is a priori not clear that the procedure gives nontrivial equations, but the
following examples show that this is actually the case:

EXAMPLE 6.9. The ¢rst example is taken from [8] and it retrieves the 4-term
relation from the 5-term relation (4.3) by applying the above procedure with

D ¼ að1 � aÞ
@

@a
þ bð1 � bÞ

@

@b
;

assuming that F ¼ Kða; bÞ with a; b indeterminates over the ¢eld K, and that @=@a
and @=@b are the usual partial derivatives.

The following proposition gives a partial answer to Cathelineau’s question con-
cerning the relationship of his 22-term equation for dD3 and Goncharov’s
equation (4.7) for D3 (with the same number of terms). It is a consequence of
the previous results but can also be veri¢ed directly.

PROPOSITION 6.10. (1) The in¢nitesimal functional equation below, which is
derived from the Goncharov functional equation (4.7) for the trilogarithm is zero
in b3ðF Þ .

(2) If F & Q, the in¢nitesimal Goncharov equation is expressible in terms of an
F-linear combination of Jða; b; cÞ.

We give an example of such a derived version in the case F ¼ Kða; b; cÞ with a; b; c
indeterminates over the ¢eld K , applying the above procedure with

D ¼ að1 � aÞ
@

@a
þ bð1 � bÞ

@

@b
þ cð1 � cÞ

@

@c
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to the equation stated in (4.7). Let us set

jða; b; cÞ ¼ ½a� �
ðb � 1Þða � 1Þ

ab � 1
�
bða � 1Þ
b � 1

	 

þ �

aðb � 1Þ
a � 1

	 
� �
þ

þ
ðc2b þ cb2 � 3cb þ 1Þ

cb � 1
a � 1
abc � 1

	 

�

�
ðabc � a � b � c þ 2Þ

cb � 1
cbða � 1Þ
abc � 1

	 

�

ða þ b � 2Þ
ab � 1

½ab��

�
ða2bc � 2abc þ b þ c � 1Þða � 1Þ

ðac � 1Þðab � 1Þ
�

aðc � 1Þðb � 1Þ
ða � 1Þðabc � 1Þ

	 

:

Then, modulo the inversion formula,

jða; b; cÞ þ jðb; c; aÞ þ jðc; a; bÞ þ
ða þ b þ c � 3Þ

abc � 1
½abc�

is the differential of the Goncharov equation and vanishes in b3ðF Þ by virtue of
Corollary 6.6.

OBSERVATION 6.11. We should notice that we have not yet proved that the
in¢nitesimal Goncharov equation also holds in characteristic p and to know that
this equation is expressible in terms of an F -linear combination of Jða; b; cÞ is
not enough to ensure this. It will be seen in the next section that it is the case,
at least if we see »2 as a function from Z=p to Z=p.

7. Reduction of Functional Equations mod p via the p-adic Realm

In this section, we want to prove the following statements (which are made more
precise below):

(1) Each functional equation for the classical n-logarithm Dn induces a functional
equation for certain p-adic n-logarithm functions (those which satisfy
Wojtkowiak’s p-adic version of Zagier’s criterion).

(2) Each functional equation for the classical n-logarithm induces a functional
equation for the in¢nitesimal n-logarithm (via the derivation procedure given
in the previous section). A similar statement holds for the p-adic case.

(3) Each functional equation for the in¢nitesimal n-logarithm dDn induces a func-
tional equation for the corresponding p-adic in¢nitesimal n-logarithm denoted
DFn (see De¢nition 7.6).

(4) Each ‘good Qp-specialization,’as de¢ned in (7.10) below, of a functional equation
for the p-adic in¢nitesimal polylogarithm induces a functional equation (in
the weak sense) for the ¢nite ðn � 1Þ-logarithm.

Combining the four statements, we arrive at the somewhat more surprising
statement:
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Surprise: Each functional equation for the classical n-logarithm induces a func-
tional equation for the ¢nite ðn � 1Þ-logarithm.

Throughout this section, we denote by LinðzÞ Coleman’s p-adic n-logarithm [10].
Let us ¢rst look for the p-adic combinations which should play the same role as
the modi¢ed polylogarithms Dn.

Remark 7.1. For a combination PnðzÞ ¼
Pn�1

k¼0 ak log
k
ðzÞLin�kðzÞ, the inversion

relation (in its clean form PnðzÞ ¼ ð�1Þn�1Pnð1=zÞ) is equivalent to the following con-
dition on the coef¢cients:

Xn�1

k¼0

ak
ðn � kÞ!

¼ 0 ð7:1Þ

(cf. [34], Lemma 4.2). Since the inversion relation is in the kernel of @n, we can restrict
our investigations to combinations PnðzÞ satisfying those conditions.

While one needs to work harder in the ‘classical’ case to ¢nd functions which
satisfy cleanly their functional equations, it turns out that in the p-adic case the
above condition is already good enough, and we can state the above claim (1) more
precisely (cf. De¢nition 4.1) as

PROPOSITION 7.2 (Wojtkowiak, [34], Proposition 4.4). Let x 2 ker dn;Qpðt1;...;trÞ.
Then each admissible Cp-specialization of x is mapped to a constant by the p-adic
functions

PnðzÞ ¼
Xn�1

k¼0

ak log
k
ðzÞLin�kðzÞ; ð7:2Þ

if the coef¢cients satisfy condition (7.1).

This motivates the following de¢nition:

DEFINITION 7.3. A linear combination of p-adic polylogarithms of the form (7.2)
whose coef¢cients satisfy (7.1) is called a clean p-adic polylogarithm.

Remarks 7.4. (1) For n ¼ 2, there is, up to a multiplicative constant, only one
clean p-adic 2-logarithm P2 satisfying (7.1).

(2) The original statement was actually somewhat stronger: Qpðt1; . . . ; trÞ was
replaced by CpðtÞ, where Cp denotes a completion of an algebraic closure of Qp.

The claim in (2), on page 195, follows immediately from the ‘derivation map’ in
Section 6.
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Before we show a more precise version of (3) by imitating Proposition 7 of [8], we
state our intermediate goal: We are looking for a morphism F ½F � ! F0, where
F ¼ CpðzÞ and F0 ¼ Cp. More precisely, we want to have a family of morphisms
ðDPnÞnX 2 on ðbnðCpÞÞnX 2 expressed in terms of the differential operator
D ¼ zð1 � zÞd=dz and some clean p-adic polylogarithms Pn. There are many
candidates:

PROPOSITION 7.5. Let ðPnÞnX 2 be a family of clean p-adic polylogarithms such that
for nX 3

DPnðzÞ ¼ ln ð1 � zÞPn�1ðzÞ þ mn logðzÞDPn�1ðzÞ; ð7:3Þ

for some ln, mn 2 C
�

p . Then, for any n, DPn de¢nes a morphism on bnðCpÞ.
Proof. Pn is de¢ned on BnðCpÞ by assumption. For n ¼ 2, we have seen that the

function is essentially unique:

P2ðzÞ ¼ �2Li2ðzÞ þ logðzÞLi1ðzÞ;

and the resulting in¢nitesimal dilogarithm

DP2ðzÞ ¼ ð1 � zÞ logð1 � zÞ þ z logðzÞ

vanishes on r2ðCpÞ (due to Proposition 2.8, it is enough to check that it vanishes on
the 4-term relation, which is straightforward).

Now suppose the claim is true for n � 1. Then the maps

DPn�1 � log: bn�1ðCpÞ � C
�

p ! Cp; xhyin�1 � z 7! xDPn�1ðyÞ logðzÞ;

resp.

Pn�1 � Id: Bn�1ðCpÞ � Cp ! Cp; fygn�1 � z 7! zPn�1ðyÞ;

are well-de¢ned by the inductive assumption, resp. by assumption (Pn�1 is clean).
Furthermore, an element x 2 rnðCpÞ lies in the kernel of each of the ‘components’
of @n, say @0

n: Cp½Cp� ! bn�1ðCpÞ � C
�

p and @00
n: Cp½Cp� ! Bn�1ðCpÞ � Cp, and

therefore

ðmnDPn�1 � logþlnPn�1 � IdÞð@nxÞ

¼ ðmnDPn�1 � log '@0
n þ lnPn�1 � Id ' @00

nÞðxÞ ¼ 0;

which shows that the function de¢ned by (7.3) can be linearly extended to a
well-de¢ned function on bnðCpÞ. &

DEFINITION 7.6. Besser’s p-adic n-logarithm is de¢ned as

FnðzÞ ¼
Xn�1

k¼0

ak;n log
k
ðzÞLin�kðzÞ ð7:4Þ
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with

ak;n ¼
ð�1Þk

k!
ðk � nÞ:

We will call DFn the distinguished in¢nitesimal p-adic n-logarithm.

PROPOSITION 7.7 (Existence). There exist families of clean p-adic polylogarithms
satisfying (7.3) for some ln, mn 2 C

�

p . In particular, Besser’s family (7.4) satis¢es
(7.3) with ln ¼ �mn ¼ 1=ðn � 1Þ. There are many other possibilities.

Proof. Again, the case n ¼ 2 gives the unique choice for P2 (up to multiplicative
constant).

Inductively, starting from Pn�1 and DPn�1, one can form an arbitrary linear com-
bination of them using ln and mn which gives a candidate for DPn, with coef¢cients
bk;n, say; a subsequent ‘integration’ (putting a0;n ¼ �n and successively
akþ1;n ¼ �nðbkn � aknÞ=ðk þ 1Þ, k ¼ 0; . . . ; n � 2) provides a candidate Pn whose
coef¢cients akn have to satisfy the further condition (7.1)Cthis gives a linear
restriction on the possible ðln; mnÞ at each step. We thus obtain inductively an extra
degree of freedom at each level.

For example, normalizing PnðzÞ such that a0 � n, we obtain successively

l3 � m3 ¼ 1 ; l4 � m4 ¼
1
2
� l3 ; etc:

It remains to check that Besser’s choice (7.4) does satisfy

ðn � 1ÞDFnðzÞ ¼ ð1 � zÞFn�1ðzÞ � logðzÞDFn�1ðzÞ ð7:5Þ

which is straightforward. Also, the ak;n satisfy condition (7.1) since

�
Xn�1

k¼0

ð�1Þk

k!ðn � kÞ!
ðn � kÞ ¼

1
ðn � 1Þ!

ð1 � 1Þn�1
¼ 0: &

Remarks 7.8. (1) Writing FnðzÞ ¼ ðn � 1Þ!FnðzÞ and noticing that
ð1 � zÞ ¼ D logðzÞ, we can reformulate (7.5) more suggestively, using the ad-hoc con-
vention D�ða � bÞ :¼ DðaÞb � aDðbÞ, as

DFnðzÞ ¼ D�
�
logðzÞ � Fn�1ðzÞ

�
:

(2) We have just seen that, a priori, there are many choices for the Pn individually,
but the condition that the morphisms at level n and n � 1 be linked via the condition
rDPnðzÞ ¼ ð1 � zÞPn�1ðzÞ � logðzÞDPn�1ðzÞ for some r 2 Cp provides us with a
unique function, up to a multiplicative factor, the condition (7.1) still being true
for Pn. We have not found a ‘natural’ justi¢cation for the condition (7.5), though.
A normalization condition for the above Pn is then a0;n þ a1;n ¼ �1 which entails
r ¼ n � 1. The resulting family coincides with Besser’s functions (7.5)Chis choice
of coef¢cients was forced by two rather natural requirements: ¢rst, a certain p-adic
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power series expansion becomes independent of the ‘direction’ in which to expand;
second, one retrieves the ¢nite ðn � 1Þ-logarithm by reducing DFn mod pn (or, more
precisely, reducing p1�nDFn mod p) on elements in Z�

p \ ð1 � ZpÞ
�

� Cp (for an
improved statement of this and of the following theorem cf. [2]).

The Fn can be characterized by the following theorem:

THEOREM 7.9 (Besser, [2], Theorem 1.1). Let X ¼ fz 2 Zp; jzj ¼ j1 � zj ¼ 1g. For
p > n þ 1, one has DFnðZpÞ � pn�1Zp, and for z 2 X:

p1�nDFnðzÞ # »n�1ðzÞ ðmod pÞ:

The choice of coef¢cients (in Q) for Fn is unique for a clean p-adic polylogarithm
which satis¢es the above property for all p > n þ 1.

In order to formulate the subsequent statements conveniently, we introduce the
following notion:

DEFINITION 7.10. A good Qp-specialization forX
ni½xi� 2 F ½F �; F � Qpðt1; . . . ; trÞ;

is a family of numbers uj 2 Qp, j ¼ 1; . . . ; r, such that the images of ni ¼ niðt1; . . . ; trÞ,
xi ¼ xiðt1; . . . ; trÞ and 1 � xi under the specialization map tj 7! uj, j ¼ 1; . . . ; r, are in
Z�

p .

The virtue of a goodQp-specialization lies in the fact that we can reduce it modulo
pZp. As we can notice, a good Qp-specialization is, in particular, an admissible
Qp-specialization. Now, putting Proposition 7.5 and Theorem 7.9 together, we
can make (4) more precise:

COROLLARY 7.11. Let nX 2, p > n þ 1, and Z 2 ker @n;Qpðt1;...;trÞ. Then we have

(a) For each admissible Cp-specialization Zs for Z, DFnðZsÞ ¼ 0.
(b) For each good Qp-specialization Zs for Z, the reduction mod p gives

»n�1ðZsÞ # 0 ðmod pÞ:
Proof. The in¢nitesimal polylogarithm DFn vanishes on Z by Proposition 7.5, and

reducing mod p obviously conserves this vanishing property. Besser’s result now
says that the reduction of p1�nDFnðZsÞ is equal to »n�1

�
Zs ðmod pÞ

�
. &

Going even one step further, we can state a more precise version of the above
‘surprise’:

COROLLARY 7.12. Let nX 2, p > n þ 1, and x 2 ker dn;Qðt1;...;trÞ. Then we have

(a) For each admissibleC-specialization resp.Cp-specialization x
s for x, the quantities

Dnðx
s
Þ resp. Fnðx

s
Þ are constants.
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(b) For each absolute derivation D 2 DerZðQðt1; . . . ; trÞÞ, x induces
xD 2 ker @n;Qðt1;...;trÞ, and therefore, for each admissible C-specialization resp.
Cp-specialization, dDnðxDÞ ¼ 0, resp. DFnðxDÞ ¼ 0.

(c) For each good Qp-specialization xsD for xD, the reduction mod p gives
»n�1ðx

s
DÞ # 0 ðmod pÞ.

Proof. (a) follows from Zagier [36] and Wojtkowiak [34], respectively, (b) follows
via the ‘derivation map’ (see Section 6), while (c) results from 0 ¼

p1�nDFnðxDÞ # »n�1ðx
s
DÞ. &

Alas, although being quite powerful, the above strategy does not give the full
answer to our problem.

Remark 7.13. (1) The virtues of the procedure described above lie in its generality:
we do not need to (¢nd and) prove functional equations for (p-adic) in¢nitesimal or
¢nite polylogs, since they ‘drop out’ using the machinery.

(2) The drawbacks of the machinery lie in its lack of control:
(a) We do not get the functional equations as polynomial identities but only ‘on

points’, i.e., in the form of (good) specializations.
(b) Amore mundane reason for proving functional equations for »n in the strong

sense is the fact that all the ones which have occurred in our investigations are not
only true for Fp but actually hold more generally for any ¢eld of characteristic p.
(c) (a minor point, given the range in which we mostly work) We need to assume

that p > n þ 1.
This restriction is not (always) necessary for the polynomial identities to hold:

there are examples of equations for »3 which are still true in characteristic 3.

In summary, there are still plenty of reasons which leave us with the task of ¢nding
proofs of functional equations for the ¢nite polylogarithms. The ¢nal section will
therefore be dedicated to this issue.

PART III: THE PROOFS

8. Proofs of Functional Equations Over Fields of Characteristic p

8.1. STRAIGHTFORWARD DEMONSTRATIONS

Proof of Proposition 5.7. (1) The inversion relation can be checked via a
straightforward algebraic manipulation.

(2) In order to prove the distribution relation, let us ¢x a primitive mth root of
unity z . Dividing both sides by mn and developing the fraction into a (¢nite) series
leaves us to prove:
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Xp�1

k¼1

Tkm

ðkmÞ
n

¼
1
m

X
zm¼1

�
1 þ ðzT Þ

p
þ ðzT Þ

2p
þ � � � þ ðzT Þ

ðm�1Þp�Xp�1

k¼1

ðzT Þ
k

kn

¼
1
m

Xp�1

k¼1

1
kn
X
zm¼1

�
ðzT Þ

k
þ ðzT Þ

pþk
þ � � � þ ðzT Þ

ðm�1Þpþk
Þ

¼
1
m

Xp�1

k¼1

X
zm¼1

ðzT Þ
k

kn
þ

ðZT Þ
pþk

ðp þ kÞn
þ � � � þ

ðzT Þ
ðm�1Þpþk

ððm � 1Þp þ kÞn

 !

¼
1
m

Xpm�1

r¼1
p 6 j r

X
zm¼1

zr
 !

Tr

rn
;

and this is true due to the character relations

X
zm¼1

zr ¼
m; if m j r;
0; otherwise:

�

(3) (Proof of the special values) e»n»nð1Þ ¼ 0 if ðp � 1Þ6 jn follows from the well-known
fact that

Pp�1
k¼0 PðkÞ ¼ 0 for any polynomial P 2 Z=pZ½x� of degree W p � 2 (here we

apply it to the monomials x; . . . ; xp�2), the statement for ðp � 1Þjn being obvious.
The assertion for f»2n»2nð�1Þ ¼ 0 is a direct consequence of the inversion relation.

To prove the last formula of Proposition 5.7 we only need to take m ¼ 2n (the odd
values correspond to the above identities). For this, one can use the special case
a ¼ 2, in [27] (Proposition (5B), p. 108), ðp � 1Þ 6 j2n:

ð1 � 22nÞB2n # n � 22n
X

1W j<ðp=2Þ

1
j1�2n ðmod pÞ ð8:1Þ

and the fact that »1�2nð�1Þ is equal to the sum in (8.1): rewriting

g»p�2n»p�2nð�1Þ ¼ g»1�2n»1�2nð�1Þ

¼
Xðp�1Þ=2

j¼1

ð2jÞ2n�1
�

Xðp�1Þ=2

j¼1

ð2j � 1Þ2n�1

¼ 2
Xðp�1Þ=2

j¼1

ð2jÞ2n�1
�
Xp�1

j¼1

j2n�1;

one sees that the ¢rst sum is equal to 22n times the sum in (8.1), while the second one
equals � g»1�2n»1�2nð1Þ and therefore is zero (for 0 < n < ðp � 1Þ=2) by the above special
value. &
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8.2. A RECIPE FOR PROVING FUNCTIONAL EQUATIONS

Let R be a domain of characteristic p. In order to show that a polynomial
QðT Þ 2 R½T � is zero, we divide it into three parts:

QðT Þ ¼ Qð0Þ þ Q1ðT Þ þ Q2ðTpÞ;

where Q1ðT Þ involves only powers of T whose exponents are not divisible by p. Then
we verify separately that Q2ðTpÞ and the constant Qð0Þ vanish and that d=dT ðQ1ðT ÞÞ

is zero as well. We can iterate this procedure in an obvious way.
Proof of Proposition 5.9. (1) We will apply the recipe above. We have

d

dT
»1ð1 � T Þ ¼ �

1
1 � T

»0ð1 � T Þ

¼
1
T
»0ðT Þ by ð5:2Þ

¼
d

dT
»1ðT Þ;

and as the degree of either polynomial is less than p � 1, we conclude that
»1ðT Þ ¼ »1ð1 � T Þ þ c where c is a constant. This, in turn, implies that 2c ¼ 0
(specialize T ¼ 0 and T ¼ 1 , respectively), and therefore we get as a by-product
»1ð1Þ ¼ »1ð0Þ ¼ 0 (in characteristic 6¼ 2).

(2) The following proof is a slight variation of the recipe, in that it uses two iterated
derivatives.

Denote by @x and @y the derivatives with respect to x and y. We can check, using the
differential equation for »1 and the rational expression (5.1) for »0, that

@y@xHðx; y; sÞ ¼
1 � yp � xp þ sp

ð1 � y � x þ sÞ2
;

which is an expression that is symmetric in x and y. Thus

@y@xðHðx; y; sÞ � Hðy; x; sÞÞ ¼ 0:

But the maximum degree for each indeterminate in the polynomialHðx; y; sÞ is never
greater than p � 1 , and as a consequence the above identity implies that

Hðx; y; sÞ � Hðy; x; sÞ ¼ R0ðsÞ þ R1ðsÞx þ R2ðsÞy;

where R0;R1;R2 2 F ½s� . But setting x ¼ y implies both R0 ¼ 0 and R1 þ R2 ¼ 0, and
the construction of R1 and R2 shows directly that they are both zero (the coef¢cients
of x and y in Hðx; y; sÞ are both equal to

Pp�2
k¼0ð�sÞk). &

Proof of Proposition 5.11. (1) Set

EðT Þ ¼ »2ð1 � T Þ � »2ðT Þ þ Tp»2 1 �
1
T

� �
:
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We want to prove that E is 0 in F ½T � . Computing d=dT ðEÞ we get

d

dT
EðT Þ ¼ �

1
1 � T

»1ð1 � T Þ �
1
T
»1ðT Þ þ

Tp�1

T � 1
»1 1 �

1
T

� �
:

But by Proposition 5.9, »1ð1 � T Þ ¼ »1ðT Þ and »1ð1 � 1=T Þ ¼ »1ð1=T Þ . Moreover, by
the inversion formula (see Proposition 5.7) we have »1ð1=T Þ ¼ �1=Tp»1ðT Þ. Hence,

d

dT
EðT Þ ¼ �

1
1 � T

»1ðT Þ �
1
T
»1ðT Þ �

1
ðT � 1ÞT

»1ðT Þ;

¼ 0:

As Eð0Þ ¼ 0 and degðEÞW p, we know that EðT Þ ¼ cTp and therefore TpEð1=T Þ ¼ c,
and using the inversion relation one sees that TpEð1=T Þ ¼ EðT Þ, which implies
c ¼ 0. &

Remark 8.1. A different way to prove that c ¼ 0: For this we look directly at EðT Þ

and try to compute this coef¢cient which can only appear in the expression

Tp»2 1 �
1
T

� �
¼
Xp�1

i¼1

Tp�iðT � 1Þi

i2
:

For each i, the coef¢cient of Tp is 1=i2, and thus c ¼ »2ð1Þ ¼ 0.
Proof of Theorem 5.12. The strategy of proof could be summarized as follows:

(i) Prove that @cb»2»2ðJða; b; cÞÞ ¼ 0 in F ½a; b; c�.
(ii) Prove that b»2»2ðJða; b; 0ÞÞ ¼ 0 in F ½a; b�.
(iii) Prove that the coe⁄cient of cp in b»2»2ðJða; b; cÞÞ is 0.

For the proof of this functional equation we will need several preliminary formulas.
First we will use the following two relations, in F ½x; y�, coming from the 4-term
equation for »1,

ð1 � yÞp»1
x

1 � y

� �
¼ »1ðxÞ þ ð1 � xÞp»1

y
1 � x

� �
� »1ðyÞ; ð8:2Þ

»1ðyÞ � »1ðxÞ ¼ ð1 � xÞp»1
1 � y
1 � x

� �
þ xp»1

y
x

� �
: ð8:3Þ

We use implicitly the following formal derivation rules, where t is an indeterminate
and l a constant independent of t:

d

dt
»2ðlð1 � tÞÞ ¼ �

1
1 � t

»1ðlð1 � tÞÞ;

d

dt
»2 l 1 �

1
t

� �� �
¼ �

1
tð1 � tÞ

»1 l 1 �
1
t

� �� �
:
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We also point out that the following simple formula will be often used:

1
t
þ

1
1 � t

¼
1

tð1 � tÞ
:

For the convenience of the reader we will give detailed computations in order to
make checking almost straightforward.

Let us ¢rst split b»2»2ðJða; b; cÞÞ into six pieces to facilitate the identi¢cation of the
cancellation in the forthcoming computations:

A1 ¼ cp»2ðaÞ � cp»2ðbÞ þ ða � b þ 1Þp»2ðcÞþ

þ ð1 � cÞp»2ð1 � aÞ � ð1 � cÞp»2ð1 � bÞ þ ðb � aÞp»2ð1 � cÞ;

A2 ¼ �ap»2
c
a

� �
þ bp»2

c
b

� �
þ cpap»2

b
a

� �
�

� ð1 � aÞp»2
1 � c
1 � a

� �
þ ð1 � bÞp»2

1 � c
1 � b

� �
þ cpð1 � aÞp»2

1 � b
1 � a

� �
;

A3 ¼ cpð1 � aÞp»2
að1 � cÞ
cð1 � aÞ

� �
� cpð1 � bÞp»2

bð1 � cÞ
cð1 � bÞ

� �
;

A4 ¼ �bp»2
ca
b

� �
� ð1 � bÞp»2

cð1 � aÞ
1 � b

� �
;

A5 ¼ �ða � bÞp»2
ð1 � cÞa
a � b

� �
� ðb � aÞp»2

ð1 � cÞð1 � aÞ
b � a

� �
þ

þ cpða � bÞp»2
ð1 � cÞb
cða � bÞ

� �
þ cpðb � aÞp»2

ð1 � cÞð1 � bÞ
cðb � aÞ

� �
;

A6 ¼ ð1 � cÞpap»2
a � b
a

� �
þ ð1 � cÞpð1 � aÞp»2

b � a
1 � a

� �
:

Set d ¼ @=@c.

First step: prove that
P

dAi ¼ 0. It is immediate that dA6 ¼ 0. Using the rules
described above, we get the following equalities:

dA1 ¼
1
c
»1ðcÞ þ

ða � bÞp

cð1 � cÞ
»1ðcÞ;

dA2 ¼ �
ap

c
»1

c
a

� �
þ
bp

c
»1

c
b

� �
þ

þ
ð1 � aÞp

1 � c
»1

1 � c
1 � a

� �
�

ð1 � bÞp

1 � c
»1

1 � c
1 � b

� �
;

204 PHILIPPE ELBAZ-VINCENT AND HERBERT GANGL

https://doi.org/10.1023/A:1013757217319 Published online by Cambridge University Press

https://doi.org/10.1023/A:1013757217319


dA3 ¼ �
cpð1 � aÞp

cð1 � cÞ
»1

að1 � cÞ
cð1 � aÞ

� �
þ
cpð1 � bÞp

cð1 � cÞ
»1

bð1 � cÞ
cð1 � bÞ

� �
;

dA4 ¼ �
bp

c
»1

ca
b

� �
�

ð1 � bÞp

c
»1

cð1 � aÞ
1 � b

� �
;

dA5 ¼
ða � bÞp

1 � c
»1

ð1 � cÞa
a � b

� �
þ

ðb � aÞp

1 � c
»1

ð1 � cÞð1 � aÞ
b � a

� �
�

�
cpða � bÞp

cð1 � cÞ
»1

ð1 � cÞb
cða � bÞ

� �
�
cpðb � aÞp

cð1 � cÞ
»1

ð1 � cÞð1 � bÞ
cðb � aÞ

� �
:

Then, applying consecutively (8.2) to dA5, with x ¼ 1 � c, y ¼ b=a, with
x ¼ 1 � ð1=cÞ, y ¼ b=a, and with x ¼ 1 � 1=c, y ¼ ð1 � aÞ=ð1 � bÞ, and to dA3 with
x ¼ 1 � ð1=cÞ, y ¼ 1=a, and using (8.3) for simpli¢cation as well as the basic relations
for »1, we get

dA3 þ dA4 þ dA5

¼ �
»1ðbÞ
1 � c

þ
»1ðaÞ
1 � c

þ
cp

cð1 � cÞ
»1

b
c

� �
� »1

a
c

� �� �
�

� »1ðcÞ þ
ðb � aÞp

cð1 � cÞ
»1ðcÞ;

then

dA1 þ dA3 þ dA4 þ dA5

¼ �
»1ðbÞ
1 � c

þ
»1ðaÞ
1 � c

þ
cp

cð1 � cÞ
»1

b
c

� �
� »1

a
c

� �� �
:

It remains to transform dA2, but using (8.3), we have e.g.

ð1 � bÞp»1
1 � c
1 � b

� �
¼ »1ðcÞ � »1ðbÞ � bp»1

c
b

� �
;

then

dA2 ¼
»1ðbÞ
1 � c

�
»1ðaÞ
1 � c

þ
bp

cð1 � cÞ
»1

c
b

� �
�

ap

cð1 � cÞ
»1

c
a

� �
:

Now by invoking the inversion formula we see that

X5
i¼1

dAi ¼ 0:
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Second step: Prove that the relation is true for c ¼ 0. Putting c ¼ 0 in
P6

i¼1 Ai gives

»2ð1 � aÞ � »2ð1 � bÞ � ð1 � aÞp»2
1

1 � a

� �
þ ð1 � bÞp»2

1
1 � b

� �
þ

þ ap»2
a � b
a

� �
þ ð1 � aÞp»2

b � a
1 � a

� �
�

� ða � bÞp»2
a

a � b

� �
� ðb � aÞp»2

1 � a
b � a

� �
;

and applying the inversion formula for »2 we get 0.

Third step: Prove that the coef¢cient of cp is 0. Notice ¢rst that if l is an expression
independent of c, then the coef¢cient of cp in the sum

Pp�1
i¼1 ðli=i2Þcp�ið1 � cÞi is

»2ð�lÞ. Using this fact, we can see that the coef¢cient of cp in the expressionP6
i¼1 Ai is given by

»2ðaÞ � »2ð1 � aÞ þ ð1 � aÞp»2
�a
1 � a

� �
�

� »2ðbÞ þ »2ð1 � bÞ � ð1 � bÞp»2
�b
1 � b

� �
þ

þ ap»2
a
b

� �
� ap»2

a � b
a

� �
þ ða � bÞp»2

�b
a � b

� �
þ

þ ð1 � aÞp»2
1 � b
1 � a

� �
� ð1 � aÞp»2

b � a
1 � a

� �
þ ðb � aÞp»2 �

1 � b
b � a

� �
:

But each of the previous lines are 0 by using the 3-term functional equation of »2 (see
Proposition 5.12.1) and this completes the proof of the 22-term functional equation
for »2. &

Remark 8.2. We want to stress some more structural properties in the rather com-
putational parts of the previous proofCthereby also giving an indication that there
should exist a common proof for both the ¢nite and the in¢nitesimal case:

(i) We ¢rst use the (‘d log-like’) behaviour (cf. the comment after De¢nition 5.4)

d

dc
»̂»m
�
cað1 � cÞb

�
¼

� a
c
�

b
1 � c

�
»̂»m�1

�
cað1 � cÞb

�

to group the terms of d=dc
�
»̂»2ðJða; b; cÞÞ

�
with a coef¢cient 1=c (resp. 1=ð1 � cÞ)

togetherCthese are exactly the terms whose argument contains a factor c (resp.
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1 � c). For instance, the terms with coef¢cient 1=c are as follows:

1
c
»̂»1

�
ða � b þ 1Þ½c��

� a
c
a

h i
þ b

c
b

h i
� b

ca
b

h i
� ð1 � bÞ

cð1 � aÞ
1 � b

	 

�

� cð1 � aÞ
1 � c�1

1 � a�1

	 

þ cð1 � bÞ

1 � c�1

1 � b�1

	 

�

�cða � bÞ
1 � c�1

1 � a=b

	 

� cðb � aÞ

1 � c�1

1 � ð1 � aÞ=ð1 � bÞ

	 
�
:

In order to verify that this expression vanishes, we rewrite it in a slightly more con-
venient fashion (in order to be able to apply the 4-term relation line by line),
neglecting the factor 1=c, we get:

»̂»1

�
ða � b þ 1Þ½c��

� a
c
a

h i
� cð1 � aÞ

1 � c�1

1 � a�1

	 

þ

þ b
c
b

h i
þ cð1 � bÞ

1 � c�1

1 � b�1

	 

�

� b
c

ðb=aÞ

	 

� cða � bÞ

1 � c�1

1 � ðb=aÞ�1

	 

�

�ð1 � bÞ
c

ðð1 � aÞ=ð1 � bÞÞ�1

	 

� cðb � aÞ

1 � c�1

1 � ð1 � aÞ=ð1 � bÞ

	 
�
:

Applying the 4-term equation (4.17) ‘linewise’ to the 2nd, 3rd, 4th and 5th line above
with x ¼ a, x ¼ b, x ¼ b=a and x ¼ ð1 � bÞ=ð1 � aÞ , respectively, this latter
expression is seen to reduce to

»̂»1

�
ða � b þ 1Þ½c��

� a½c� þ c½a� þ b½c� � c½b��

� a
b
a
½c� � c

a
b

h i� �
� ð1 � aÞ

1 � b
1 � a

½c� � c
1 � b
1 � a

	 
� ��
¼ »̂»1 c ½a� � ½b� þ a

b
a

	 

þ ð1 � aÞ

1 � b
1 � a

	 
� �� �
which vanishes, again in view of the 4-term equation (and because the coef¢cients for
½c� add up to zero). The terms with 1=ð1 � cÞ can be treated in a completely analogous
way.

(ii) The constant term in c of the polynomial b»2»2ðJða; b; cÞÞ, i.e., the polynomialb»2»2ðJða; b; 0ÞÞ, is zeroCthis corresponds in the in¢nitesimal situation to the degener-
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ate case where we also put c ¼ 0 but where we need to give sense to expressions like
a½b=a� for a ¼ 0, the consistent choice being that it should be zero.

(iii) Instead of considering the coef¢cient of cp in the polynomial b»2»2ðJða; b; cÞÞ we
can equivalently check that the constant coef¢cient in cpb»2»2ðJða; b; 1=cÞÞ is zero.
In the in¢nitesimal situation we can perform the analogous check that
cb»2»2ðJða; b; 1=cÞÞ tends to zero for c ! 0 (so we can use the analogy again).
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