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1. Introduction
Let X be a complex manifold with a Hermitian metric h. We denote the Kähler form
of h by ω. If there exists a closed 1-form θ such that dω = θ ∧ ω, then ω is called a
locally conformal Kähler structure, abbreviated LCK structure, on X with Lee form
θ. In particular, a locally conformal Kähler structure yields a Kähler metric on the
universal covering of X. Equivalently, the complex manifold X is an LCK manifold if it
has a Kähler covering with the monodromy acting on this covering by the holomorphic
homotheties. In particular, every Kähler manifold is a special LCK manifold with zero
Lee form. However, there exist many interesting examples of non-Kähler manifolds
which admit LCK structures. For instance, although the Hopf manifold S 1 × S 2n+1

cannot admit any Kähler metric, it admits a canonical LCK metric (see [2, Ch. 3]).
Given an LCK manifold (X, ω, θ), we may define an operator dθ as follows:

dθ(α) = dα − θ ∧ α ∀α ∈ Ω∗(X).

Since (dθ)2 = 0, we have a θ-twisted de Rham complex (Ω∗(X), dθ), which is called the
Morse–Novikov complex. The associated cohomology, denoted by H∗θ (X), is called the
Morse–Novikov cohomology. Generally speaking, the Morse–Novikov cohomology is
a generalisation of de Rham cohomology.

It is well known that the blow-up is a useful operation in complex geometry.
In particular, the blow-up of a Kähler manifold (at a point or along a complex
submanifold) is also Kählerian. In the LCK case a natural problem is to consider the
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blow-up of an LCK manifold. Tricerri [5] and Vuletescu [7] proved that the blow-
up of an LCK manifold at a point is LCK; however, whether the blow-up of an
LCK manifold along a submanifold is also LCK is not an immediate result. In 2013,
Ornea et al. [4] showed that the blow-up of an LCK manifold along a submanifold
is LCK if and only if the submanifold is globally conformally equivalent to a
Kähler submanifold. The main purpose of this paper is to show that the Morse–
Novikov cohomology of the blow-up of an LCK manifold is determined by the
Morse–Novikov cohomology of the original LCK manifold and the de Rham
cohomology of the exceptional divisor, that is, we prove a blow-up formula for the
Morse–Novikov cohomology as follows.

Theorem 1.1 (Theorem 3.1). Let (X, ω, θ) be a compact locally conformal Kähler
manifold of dimension 2n. Assume that Z ⊂ X is a compact induced globally conformal
Kähler submanifold. Then

Hk
θ (X) ⊕

( r−2⊕
i=0

Hk−2i−2
dR (Z)

)
� Hk

θ̃
(X̃Z),

where r = codimC Z and τ : X̃Z → X is the blow-up of X along Z.

This paper is organised as follows. We devote Section 2 to preliminaries of Morse–
Novikov cohomology and the blow-up of an LCK manifold along a submanifold.
Then, in Section 3, we give the proof of the main theorem.

2. Preliminaries

2.1. Locally conformal Kähler manifolds and Morse–Novikov cohomology. Let
(X, h) be a Hermitian manifold with Kähler form ω. We say that h is a locally
conformally Kähler metric if there exist an open covering of X, denoted by {Ui}i∈Λ,
and a family of smooth functions

{ fi : Ui → R
1}i∈Λ

such that
hi := exp(− fi) · h |Ui

is Kählerian on every open subset Ui.
Notice that the Kähler form of hi isωi = exp(− fi) ·ω|Ui . Therefore, we have dωi = 0,

that is,

0 = d(exp(− fi) · ω)
= exp(− fi)(−d fi ∧ ω) + exp(− fi) dω
= exp(− fi)(dω − d fi ∧ ω).

It follows that
dω − d fi ∧ ω = 0 (on Ui).
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For any pair of open subsets Ui and U j such that Ui j = Ui ∩ U j , ∅,

d fi ∧ ω = dω (on Ui j) (2.1)

and
d f j ∧ ω = dω (on Ui j). (2.2)

Furthermore, from (2.1) and (2.2),

(d fi − d f j) ∧ ω = 0 (on Ui j). (2.3)

Note that ω is nondegenerate; hence, from (2.3),

d fi = d f j (on Ui j).

This implies that {(d fi,Ui)} defines a globally closed 1-form θ, which is called the
Lee form of an LCK metric, and, furthermore, λi j = fi − f j is constant on Ui j.
Equivalently, we have the following result.

Definition 2.1. A Hermitian manifold (X; h) is an LCK manifold if and only if there
exists a closed 1-form (Lee form) θ such that

dω = θ ∧ ω,

where ω is the Kähler form of h.

Let Ω∗(X) be the space of smooth forms on X. We may define a differential operator
by

dθ : Ω∗(X)→ Ω∗+1(X)
α 7→ dα − θ ∧ α.

Furthermore, we have the θ-twisted complex

· · ·
dθ // Ωk−1(X)

dθ // Ωk(X)
dθ // · · · .

The complex (Ω∗(X), dθ) is called the Morse–Novikov complex, and the associated
cohomology group

H∗θ (X) = H∗(Ω∗(X); dθ)

is called the Morse–Novikov cohomology.
Suppose that R is the sheaf of locally constant real functions over X and R∗ is

the sheaf of locally constant nonzero real functions over X. Consider the exponential
homomorphism of sheaves

exp : R→ R∗. (2.4)

From (2.4), we get a homomorphism of Čech cohomology of sheaves

exp∗ : H1(X,R)→ H1(X,R∗).
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Note that H1(X,R) � H1
dR(X) and there is a one-to-one correspondence between the

set of real line bundles, over X, up to isomorphism, and the Čech cohomology group
H1(X,R∗). Therefore, the Lee form determines a real line bundle L with the locally
constant transition functions {(exp(−λi j),Ui j)}, which is called the weight line bundle
of the LCK structure. In particular, L is a flat line bundle over X with the flat
connection DL induced by the LCK structure by the formula DL = d − θ. Furthermore,
the connection DL determines a covariant differential

dL : Γ(X,∧•T ∗X ⊗ L)→ Γ(X,∧•+1T ∗X ⊗ L).

The flatness of the connection DL implies that d2
L = 0; therefore, we get a generalised

de Rham complex (Ω∗(X; L), dL) with the cohomology group H∗dR(X, L) and we have
the following result.

Proposition 2.2. The Morse–Novikov cohomology group Hk
θ (X) is isomorphic to the

cohomology group Hk
dR(X, L) for every k.

Proof. Note that there is a one-to-one correspondence between isomorphism classes of
smooth line bundles equipped with a flat connection and isomorphism classes of local
systems of one-dimensional vector spaces (see [6, Proposition 9.11]). On one hand,
assume thatL is the local system on X corresponding to the weight line bundle L; then
the cohomology of the local system H∗(X,L) is isomorphic to H∗dR(X, L). On the other
hand, H∗(X,L) is naturally identified with the Morse–Novikov cohomology H∗θ (X)
(see [3, Proposition 3.1]). This implies that H∗θ (X) is isomorphic to H∗dR(X, L). �

2.2. Blow-ups of locally conformal Kähler manifolds. In this section we
summarise the results of Ornea et al. [4] on the construction of an LCK structure
on the blow-up along a submanifold.

Let (X, ω, θ) be an LCK manifold of complex dimension n. Suppose that Z ⊂ X is a
complex submanifold with complex codimension r.

Definition 2.3. We say that Z ⊂ X admits an induced globally conformal Kähler
(i.g.c.K.) structure if the pullback of the Lee form i∗θ ∈ Ω1(Z) is exact; more precisely,
0 = [i∗θ] ∈ H1

dR(Z), where i : Z ↪→ X is the inclusion.

From now on we assume that X is compact and Z is a compact complex submanifold
with dimension dimC Z ≥ 1. Then the blow-up of X along Z, denoted by τ : X̃Z → X,
is a compact complex manifold with dimension dimC X̃Z = n.

Let E = τ−1(Z) be the exceptional divisor of X̃Z . We are now in a position to
construct the LCK metric on X̃Z when Z is an induced globally conformal Kähler
submanifold of X. First we need the following lemma [4, Lemma 3.4], which is a
well-known fact in Kähler geometry.

Lemma 2.4. Suppose that (U, ω) is a Kähler manifold and Z ⊂ U is a compact
submanifold. Let τ : Ũ → U be the blow-up of U along Z. Then, for any open
neighbourhood V of Z, there exists a Kähler metric ω̃ on Ũ such that

ω̃|Ũ−Ṽ = τ∗(ω|U−V ),

where Ṽ = τ−1(V).
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Since Z is an induced globally conformal Kähler submanifold, the restriction of the
Lee form θ|Z is exact. Choose an open neighbourhood U of Z such that the inclusion
i : Z ↪→ U induces an isomorphism on the first de Rham cohomology,

i∗ : H1
dR(U) � // H1

dR(Z).

Via a conformal rescaling of the Hermitian metric, we may assume that θ|U = 0.
It follows that ω|U is a Kähler metric on U. Let Ũ = τ−1(U). Then Ũ is an
open neighbourhood of the exceptional divisor E in X̃Z . Choose a smaller open
neighbourhood V of Z in U. According to Lemma 2.4, we get a Kähler metric, denoted
by ω̃, on Ũ such that ω̃ is equal to τ∗(ω|U) outside of Ṽ = τ−1(V). Therefore, we may
glue ω̃ to τ∗ω to get an LCK metric on X̃Z .

In particular, Ornea et al. proved the following properties.

(1) [4, Theorem 2.8] If Z ⊂ X is an induced globally conformal Kähler submanifold,
then the blow-up X̃Z admits a locally conformal Kähler metric with Lee form
θ̃ = τ∗θ.

(2) [4, Theorem 2.9] If X̃Z admits a locally conformal Kähler metric, then
the exceptional divisor E ⊂ X̃Z is an induced globally conformal Kähler
submanifold.

(3) [4, Corollary 2.11] If X̃Z admits a locally conformal Kähler metric and,
furthermore, dimC Z > 1, then Z ⊂ X is an induced globally conformal Kähler
submanifold.

Given any form α ∈ Ωk(X) such that dθ(α) = 0, the pullback τ∗α is a k-form on X̃Z .
Note that

dθ̃(τ
∗α) = d(τ∗α) − θ̃ ∧ τ∗α

= τ∗(dα) − τ∗θ ∧ τ∗α (θ̃ = τ∗θ)
= τ∗(dα − θ ∧ α)
= τ∗(dθ(α))
= 0.

Therefore, τ induces a homomorphism between Morse–Novikov cohomology groups

τ∗ : Hk
θ (X)→ Hk

θ̃
(X̃Z).

Furthermore, we have the following result.

Proposition 2.5. The map τ∗ : Hk
θ (X)→ Hk

θ̃
(X̃Z) is injective for every k.

Proof. Let L̃ be the weight line bundle over X̃Z , which is determined by the
Lee form θ̃. By definition, the locally constant transition functions of L̃ are
{(τ∗(exp(−λi j)), τ−1(Ui j))}. It follows that L̃ is the pullback of L, that is, L̃ = τ∗L.
The map τ also induces a homomorphism

τ∗ : Hk
dR(X, L)→ H∗dR(X̃Z , L̃). (2.5)

https://doi.org/10.1017/S0004972714000859 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000859


160 X. Yang and G. Zhao [6]

From Proposition 2.2, we have Hk
θ (X) � Hk

dR(X, L) and Hk
θ̃
(X̃Z) � Hk

dR(X̃Z , L̃). To prove
Proposition 2.5, it is sufficient to show that (2.5) is injective for every k. Assume that
L∗ is the dual bundle of L. Note that there exists a naturally defined flat connection DL∗

such that for any differential forms with values in vector bundles α ∈ Γ(X,∧•T ∗X ⊗ L)
and β ∈ Γ(X,∧•T ∗X ⊗ L∗),

d(α ∧ β) = (dLα) ∧ β + (−1)degαα ∧ dL∗β,

where dL∗ is the covariant differential of DL∗ . Similarly, we have the generalised de
Rham cohomology H∗dR(X, L∗). Using the harmonic theory of elliptic operators, we
may show that the pairing∫

: Hk
dR(X, L) × H2n−k

dR (X, L∗)→ R1

(α, β) 7→
∫

X
α ∧ β

is nondegenerate.
The injectivity of (2.5) is proved by contradiction. Assume that the assertion

does not hold, so that there exists a nonzero α ∈ Hk
dR(X, L) such that τ∗α = 0. Since

α represents a nonzero class in Hk
dR(X, L), it follows that there exists an L∗-valued

(2n − k)-form α̂ ∈ H2n−k
dR (X, L∗) such that α ∧ α̂ is the generator of H2n

dR(X) and
∫

X α ∧
α̂ = 1. On the one hand, because τ∗α = 0,

0 =

∫
X̃Z

τ∗α ∧ τ∗α̂

=

∫
X̃Z

τ∗(α ∧ α̂).

Let deg (τ) be the degree of the smooth map τ : X̃Z → X. Since X and X̃Z are closed
and oriented manifolds and α ∧ α̂ is the generator of H2n

dR(X), from the definition of
degree,

deg (τ) =

∫
X̃Z

τ∗(α ∧ α̂)

= 0.

On the other hand, the degree of τ is equal to the number of points, counted with
multiplicity ±1, in the inverse image of any regular point in X. We may choose a
point x ∈ X such that x < Z. Since τ|X−Z is a diffeomorphism, x is a regular point and
the inverse image of x contains only one point. Therefore, by definition we obtain
deg (τ) = 1 and this leads to a contradiction. �

3. Blow-up formula of Morse–Novikov cohomology

Assume that (X, ω, θ) is a locally conformal Kähler manifold. Let Z ⊂ X be
an induced globally conformal Kähler submanifold, that is, the restriction of the

https://doi.org/10.1017/S0004972714000859 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714000859


[7] Blow-up formulas, Morse–Novikov cohomology 161

Lee form θ|Z is exact. By a conformal rescaling of the LCK metric, we may assume
that θ|Z = 0. In fact, an induced globally conformal Kähler submanifold is a Kähler
submanifold. In this section we will prove the following result.

Theorem 3.1. Let (X, ω, θ) be a compact locally conformal Kähler manifold. Assume
that Z ⊂ X is a compact Kähler submanifold such that θ|Z = 0. Then

Hk
θ (X) ⊕

( r−2⊕
i=0

Hk−2i−2
dR (Z)

)
� Hk

θ̃
(X̃Z),

where r = codimC Z and τ : X̃Z → X is the blow-up of X along Z.

The key idea of the proof is to construct the Mayer–Vietoris sequence for Morse–
Novikov cohomology.

We may choose a tubular neighbourhood V of Z in X such that the inclusion
i : Z ↪→ X induces an isomorphism of first de Rham cohomology groups

i∗ : H1
dR(V) � // H1

dR(Z).

Through a conformal rescaling of the Hermitian metric h, we may assume that θ|V = 0.
In particular, we may choose V small enough such that its inverse image Ṽ = τ−1(V)
is also a tubular neighbourhood of the exceptional divisor E in X̃Z . Let U be the open
subset X − Z. Then {U,V} forms an open covering of X. Denote the intersection of U
and V by W. Similarly, let Ũ = X̃Z − E and W̃ = Ũ ∩ Ṽ . Then {Ũ, Ṽ} forms an open
covering of X̃Z . Furthermore, by definition we get two diffeomorphisms

τ|Ũ : Ũ → U (3.1)

and
τ|W̃ : W̃ → W. (3.2)

Using the Mayer–Vietoris sequence with compact support (see [1, Proposition 2.7]),
we obtain two short exact sequences

0 // Ω∗c(W) // Ω∗c(U) ⊕Ω∗c(V) // Ω∗c(X) // 0 (3.3)

and
0 // Ω∗c(W̃) // Ω∗c(Ũ) ⊕Ω∗c(Ṽ) // Ω∗c(X̃Z) // 0. (3.4)

Note that Ω∗c is a contravariant functor under proper maps; in particular, the maps τ|Ũ ,
τ|Ṽ , τ|W̃ and τ are proper. It follows that the following diagram of Mayer–Vietoris
sequences of forms with compact support is well defined.

0 // Ωk
c(W)

(τ|W̃ )∗

��

// Ωk
c(U) ⊕Ωk

c(V)

(τ|Ũ )∗⊕(τ|Ṽ )∗

��

// Ωk
c(X)

τ∗

��

// 0

0 // Ωk
c(W̃) // Ωk

c(Ũ) ⊕Ωk
c(Ṽ) // Ωk

c(X̃Z) // 0
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Denote the Morse–Novikov cohomology of X with compact support by H∗c,θ(X);
then the sequences (3.3) and (3.4) induce two long exact sequences as follows:

· · · // Hk
c,θ(W) // Hk

c,θ(U) ⊕ Hk
c,θ(V) // Hk

c,θ(X) // Hk+1
c,θ (W) // · · ·

and

· · · // Hk
c,θ̃

(W̃) // Hk
c,θ̃

(Ũ) ⊕ Hk
c,θ̃

(Ṽ) // Hk
c,θ̃

(X̃Z) // Hk+1
c,θ̃

(W̃) // · · · .

Since θ̃ = τ∗θ, the map τ induces the following commutative diagram of the long exact
sequences:

· · · // Hk
c,θ(W)

(τ|W̃ )∗

��

f // Hk
c,θ(U) ⊕ Hk

c,θ(V)

(τ|Ũ )∗⊕(τ|Ṽ )∗

��

g // Hk
c,θ(X)

τ∗

��

h // Hk+1
c,θ (W)

(τ|W̃ )∗

��

// · · ·

· · · // Hk
c,θ̃

(W̃)
f̃ // Hk

c,θ̃
(Ũ) ⊕ Hk

c,θ̃
(Ṽ)

g̃ // Hk
c,θ̃

(X̃Z) h̃ // Hk+1
c,θ̃

(W̃) // · · ·

(3.5)
Note that (3.1) and (3.2) are diffeomorphic and, therefore, the induced homo-
morphisms (τ|Ũ)∗ and (τ|W̃)∗ are isomorphisms. Furthermore, since X and X̃Z are
compact,

Hk
c,θ(X) = Hk

θ (X) (3.6)

and
Hk

c,θ̃(X̃Z) = Hk
θ̃
(X̃Z). (3.7)

Consider the Morse–Novikov cohomology Hk
c,θ(V). Since θ|V = 0,

Hk
c,θ(V) = Hk

c (V). (3.8)

Similarly,
Hk

c,θ̃(Ṽ) = Hk
c (Ṽ). (3.9)

From (3.6)–(3.9), the commutative diagram (3.5) is equivalent to

· · · // Hk
c,θ(W)

�

��

f // Hk
c,θ(U) ⊕ Hk

c (V)

(τ|Ũ )∗⊕(τ|Ṽ )∗

��

g // Hk
θ (X)

τ∗

��

h // Hk+1
c,θ (W)

�

��

// · · ·

· · · // Hk
c,θ̃

(W̃)
f̃ // Hk

c,θ̃
(Ũ) ⊕ Hk

c (Ṽ)
g̃ // Hk

θ̃
(X̃Z) h̃ // Hk+1

c,θ̃
(W̃) // · · ·

(3.10)
The next step in the proof is to verify the following proposition.

Proposition 3.2. The homomorphism (τ|Ũ)∗ ⊕ (τ |Ṽ )∗ is monomorphic.
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Proof. Since (τ|Ũ)∗ is isomorphic, we only need to verify that (τ|Ṽ )∗ is monomorphic.
Note that V and Ṽ are tubular neighbourhoods of Z and E, respectively. Moreover,
Z and E are compact. According to Poincaré duality (see [1, Proposition 6.13]), we
have Hk

c (V) � Hk−2r
dR (Z) and Hk

c (Ṽ) � Hk−2
dR (E). By definition, the exceptional divisor E

is the projectivisation of the normal bundle of Z, namely, E = P(NZ/X). Let ρ : S → E
be the universal subbundle and denote the first Chern class of the dual bundle S ∗ by
t ∈ H2

dR(E). Then, by the Leray–Hirsch theorem (see [1, Theorem 5.11]), the de Rham
cohomology H∗dR(E) is a free module over H∗dR(Z) with basis {1, t, . . . , tr−1}. More
precisely, we can consider (τ|Ṽ )∗ as a morphism τ∗E , which is denoted by

τ∗E : Hk−2r
dR (Z)→ Hk−2

dR (E)
α 7→ tr−1 ∧ (τ|E)∗(α).

By definition, the injectivity of τ∗E is straightforward. Therefore, (τ|Ṽ )∗ is a mono-
morphism. �

To prove Theorem 3.1, we need the following general proposition and we give its
proof at the end of this section for completeness.

Proposition 3.3. Given a commutative diagram of abelian groups such that the
horizontal rows are exact

· · · // A1

i1
��

f // A2

i2
��

g // A3

i3
��

h // A4

i4
��

// · · ·

· · · // B1
k // B2

l // B3
m // B4 // · · ·

and where i1 and i4 are isomorphic and i2 and i3 are monomorphic, then there is a
natural isomorphism

coker i2 � coker i3.

Proof of Theorem 3.1. Consider the commutative diagram (3.10). According to
Propositions 2.5, 3.2 and 3.3, we get an isomorphism

coker(τ|Ũ)∗ ⊕ coker(τ|Ṽ )∗ � // coker τ∗. (3.11)

Note that

coker(τ|Ũ)∗ ⊕ coker(τ|Ṽ )∗ =
(
Hk

c,θ̃(Ũ) ⊕ Hk
c (Ṽ)

)
/
(
Im(τ|Ũ)∗ ⊕ Im(τ|Ṽ )∗

)
� Hk

c (Ṽ)/Im(τ|Ṽ )∗ ((τ|Ũ)∗ is isomorphic)
= coker(τ|Ṽ )∗

= coker τ∗E .

Therefore, the isomorphism (3.11) is equivalent to

coker τ∗E
� // coker τ∗.
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Now let us consider coker τ∗E . Recall that H∗dR(E) is a free module over H∗dR(Z) with
the basis {1, t, . . . , tr−1}. Therefore,

Hk−2
dR (E) =

r−1⊕
i=0

(ti ∧ (τ|E)∗Hk−2i−2
dR (Z)).

By definition of τ∗E ,

coker τ∗E = Hk−2(E)/Im τ∗E

=

r−2⊕
i=0

(ti ∧ (τ|E)∗Hk−2i−2
dR (Z))

�
r−2⊕
i=0

(Hk−2i−2
dR (Z)).

Finally,

Hk
θ̃
(X̃Z) � Im τ∗ ⊕ coker τ∗E

� Hk
θ (X) ⊕

( r−2⊕
i=0

Hk−2i−2
dR (Z)

)
(τ∗ is injective).

This completes the proof. �

Proof of Proposition 3.3. Consider the diagram

· · · // A1

i1
��

f // A2

i2
��

g // A3

i3
��

h // A4

i4
��

// · · ·

· · · // B1
k // B2

l // B3
m // B4 // · · ·

(3.12)

According to the exactness, we have Im k = ker l and Im f = ker g. From the
commutativity of the first square of (3.12), we get i2(Im f ) = k(Im i1). Note that i1 is
an isomorphism; therefore, Im i1 = B1. Furthermore, we have Im k = i2(Im f ) ⊂ i2(A2),
that is, Im k ⊂ Im i2. Consider the decomposition B2 = i2(A2) ⊕C. Note that

ker (l|C) = ker l ∩C

= Im k ∩C (ker l = Im k)
= 0 (Im k ⊂ i2(A2)).

Hence, the restriction l|C is injective. By the commutativity of the second square of
(3.12), we get i3(Im g) = l(Im i2). This implies that l(Im i2) ⊂ i3(A3) and, furthermore,
that there exists a well-defined homomorphism

l̄ : coker i2 = B2/Im i2 → coker i3 = B3/Im i3.
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First we verify that l̄ is injective. Equivalently, we need to show that for any b2 ∈ B2,
if l(b2) ∈ Im i3, then b2 ∈ Im i2. Assume that l(b2) = i3(a3) for some a3 ∈ A3. Because
of the exactness, m(l(b2)) = 0 and

0 = m(l(b2))
= m(i3(a3)) (i3(a3) = l(b2))
= i4(h(a3)) (m ◦ i3 = i4 ◦ h).

Since i4 is isomorphic, we get h(a3) = 0, that is, a3 ∈ ker h = Im g. Therefore,
a3 = g(a2) for some a2 ∈ A2. It follows that

l(b2) = i3(a3)
= i3(g(a2)) (a3 = g(a2))
= l(i2(a2)) (i3 ◦ g = l ◦ i2).

Hence, l(b2 − i2(a2)) = 0, that is, b2 − i2(a2) ∈ ker l = Im k ⊂ Im i2. Therefore, there
exists a′2 ∈ A2 such that b2 − i2(a2) = i2(a′2) and it follows that b2 = i2(a2 + a′2) ∈ Im i2.
Hence, l̄ is injective.

Finally, we need to show that l̄ is surjective. Consider the next square in the diagram
(3.12)

A2

i2
��

g // A3

i3
��

h // A4

i4 �

��

f ′ // A′2
i′2
��

B2
l // B3

m // B4
k′ // B′2

Let b3 ∈ B3, b4 = m(b3) and a4 = i−1
4 (b4). Consider i′2( f ′(a4)) ∈ B′2. Since i′2 is

monomorphic, f ′(a4) , 0 if and only if i′2( f ′(a4)) , 0. According to commutativity
and exactness,

i′2( f ′(a4)) = k′(i4(a4)) (i′2 ◦ f ′ = k′ ◦ i4)
= k′(m(b3)) (m(b3) = i4(a4))
= 0 (k′ ◦ m = 0).

It follows that f ′(a4) = 0, that is, a4 ∈ ker f ′ = Im h. Therefore, there exists a3 ∈ A3

such that a4 = h(a3). Furthermore,

m(b3) = i4(a4)
= i4(h(a3)) (a4 = h(a3))
= m(i3(a3)) (i4 ◦ h = m ◦ i3).

This implies that m(b3 − i3(a3)) = 0, that is, b3 − i3(a3) ∈ ker m = Im l. This completes
the proof. �
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