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Abstract

We prove a blow-up formula for Morse-Novikov cohomology on a compact locally conformal Kihler
manifold.
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1. Introduction

Let X be a complex manifold with a Hermitian metric 7. We denote the Kihler form
of h by w. If there exists a closed 1-form 6 such that dw = 6 A w, then w is called a
locally conformal Kihler structure, abbreviated LCK structure, on X with Lee form
6. In particular, a locally conformal Kéhler structure yields a Kdhler metric on the
universal covering of X. Equivalently, the complex manifold X is an LCK manifold if it
has a Kéhler covering with the monodromy acting on this covering by the holomorphic
homotheties. In particular, every Kéhler manifold is a special LCK manifold with zero
Lee form. However, there exist many interesting examples of non-Kéhler manifolds
which admit LCK structures. For instance, although the Hopf manifold S! x §2'*!
cannot admit any Ké&hler metric, it admits a canonical LCK metric (see [2, Ch. 3]).
Given an LCK manifold (X, w, 6), we may define an operator dy as follows:

do(@)=da—-0Aa YaeQ'(X).

Since (dy)? = 0, we have a 6-twisted de Rham complex (Q*(X), dy), which is called the
Morse—Novikov complex. The associated cohomology, denoted by Hj(X), is called the
Morse—Novikov cohomology. Generally speaking, the Morse—Novikov cohomology is
a generalisation of de Rham cohomology.

It is well known that the blow-up is a useful operation in complex geometry.
In particular, the blow-up of a Kihler manifold (at a point or along a complex
submanifold) is also Kéhlerian. In the LCK case a natural problem is to consider the
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blow-up of an LCK manifold. Tricerri [5] and Vuletescu [7] proved that the blow-
up of an LCK manifold at a point is LCK; however, whether the blow-up of an
LCK manifold along a submanifold is also LCK is not an immediate result. In 2013,
Ornea et al. [4] showed that the blow-up of an LCK manifold along a submanifold
is LCK if and only if the submanifold is globally conformally equivalent to a
Kidhler submanifold. The main purpose of this paper is to show that the Morse—
Novikov cohomology of the blow-up of an LCK manifold is determined by the
Morse—Novikov cohomology of the original LCK manifold and the de Rham
cohomology of the exceptional divisor, that is, we prove a blow-up formula for the
Morse—Novikov cohomology as follows.

TueorREM 1.1 (Theorem 3.1). Let (X, w,8) be a compact locally conformal Kdihler
manifold of dimension 2n. Assume that Z C X is a compact induced globally conformal
Kdhler submanifold. Then

r=2
HiX) ® (@ H§,;2"—2(Z)) =~ HA(X),

i=0
where r = codime Z and T : X; — X is the blow-up of X along Z.
This paper is organised as follows. We devote Section 2 to preliminaries of Morse—

Novikov cohomology and the blow-up of an LCK manifold along a submanifold.
Then, in Section 3, we give the proof of the main theorem.

2. Preliminaries

2.1. Locally conformal Kihler manifolds and Morse-Novikov cohomology. Let
(X, h) be a Hermitian manifold with Kéhler form w. We say that & is a locally
conformally Kihler metric if there exist an open covering of X, denoted by {U,}iea,
and a family of smooth functions

{fi: Ui = R
such that
hi :=exp(—f) - hly,

is Kéhlerian on every open subset U;.
Notice that the Kéhler form of #; is w; = exp(—f;) - wl|y,. Therefore, we have dw; = 0,
that is,

0 = d(exp(-f) - w)
= exp(—fi)(=dfi A w) + exp(—f) dw
= exp(—fi)dw - df; A w).

It follows that
do—-dfiANw=0 (onU,).
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For any pair of open subsets U; and U such that U;; = U; N U; # 0,
df,-/\a)=da) (on U,'j) 2.1

and
dfj Aw=dw (on U,'j). 2.2)

Furthermore, from (2.1) and (2.2),
(dﬁ - dfj) Aw=0 (01’1 U,j) (23)

Note that w is nondegenerate; hence, from (2.3),

df, = dfj (on U,'j).

This implies that {(df;, U;)} defines a globally closed 1-form 6, which is called the
Lee form of an LCK metric, and, furthermore, A;; = f; — f; is constant on Uj;.
Equivalently, we have the following result.

DeriniTioN 2.1. A Hermitian manifold (X; /) is an LCK manifold if and only if there
exists a closed 1-form (Lee form) 6 such that

dw =0 A w,
where w is the Kdhler form of 4.

Let Q*(X) be the space of smooth forms on X. We may define a differential operator
by

dp: Q*(X) -» Q(X)
a=da—-0Aa.

Furthermore, we have the 6-twisted complex

...ﬁ)Qk‘l(X)ﬁ).Qk(X)ﬂ)....

The complex (Q*(X),dy) is called the Morse—Novikov complex, and the associated
cohomology group
Hy(X) = H(Q(X); do)

is called the Morse—Novikov cohomology.

Suppose that R is the sheaf of locally constant real functions over X and R* is
the sheaf of locally constant nonzero real functions over X. Consider the exponential
homomorphism of sheaves

exp:R - R". 2.4)

From (2.4), we get a homomorphism of Cech cohomology of sheaves

exp’ : H'(X,R) » H'(X,R").
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Note that H'(X,R) = HtliR(X) and there is a one-to-one correspondence between the
set of real line bundles, over X, up to isomorphism, and the Cech cohomology group
H'(X,R*). Therefore, the Lee form determines a real line bundle L with the locally
constant transition functions {(exp(—4;;), U;;)}, which is called the weight line bundle
of the LCK structure. In particular, L is a flat line bundle over X with the flat
connection D; induced by the LCK structure by the formula D; = d — 6. Furthermore,
the connection D; determines a covariant differential

dp  TX,AT'X®L) > T(X, A ' T*X® L).

The flatness of the connection Dy, implies that d7 = 0; therefore, we get a generalised
de Rham complex (Q2*(X; L), dr) with the cohomology group H,(X, L) and we have
the following result.

ProrosiTiON 2.2. The Morse—Novikov cohomology group H’g(X) is isomorphic to the
cohomology group H[’;R(X, L) for every k.

Proor. Note that there is a one-to-one correspondence between isomorphism classes of
smooth line bundles equipped with a flat connection and isomorphism classes of local
systems of one-dimensional vector spaces (see [0, Proposition 9.11]). On one hand,
assume that £ is the local system on X corresponding to the weight line bundle L; then
the cohomology of the local system H*(X, £) is isomorphic to H},(X, L). On the other
hand, H*(X, £) is naturally identified with the Morse-Novikov cohomology H(X)
(see [3, Proposition 3.1]). This implies that H,(X) is isomorphic to H},(X, L). O

2.2. Blow-ups of locally conformal Kihler manifolds. In this section we
summarise the results of Ornea et al. [4] on the construction of an LCK structure
on the blow-up along a submanifold.

Let (X, w, 6) be an LCK manifold of complex dimension n. Suppose that Z C X is a
complex submanifold with complex codimension r.

Dermnition 2.3. We say that Z ¢ X admits an induced globally conformal Kdihler
(i.g.c.K.) structure if the pullback of the Lee form i*6 € Q!(Z) is exact; more precisely,
0 = [i*0] € H)(Z), where i : Z < X is the inclusion.

From now on we assume that X is compact and Z is a compact complex submanifold
with dimension dime Z > 1. Then the blow-up of X along Z, denoted by 7 : X; — X,
is a compact complex manifold with dimension dim¢ Xz = n.

Let E = 771(Z) be the exceptional divisor of X;. We are now in a position to
construct the LCK metric on X, when Z is an induced globally conformal Kihler
submanifold of X. First we need the following lemma [4, Lemma 3.4], which is a
well-known fact in Kidhler geometry.

Lemma 2.4. Suppose that (U, w) is a Kahler manifold and Z c U is a compact
submanifold. Let T: U — U be the blow-up of U alo:zg Z. Then, for any open
neighbourhood V of Z, there exists a Kahler metric & on U such that

Olg_y = T (wly-v),
where V = t71(V).
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Since Z is an induced globally conformal Kéhler submanifold, the restriction of the
Lee form 6|z is exact. Choose an open neighbourhood U of Z such that the inclusion
i : Z — U induces an isomorphism on the first de Rham cohomology,

i Hl (U) = H..(2).

Via a conformal rescaling of the Hermitian metric, we may assume that 6|y = 0.
It follows that w|y is a Kihler metric on U. Let U = t'(U). Then U is an
open neighbourhood of the exceptional divisor E in X,. Choose a smaller open
neighbourhood V of Z in U. According to Lemma 2.4, we get a Kéhler metric, denoted
by @, on U such that @ is equal to 7*(w|y) outside of V = 7(V). Therefore, we may
glue @ to *w to get an LCK metric on X.

In particular, Ornea et al. proved the following properties.

(1) [4, Theorem 2.8] If Z c X is an induced globally conformal Kéhler submanifold,
then the blow-up X, admits a locally conformal Kihler metric with Lee form
6 =16.

(2) [4, Theorem 2.9] If X, admits a locally conformal Kihler metric, then
the exceptional divisor E ¢ X, is an induced globally conformal Kihler
submanifold.

(3) [4, Corollary 2.11] If X, admits a locally conformal Kihler metric and,
furthermore, dim¢c Z > 1, then Z C X is an induced globally conformal Kéahler
submanifold.

Given any form a € Q(X) such that dy() = 0, the pullback 7% is a k-form on Xj.
Note that

dy(t*a) =d(T*a) - O A T
=1'da)-TOANT ¢ (B=10)

=7"(da—-0Aa)
= 7" (dg(@))
=0.

Therefore, 7 induces a homomorphism between Morse—Novikov cohomology groups
™ Hy(X) > Hy(Xy).

Furthermore, we have the following result.

ProrosiTioN 2.5. The map m : H{;(X) - Hg(f(z) is injective for every k.

Proor. Let L be the weight line bundle over Xz, which is determined by the
Lee form #. By definition, the locally constant transition functions of L are
{(T*(exp(=4;)), T~ 1(U;))}. It follows that L is the pullback of L, that is, L = 7*L.
The map 7 also induces a homomorphism

T Ho (X, L) — Hp(Xz, D). (2.5)
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From Proposition 2.2, we have Hs(X) = H% (X, L) and Hg(f(z) = H* (X7, L). To prove
Proposition 2.5, it is sufficient to show that (2.5) is injective for every k. Assume that
L* is the dual bundle of L. Note that there exists a naturally defined flat connection D;-
such that for any differential forms with values in vector bundles @ € I'(X, A*T*X ® L)
and Be (X, AN T*X Q L*),

d(a AP) = (dra) AB+ (=)™ Adp,

where d;- is the covariant differential of D;.. Similarly, we have the generalised de
Rham cohomology H,(X, L"). Using the harmonic theory of elliptic operators, we
may show that the pairing

f CHA(X, L) x HaKx, LY) — R!

(@,B) = fxa/\ﬁ

is nondegenerate.

The injectivity of (2.5) is proved by contradiction. Assume that the assertion
does not hold, so that there exists a nonzero «a € HSR(X, L) such that 7°a = 0. Since
a represents a nonzero class in H’;R(X, L), it follows that there exists an L*-valued
(2n — k)-form & € Hﬁ;‘k(X, L") such that a A & is the generator of H%(X) and fx a A
& = 1. On the one hand, because t*a = 0,

0=f TaAT'@

X

=f ™(a A @).
Xz

Let deg (1) be the degree of the smooth map 7 : X; — X. Since X and X are closed
and oriented manifolds and « A & is the generator of Hﬁﬁ(X), from the definition of
degree,

deg (1) = f ™(a A @)
Xz
=0.

On the other hand, the degree of 7 is equal to the number of points, counted with
multiplicity +1, in the inverse image of any regular point in X. We may choose a
point x € X such that x ¢ Z. Since 7|y_7 is a diffeomorphism, x is a regular point and
the inverse image of x contains only one point. Therefore, by definition we obtain
deg (1) = 1 and this leads to a contradiction. O

3. Blow-up formula of Morse-Novikov cohomology

Assume that (X, w, 0) is a locally conformal Kihler manifold. Let Z C X be
an induced globally conformal K#hler submanifold, that is, the restriction of the
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Lee form 6|7 is exact. By a conformal rescaling of the LCK metric, we may assume
that |z = 0. In fact, an induced globally conformal Kihler submanifold is a Kahler
submanifold. In this section we will prove the following result.

TueOREM 3.1. Let (X, w, 0) be a compact locally conformal Kdhler manifold. Assume
that Z C X is a compact Kdihler submanifold such that 6|7 = 0. Then

r=2
HiX) @ (QB Hj,;Zf—z(Z)) =~ HY(Xy),
i=0
where r = codime Z and 7 : X; — X is the blow-up of X along Z.

The key idea of the proof is to construct the Mayer—Vietoris sequence for Morse—
Novikov cohomology.

We may choose a tubular neighbourhood V of Z in X such that the inclusion
i : Z — X induces an isomorphism of first de Rham cohomology groups

it HL (V) = HL (2).

Through a conformal rescaling of the Hermitian metric 4, we may assume that ]y = 0.
In particular, we may choose V small enough such that its inverse image V = v~1(V)
is also a tubular neighbourhood of the exceptional divisor E in X;. Let U be the open
subset X — Z. Then {U, V} forms an open covering of X. Denote the intersection of U
and V by W. Similarly, let U = X, — E and W = U N V. Then {U, V} forms an open
covering of X. Furthermore, by definition we get two diffeomorphisms

tg:0->U 3.1)

and
Tly W - W. (3.2)

Using the Mayer—Vietoris sequence with compact support (see [1, Proposition 2.7]),
we obtain two short exact sequences

0 — QW) — Q1) ® QiV) — Q3(X) — 0 (3.3)

and
0— QW) — Q:0) ® Q:(V) — Q:(Xz) — 0. (3.4)

Note that Q) is a contravariant functor under proper maps; in particular, the maps 7y,
7|y, 7l and 7 are proper. It follows that the following diagram of Mayer—Vietoris
sequences of forms with compact support is well defined.

0 — QW) ——= QK(U) ® QK(V) —— Q}(X) ——0

(Tlw)* l (Tl ey l T l

0 — QW) —— QX(0) @ QK(V) — QX(Xy) —=0
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Denote the Morse-Novikov cohomology of X with compact support by H_ ,(X);
then the sequences (3.3) and (3.4) induce two long exact sequences as follows:

e Hfﬂ(W) — Hf,e(U) ®H: (V) — Hfﬁ(X) — H (W) —
and
o HE W) — HE () @ HE (V) — HY () — HE3 (W) —

Since @ = 76, the map 7 induces the following commutative diagram of the long exact

sequences:
—>HkH(W)—>Hk0(U)®Hk0(V)—>H"9(X) —— H (W) —— -
(Tlw)* l (7lg) &(tly)* l T L (tlw)* L
e HE (W) — HE(0) @ HE (V) = HE ()~ S () —— -

3.5
Note that (3.1) and (3.2) are diffeomorphic and, therefore, the induced homo-
morphisms (7]5)" and (7|y)* are isomorphisms. Furthermore, since X and X, are
compact,

H: ((X) = Hy(X) (3.6)

and
H;(X2) = Hy(X2). 3.7

Consider the Morse—Novikov cohomology Hfﬁ( V). Since 9]y =0
H (V) = HE(V). (3.8)

Similarly,
H' (V) = H{(V). (3.9)

From (3.6)—(3.9), the commutative diagram (3.5) is equivalent to

—>Hk6(W)—>Hk9(U)®Hk(V)—>Hk(X) Hk+1(W)

l (Tlg)*ﬂa(Tlv)*j T*l :L

(3.10)

I3

The next step in the proof is to verify the following proposition.

ProrosiTioN 3.2. The homomorphism (t|z)* @ (T |y)* is monomorphic.
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Proor. Since (7]7)* is isomorphic, we only need to verify that (7i)* is monomorphic.
Note that V and V are tubular neighbourhoods of Z and E, respectively. Moreover,
Z and E are compact. According to Poincaré duality (see [1, Proposition 6.13]), we
have HX(V) = H%.?"(Z) and HX(V) = H'.*(E). By definition, the exceptional divisor E
is the projectivisation of the normal bundle of Z, namely, E = P(Nzx). Letp:S —» E
be the universal subbundle and denote the first Chern class of the dual bundle S* by
te H;R(E ). Then, by the Leray—Hirsch theorem (see [1, Theorem 5.11]), the de Rham
cohomology H,(E) is a free module over H},(Z) with basis {1,1,..., t"~1}. More
precisely, we can consider (7]y)” as a morphism 77, which is denoted by

Tyt Hix?(Z) — Hy (E)
a7 A () ().
By definition, the injectivity of 7}, is straightforward. Therefore, (7]y)* is a mono-
morphism. O

To prove Theorem 3.1, we need the following general proposition and we give its
proof at the end of this section for completeness.

ProrosiTion 3.3. Given a commutative diagram of abelian groups such that the
horizontal rows are exact

AL ay S oA, g,
ill] izl 1.3L i4l
B—*~B—'-B,_"-B,

and where iy and iy are isomorphic and i, and i3 are monomorphic, then there is a
natural isomorphism
coker i, = coker i3.

Proor oF THEOREM 3.1. Consider the commutative diagram (3.10). According to
Propositions 2.5, 3.2 and 3.3, we get an isomorphism

coker(7|p)" @ coker(t|y)* — coker 7. (3.11)
Note that
coker(7ly)" @ coker(tly)* = (H" ,(U) ® Hy(V))/(Im(t|)" & Im(];)")

HY(V)/Im(r])*  ((7]g)" is isomorphic)

coker(tly)*

R

—_ &
= coker 7.

Therefore, the isomorphism (3.11) is equivalent to

coker 7, — coker 7*.
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Now let us consider coker 7. Recall that H),(E) is a free module over H,(Z) with

the basis {1, ¢, ...,#!}. Therefore,

r—1
Hi(E) = (P A (tlp) Hig?2(2)).
i=0

By definition of 77,

coker 7y = H*%(E)/Im Tx

r=2
= P A (@lp) H2(2))
i=0

r=2

= (PHZ @),
i=0

Finally,

Hg(f(z) =~ Im 7" @ coker 7
r=2

HYOO @ (@ H’;,;Z"-Z(Z)) (r* is injective).
i=0

1R

This completes the proof.

Proor or ProrosiTion 3.3. Consider the diagram

f g h

Al - AZ A3 A4
R
B—t~B'-B,_".B,

(3.12)

According to the exactness, we have Imk =ker/ and Im f =ker g. From the
commutativity of the first square of (3.12), we get i(Im f) = k(Im {;). Note that i; is
an isomorphism; therefore, Imi; = B;. Furthermore, we have Im k = i;(Im f) C i2(A),

that is, Im k C Im i,. Consider the decomposition B, = i3(A;) @ C. Note that

ker(llc) =kerINC
=ImkNnC (ker [=1Imk)
=0 (ImkCiy(Ay)).

Hence, the restriction /|¢ is injective. By the commutativity of the second square of
(3.12), we get i3(Im g) = [(Im i,). This implies that /(Im i) C i3(A3) and, furthermore,

that there exists a well-defined homomorphism

[: cokeriy = By/Imi, — cokeriz = B3/Imis.
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First we verify that [ is injective. Equivalently, we need to show that for any b, € B,,
if I(b,) € Im i3, then b, € Imi,. Assume that [(b,) = i3(a3) for some a3 € As. Because
of the exactness, m(l(b,)) = 0 and

0 = m(l(by))
=m(i3(a3)) (i3(a3) = (b))
= i4(h(az)) (moiz=i4oh).

Since i4 is isomorphic, we get h(a3) = 0, that is, as € ker h = Img. Therefore,
as = g(ap) for some a; € A,. It follows that

l(b) = i3(a3)
=i3(8(a2)) (a3 = glaz))
= l(i2(a2)) (i30g=10D).
Hence, (b, — ix(ay)) = 0, that is, by — i»(a») € ker [ = Imk C Imi,. Therefore, there
exists a), € Ay such that by —ix(az) = ix(a}) and it follows that b, = ix(ay + a}) € Imi,.
Hence, [ is injective.
Finally, we need to show that / is surjective. Consider the next square in the diagram

(3.12)
A=Ayt ay L
izt igj utz i;l
B, —~ By —"~B,— B,

Let b3 € B3, by = m(b3) and a4 = i;l(b4). Consider i%(f"(as)) € B,. Since 7, is
monomorphic, f’(as) # 0 if and only if #,(f"(as)) # 0. According to commutativity
and exactness,

ih(f'(as)) = K'(is(as)) (o f' =k'oiy)
=K' (m(b3)) (m(b3) = is(as))
=0 (Kom=0).

It follows that f"(as) = 0, that is, a4 € ker f’ = Im h. Therefore, there exists az € A
such that a4 = h(as). Furthermore,

m(b3) = is(as)
is(h(az)) (a4 = h(az))
m(i3(az)) (igoh=mois).

This implies that m(bs — i3(a3)) = 0, that is, b3 — iz(a3) € ker m = Im[. This completes
the proof. O
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