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Abstract
We consider a nonnegative random variable T representing the lifetime of a system.We discuss the residual lifetime
TX = (T −X |T > X), where X denotes the random age of the system. We also discuss the mean residual life (MRL)
of T at the random time X. It is shown that the MRL at random age (MRLR) is closely related to some well-known
variability measures. In particular, we show that the MRLR can be considered a generalization of Gini’s mean
difference (GMD). Under the proportional hazards model, we show that the MRLR gives the extended GMD and
the extended cumulative residual entropy as special cases. Then, we provide a decomposition result indicating that
the MRLR has a covariance representation. Some comparison results are also established for the MRLs of two
systems at random ages.

1. Introduction

1.1. Background and related literature

The mean residual life (MRL) is a valuable concept in a wide range of fields, such as reliability engi-
neering and survival analysis, providing insights into the expected remaining life of entities or systems.
In reliability engineering, the MRL is used to assess the remaining lifetime of systems and components
that have survived up to a certain point of time t. Engineers can use it to make predictions about the
remaining useful life of machinery or equipment. In the medical field, survival analysis involves study-
ing the time until an event of interest occurs, such as death. The MRL is used to estimate the average
remaining lifespan for patients who have already survived for a certain duration. In the last few decades,
a large number of research works have been reported in the literature on various aspects of the theory
and applications of MRL. We refer the reader to [16] for the theory and applications of the MRL.

Let T be a continuous nonnegative random variable describing the life of a live organism. If T has
the survival function F̄ (t) = P(T > t) and a finite mean `, then the MRL of T at age t is defined as

m(t) ≡ E(T − t |T > t) =
∫ ∞
t F̄ (x)dx

F̄ (t)
,

for t such that F̄ (t) > 0. Note that m(0) = ` and by the finiteness of `, we have m(t) < ∞, for all
t ∈ (0,∞). As we mentioned, the MRL is a widely used tool in the study and modeling the lifetime
data in reliability engineering and survival analysis. We refer the reader, among others, to [22] for the
concept and some related theoretical results on MRL. [17] studied discrete bathtub and upside-down
bathtub MRLs. [30] showed that the survival function F̄ satisfies a variant of lack of memory property
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involving the MRL, if and only if the MRL is a linear function of time. They also defined the con-
cept of proportional MRLs. [1] used the local linear fitting technique to estimate the MRL. Asadi and
Bayramoglu [4] studied the MRL of coherent systems under different conditions. [34] studied a model
for an upside-down bathtub-shaped MRL and explored its properties. [35] gave a nonparametric esti-
mator to estimate decreasing MRL based on type II censored data. [12] studied the proportional MRLs
model to analyze the survival data in the presence of censored observations. [9] explored the MRL
of a system with two dependent components per element. [20] used the MRL as a condition index in
condition-based maintenance for decision-making. [25] studied the role of dependence in residual life-
times in a two-component system. [41] estimated the MRL based on ranked set sampling. [42] studied
stochastic comparisons of conditional residual lifetimes and gave some applications.

The MRL has applications in other branches, including extreme value theory, hydrology, actuarial
science, environmental science, etc. (see, for example, [15] and references therein).

The residual lifetime at the random age has also been considered in the literature. Let T be a random
variable representing the lifetime of a system/device. Let X denote the random age of the system. Then
the residual lifetime of the system, given that it survives at random time X, is

TX = (T − X |T > X).

The residual life at random time has applications in different areas, such as queueing theory [26, 37] and
reliability [27]. We also refer the reader to [13, 24], and [10] and references therein on some stochastic
ordering and preservation results on the residual life at random times under certain classes of aging.

Another notion of random age has also been considered in the literature. Consider a homogeneous
population of statistically identical items with lifetime T. Assume that each item has been operating for
some time that varies from item to item. Therefore, an item selected randomly from the population can
be described by its random age X whose remaining lifetime is a random variable TX depending on the
random age X (see Remark 3.7). We refer to [11, 14, 19] and [6] for details on this notion of random age.

1.2. Contributions of the paper

We consider a non-negative random variable T, which represents the lifetime of a system. Within this
context, we investigate the concept of residual lifetime, TX = (T − X |T > X), where X represents
the random age of the system. Our discussion centrs on the mean of TX, which we call the MRL at
random age (MRLR) and denote by E(TX). The analysis reveals a close connection between E(TX)
and several well-known measures of variability. Notably, our proposed MRLR can be viewed as an
extension of Gini’s mean difference (GMD). Under the proportional hazards model, we illustrate how
the MRLR E(TX) yields both the extended GMD and the extended cumulative residual entropy (CRE)
as special cases. Furthermore, we present a decomposition result, exploring that the MRLR E(TX) can
be represented in terms of covariance functionals and the expected values of T and X, respectively.
Finally, we present a copula-based representation of the MRLR E(TX) in the case that T and X are
dependent.

1.3. Organization of the paper

The organization of the paper is as follows: In Section 2, we first give some preliminary results that are
useful in subsequent sections. In Section 3, after representing various forms of the MRLR E(TX), we
show that, by choosing different forms for the distribution of X, E(TX) is connected to different measures
of variability. We show that the MRLR E(TX) can be represented as the conditional expectation of the
ordinary MRL of T and the conditional expectation of the mean inactivity time (MIT) of X. Section 4
is devoted to a covariance representation of E(TX) resulting in some useful inequalities for the MRLR.
In Section 5, we give a copula-based representation of the MRLR E(TX) for the case that T and X are
dependent. The paper is finalized with some concluding remarks in Section 6
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2. Some variability measures

Various measures have been introduced in the literature to quantify the variability of the probability
distribution of a random variable. In this section, we revisit some of the most applied ones in the con-
text of our discussion. Let us consider a continuous random variable T with a distribution function
F (t) = P(T ≤ t), where t ∈ A ⊆ R. The most popular measure of variability associated with T is the
variance defined as Var(T) = E(T − `)2, where ` = E(T). The most similar index of variability to
the variance with applications in finance and other fields is GMD. The GMD shares many properties
with the variance but can be more informative about the properties of distributions that depart from
normality (see Yithzaki [38]). The GMD corresponding to T is defined as

GMD(T) = E( |T1 − T2 |) = 2
∫

F (x)F̄ (x)dx, (1)

where T1 and T2 are independent random variables distributed as T. One can easily verify that
GMD(T) = 4Cov(T ,F (T)) (see [40]). [5] have shown that GMD can be represented as GMD(T) =

2E
(
m2(T)

)
, where

m2(t) =
∫ ∞
t F̄2(x)dx

F̄2 (t)
.

Note that m2(t) can be considered as the MRL of a two-component series system with independent
components.

The extended GMD, denoted by EGia (T), is proposed as a parametric extension of the GMD(T) in
the following way:

EGia (T) =
∫ ∞

0

(
F̄ (t) − F̄a (t)

)
dt v > 0.

One can verify that EGia (T) has the following covariance representation (see [39]).

EGia (T) = a [I (0 < a < 1) − I (a > 1)] Cov(T , F̄a−1(T)),

where I(A) is the indicator function defined over the set A, and a is a parameter that ranges from 0 to
infinity and determines the relative weight attributed to “various portions” of the probability distribu-
tion. Obviously, for a = 2, the extended Gini difference reduces to GMD(T) (up to a constant). Another
representation of EGia (T) is as EGia (T) = (a − 1)E(ma (T)) (see [5]), where

ma (t) =
∫ ∞
t F̄a (x)dx

F̄a (t)
.

For more interpretations and applications of EGia (T) in economic studies based on different values of
a, we refer to [40].

Another popular in the literature of information theory measures is the CRE, defined by [31] as

E (T) ≡ −
∫ ∞

0
F̄ (x) log F̄ (x)dx. (2)

As an alternative to the Shannon entropy measure, the cited authors argued that the CRE can be consid-
ered as a measure of uncertainty. They obtained several properties of the CRE and provided applications
in computer vision.Matching two ormore images under diverse conditions like pose, acquisition param-
eters, etc., is prevalent in fields such as computer vision, medical imaging, geographical information
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systems, and more. In recent years, information-theoretic measures have become extensively utilized in
defining cost functions to optimize these matches. Motivated by this, [31] have utilized the concept of
CRE as a valuable tool for image alignment in computer vision. It was reported by [3] that the following
equality holds for a non-negative random variable

E (T) = Cov(T ,Λ(T)), (3)

whereΛ(x) = − log F̄ (x), is the cumulative failure rate. It was also noticed by [8] that the CRE is closely
related to the mean remaining lifetime, m(t), of a non-negative random variable T. In fact, it is always
true that the CRE can be represented as CRE = E(m(T)).

3. MRL at random age

Let T be a random variable representing the lifetime of a system/device. Let X (independent of T) denote
the random age of the system. Then, the residual lifetime of the system, given that it survives at time X,
is

TX = (T − X |T > X). (4)

Assume that F(G) denotes the distribution function of T(X) and denote the corresponding reliability
function by F̄ = 1 − F(Ḡ = 1 − G). Then, the reliability function of TX is given as

P(TX > t) = P(T − X > t |T > X)

=
P(T > t + X)

P(T > X)

=

∫ ∞
0 P(T > t + x |X = x)dG(x)∫ ∞

0 P(T > x |X = x)dG(x)

=

∫ ∞
0 F̄ (t + x)dG(x)∫ ∞

0 F̄ (x)dG(x)
, (5)

where the third equality follows from the assumption of independence between T and X.
A measure of interest in many applications may be the MRLR of TX, denoted by E(TX), given by

E(TX) =
∫ ∞

0
P(TX > t)dt =

∫ ∞
0

(∫ ∞
0 F̄ (t + x)dG(x)

)
dt∫ ∞

0 F̄ (x)dG(x)
.

The next proposition gives a representation of E(TX).

Proposition 3.1. The MRLR E(TX) can be represented as

E(TX) =
∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

. (6)
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Proof. We have

E(TX) =

∫ ∞
0

(∫ ∞
0 F̄ (t + x)dG(x)

)
dt∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞
0

(∫ ∞
x F̄ (t)dt

)
dG(x)∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞
0 F̄ (t)

(∫ t
0 dG(x)

)
dt∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

.

�

Remark 3.2. Wemust emphasize that while, in general, T and X may be dependent, there are instances
in real-life scenarios where they can be independent. For instance, consider a system with a lifetime T
that commences operation at t = 0. The system is then monitored by an operator at a random time X,
where X (the time of inspection) can be entirely independent of T (the system’s lifetime). In cases
where T and X are dependent, and their joint distribution can be modeled by a copula, we provide a
brief discussion on the general form of E(TX) in Section 5.

An interpretation of MRLR

It is known that the GMD can be interpreted as follows: Let one be interested in measuring the vari-
ability of a certain quantity in a population of individuals. He or she may draw a random sample of
two observations and record the absolute difference between them. Then, the GMD can be interpreted
as the expected absolute difference between two randomly drawn members from the population. As an
extension of GMD, E(TX) can be interpreted as a general measure of variability as follows. Consider an
investigator who is interested in measuring the variability of a certain quantity (T) in the population with
respect to a reference population (X) (given that T > X). The investigator draws a random observation
from T and one observation from X and records the difference between them. Repeating the sampling
procedure an infinite number of times and averaging the differences yield the E(TX). Hence, the E(TX)
can be interpreted as the expected difference between two randomly drawn members from the two pop-
ulations. In Section 3.1, we show that by selecting specific forms for the distribution functions of X, the
MRLR E(TX) becomes associated with well-known variability measures.

Corollary 3.3. Note that, based on the representation (6), the MRLR E(TX) can also be written as
follows:

E(TX) =
∫ ∞
0 F̄ (t) −

∫ ∞
0 F̄ (t)Ḡ(t)dt∫ ∞

0 F̄ (x)dG(x)

=
E(T) − E(min(T ,X))

E(F̄ (X))

=
E(T) − E(min(T ,X))

E(G(T)) .
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It can similarly seen that the MRLR E(TX) can also be represented as follows:

E(TX) =
E(max(T ,X)) − E(X)

E(G(T))

=
E(max(T ,X)) − E(X)

E(F̄ (X))
.

As illustrations of the MRLR, let us look at the following examples.

Example 3.4. Let T be distributed as exponential distribution with reliability function F̄ (t) = e−_t ,
t > 0, _ > 0, and X be distributed as an arbitrary distribution Ḡ(t) on real positive line. Then, it can be
easily seen (based on the memoryless property of the exponential distribution) that

P(TX > t) =
∫ ∞
0 e−_(t+x)dG(x)dt∫ ∞

0 e−_xdG(x)
= e−_t .

That is, TX has an exponential distribution with parameter _ and thus E(TX) = _−1.

Example 3.5. Let T and X be distributed as Pareto distributions, respectively, with reliability functions
F̄ (t) =

( 1
1+t

)U, t > 0, U > 0, and Ḡ(t) =
( 1
1+t

)V , t > 0, V > 0. Then, we have

EU,V (TX) =
∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

=

∫ ∞
0

( 1
1+t

)U (
1 −

( 1
1+t

)V) dt∫ ∞
0 V

( 1
1+t

)U+V+1dt

=
U + V

(U − 1) (U + V − 1) , U > 1.

It can be seen that for fixed value V, theMRLREU,V (TX) is a decreasing function of U. If we assume here
that the Pareto distributionwith fixed parameter V0 is a reference distribution, thenEU,V0 (TX) as function
U can be interpreted as a measure of variability, which shows the variability of Pareto distribution with
shape parameter U with respect to the reference Pareto distribution with shape parameter V0. Here, we
observe that for U1 < U2, then EU1,V0 (TX) ≤ EU2,V0 (TX) showing that the Pareto distribution with shape
parameter U1 is less variable than the Pareto distribution with shape parameter U2 in terms of reference
Pareto distribution with shape parameter V0.

Example 3.6. We consider two cases:

• Let T be distributed as Weibull distribution, with reliability function F̄ (t) = e−tU , t > 0, U > 0, and
X be distributed as exponential with reliability function Ḡ(t) = e−t , t > 0. Then, we have

EU (TX) =
∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

=

∫ ∞
0 e−tUdt∫ ∞

0 e−tU−tdt
− 1.
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Figure 1. The plot of MRLR EU (TX) as a function U for Weibull (left) and Pareto (right) distributions
with shape parameter U with random age distributed as exponential.

The MRLR EU (TX) here does not have a closed form. A plot of EU (TX), as a function of U, is
given in Figure 1 (left). It is seen that EU (TX) is a decreasing function of U.

• Let T be distributed as Pareto distribution, with reliability function F̄ (t) =

(
1
1+t

)U
, t > 0, U > 0,

and X be distributed as exponential with reliability function Ḡ(t) = e−t , t > 0. Then, we have

EU (TX) =
∫ ∞
0 (1 + t)−U dt∫ ∞

0 (1 + t)−U e−tdt
− 1.

The MRLR EU (TX) here also does not have a closed form. A plot of EU (TX) is given in Figure 1
(right) as a function of U. It is seen that the MRLR EU (TX) is a decreasing function of U.

Remark 3.7. As we mentioned in the Introduction section, another notion of residual life at random
age is defined in the literature. Consider a homogeneous population of statistically identical items with
random generic lifetimes denoted by T. Assume that each item has been operating for some time that
varies from item to item. Therefore, an item selected randomly from the population can be described by
its random age X. As a practical example, we can think about manufactured components of used items
with a random age X. Let T∗

X be the remaining lifetime of the selected item at the random age X. If the
cdf of X is denoted by G, then under the independence condition, T∗

X has the survival function

P(T∗
X > t) =

∫ ∞

0

(
F̄ (t + x)

F̄ (x)

)
dG(x).

Recently, [6] investigated several properties of E(T∗
X) and its connections to variability measures. Note

that the reliability functions of TX (defined in (4)) and T∗
X are connected as

P(TX > t) =
∫ ∞
0 F̄ (t + x)dG(x)∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞
0

F̄ (t+x)
F̄ (x) F̄ (x)dG(x)∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞

0

F̄ (t + x)
F̄ (x)

g∗(x)dx = P(T∗
X > t),
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where g∗(x) is the conditional distribution of (X |T > X) given as

g∗(t) = F̄ (t)dG(t)∫ ∞
0 F̄ (t)dG(t)

, t > 0.

We refer also to [23] for more results on these notions of residual life at random ages.

3.1. Some important special cases

In the following, we demonstrate that by selecting specific forms for the distribution function of X, the
MRLR E(TX), becomes associated with well-known variability measures.

• Extended GMD: Assume that T and X have proportional hazards, i.e., there exists U > 0, such that
the reliability function of X is given as Ḡ(x) = F̄U (x). Then the corresponding MRLR, denoted
by EU (TX) is obtained as

EU (TX) =
∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

=

∫ ∞
0 F̄ (t)

(
1 − F̄U (t)

)
dt

U
∫ ∞
0 F̄ (x)F̄U−1(t)dF (t)

=
U + 1
U

(∫ ∞

0

(
F̄ (t) − F̄U+1(t)

)
dt

)
=
U + 1
U

EGiU+1(T), (7)

where EGiU+1(T) is the extended GMD of order U + 1. In particular when U = 1, i.e., T and X have
the same distribution, then we arrive at the GMD(T). That is,

E1(TX) = 2
∫ ∞

0

(
F̄ (t) − F̄2(t)

)
dt = GMD(T),

Note, using the fact that the extended GMD has the following covariance representation,

EGiU (T) = −UCov
(
T , F̄U−1(T)

)
,

we have

EU (TX) = − (U + 1)2
U

Cov
(
T , F̄U (T)

)
. (8)

In particular that U = 1, we arrive at

E1(TX) = 4Cov
(
T ,F (T)

)
.

• Cumulative residual entropy: Using the fact that for any x > 0,

lim
U→0

1 − xU

U
= − log x,
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we obtain from (7) the CRE E (X) in (2). That is,

lim
U→0
EU (TX) = lim

U→0
U+1
U

EGiU+1(T)

= −
∫ ∞
0 F̄ (x) log F̄ (x)dx

= E (X).

[5] proposed the generalized entropy functional of order U (as a general form of CRE) as follows

hU (F̄) = −
∫ ∞

0
F̄U (x)LU (F̄ (x))dx, U > 0, (9)

where

LU (x) =
{

x1−U−1
1−U

x ≥ 0,U ∈ (0, 1)⋃(1,∞)
log x x > 0,U = 1.

Note that the case U → 1, results in the CRE in (2). It is easily seen from (7) that EU (TX) can also
be represented in terms of generalized entropy functional as

EU (TX) = hU+1(F̄).

On the other hand, it can be easily shown that for a random variable with reliability function F̄U (t),
U > 0, if mU (t) denotes the corresponding MRL, i.e.,

mU (t) =
∫ ∞
t F̄U (x)dx

F̄U (t)

then,

hU (F̄) = E(mU (T)).

Thus, another alternative for representing EU (TX) is as follows

EU (TX) = E(mU+1(T)).

• An actuarial index: [36] introduced an actuarial index which measures the right-tail deviation for
a nonnegative random variable T. Denoting the reliability function of T by F̄, it is defined as

W (T) =
∫ ∞

0
F̄

1
2 (x)dx − E(T).

It is easily seen that for the case that T and X both identically distributed as F̄ 1
2 (t), then we have

from (6),

E(TX) =
∫ ∞
0 F̄ 1

2 (t)(1 − F̄ 1
2 (t))dt

1
2

∫ ∞
0 F̄ (x)dF (x)

= 4W (T).
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• Equilibrium distribution: The equilibrium distribution (ED) corresponding to distribution func-
tion F is a distribution with the density function given by

ge(x) =
F̄ (x)
`

,

where 0 < ` < ∞ is the mean of F. In a renewal process, the ED arises as the asymptotic distribu-
tion of the waiting time until the next renewal and the time since the last renewal at time t. Also,
a delayed renewal process has stationary increments if and only if the distribution of the actual
remaining life is ge(x). Such a process is known in the literature as the stationary renewal process
or equilibrium renewal process (see [32]). If we assume that the random age X has an ED with
density ge(x), then E(TX) is given as

E(TX) =
∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

=

∫ ∞
0 F̄ (t)

(∫ t
0 F̄ (x)dx

)
dt∫ ∞

0 F̄2(x)dx

=

(∫ ∞
0 F̄ (t)dt

)2∫ ∞
0 F̄2(x)dx

=
`2

`2
,

where `2 is the expectation of a minimum of a random sample of size 2 from distribution F.
• Upper record values: The upper record values, in a sequence of i.i.d. random variables X1,X2, ...,

have applications in different areas of applied probability and reliability engineering (see [2]). Let
Xi’s have a common, absolutely continuous cdf F(t). Define a sequence of record times U (n), n =

1, 2, ..., as follows.

U (n + 1) = min
{
j : j > U (n), Xj > XU (n)

}
, n ≥ 1,

with U (1) = 1. Then, the sequence of upper record values {Rn, n ≥ 1} is defined by Rn =

XU (n) , n ≥ 1, where R1 = X1. The reliability function of Rn is given as

F̄n(t) = F̄ (t)
n−1∑
x=0

[− log F̄ (t)]x

x!
, t > 0, n = 1, 2 . . . . (10)

The upper records can be viewed as the maxima in a sample of random size n, where n is
determined by the values and the order of occurrence of the observations. From the reliabil-
ity theory point of view, the nth record is just the failure time of the 1-out-of-U(n) system.
Also, if Sn denotes the occurrence time of the n-th event in a non-homogeneous Poisson pro-
cess (NHPP) with the mean value function Λ(t) = − log F̄ (t), then Rn

d
= Sn, n = 1, 2, . . . ,

where d
= denotes equality in distribution; see [18]. It is well-known that the process of minimal

repairs (that restores an item to the state it has just before a failure) forms the corresponding
NHPP. If we assume that n= 2 in (10), and assume that G(x) in (6) is the distribution of R2 then,
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we obtain

E(TX) =
∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

=

∫ ∞
0 F̄ (t)

(
1 − F̄ (t) + F̄ (t) log F̄ (t)

)
−

∫ ∞
0 f (t)F̄ (t) log F̄ (t)

=

∫ ∞
0 F̄ (t)F (t)dt + 1

2

∫ ∞
0 F̄2 (t) log F̄2 (t)

)
−

∫ ∞
0 f (t)F̄ (t) log F̄ (t)

= 2
[
GMD(T) − E (T∗)],

where T∗ is a random variable showing the minimum of a random sample with size 2 from F.
If we assume that T has a distribution as of R2, and G(x) = F (x), then

E(TX) =
∫ ∞
0

(
F̄ (t) − F̄ (t) log F̄ (t)

) (
1 − F̄ (t)

)∫ ∞
0

(
F̄ (t) − F̄ (t) log F̄ (t)

)
f (t)

=
4
3
[
E(R2 − R∗

2)
]
,

where R∗
2 is the second upper record value based on a sequence of i.i.d random variables with

reliability function F̄2.
• Finite range distributions: Assume that T is a continuous random variable distributed on a finite

set (0, g), g > 0with distribution function F. Furthermore, assume that X has the power distribution
on (0, g), i.e., G(x) = ( x

g
)a, 0 < x < g, a> 1. Under these circumstances, we have

E(TX) =
∫ ∞
0 F̄ (t)G(t)dt∫ ∞
0 F̄ (x)dG(x)

=

∫ g

0 taF̄ (t)dt∫ g

0 ata−1F̄ (x)dx

=
E(Ta+1)

(a + 1)E(Ta) .

3.2. The MRL and MIT representations of E(TX)

As we already mentioned, the mean remaining lifetime of a non-negative random variable T, denoted
by m(t), is defined as

m(t) = E(T − t |T > t) =
∫ ∞
t F̄ (x)dx

F̄ (t)
.

The following simple result shows that E(TX) can be represented in terms of m(t) (see also [13]).

Proposition 3.8. Assume that m(t) is the MRL of T. Then E(TX) can be represented as

E(TX) = E(m(X) |T > X),

where the expectation on the RHS is over the distribution of the conditional random variable (X |T > X).
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Proof. First note that the conditional distribution of (X |T > X) has a density function of the form

g∗(t) ≡ F̄ (t)dG(t)∫ ∞
0 F̄ (t)dG(t)

, t > 0.

We have (see also Theorem 3.1 of [21]),

E(TX) =

∫ ∞
0

(∫ ∞
0 F̄ (t + x)dG(x)

)
dt∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞
0

(∫ ∞
x F̄ (t)dt

)
dG(x)∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞
0 m(x)F̄ (x)dG(x)∫ ∞

0 F̄ (x)dG(x)

=

∫ ∞

0
m(x)g∗(x)dx

= E(m(X) |T > X) (11)

�

The result of the theorem shows that E(TX) can be represented as the conditional expectation of m(X)
given that T > X.

For a system with lifetime random variable X having distribution function G, the MIT of X is defined
as

k(t) ≡ E(t − X |X < t) =
∫ t
0 G(x)dx

G(t) ,

provided that G(t) > 0. Assuming that the system has already failed before time t, k(t) shows the
mean time of the inactivity of the system until time t. Similar to Proposition 3.8, we have the following
proposition.

Proposition 3.9. The MRLR E(TX) can be represented in terms of MIT of X, k(t), as follows

E(TX) =
∫ ∞
0 k(x)G(x)dF (x)∫ ∞

0 G(x)dF (x)
= E(k(T) |X < T),

where the expectation is over the distribution of the conditional random variable (T |X < T) with density

h(t) ≡ G(t)dF (t)∫ ∞
0 G(x)dF (x)

.

As an application of (11), we give the following example.
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Example 3.10. Let T belong to the class of generalized Pareto distributions (GPD). Recall that a
lifetime random variable T belongs to GPD if its survival function is given by

F̄ (t) =
(

b
at + b

) 1
a+1

t ≥ 0, a > −1, b > 0. (12)

This family of distributions, depending on the values of a, includes three distributions:

• The exponential distribution when a → 0;
• The Pareto distribution when a> 0;
• The power distribution when−1 < a < 0. In particular, when a = −1/2, the distribution is uniform.

The GPD has a linear MRL of the form m(t) = at + b. Using representation (11), we observe that
E(TX) is given by

E(TX) = aE(X |T > X) + b.

Before giving the next results, we recall the definitions of stochastic and hazard rate orders between
two random variables (see [33]). Let X(Y) be a random variable with reliability function F̄(Ḡ), density
function f (g), and hazard rate r(t) = f (t)

F̄ (t) (q(t) = g(t)
Ḡ (t) ), respectively.

• If F̄ (t) ≤ Ḡ(t) for all t ∈ (−∞,+∞), then X is said to be smaller than Y in the usual stochastic
order (denoted by X ≤st Y ).

• If r(t) ≥ q(t), for all t ∈ R then X is said to be smaller than Y in the hazard rate order (denoted as
X ≤hr Y).

The following lemma from Asadi and Shanbhag [7] is useful in the next proposition.

Lemma 3.11. Let X and Y be two random variables such that X ≤hr Y and Z be a continuous random
variable independent of X and Y such that P(Y > Z) > 0 (and hence also such that P(X > Z) > 0).
Then (X |X > Z) ≤st (Y |Y > Z).

From the result of this lemma, we get the following proposition.

Proposition 3.12. Let T1 and T2 be two random lifetimes with random age X such that T1 ≤hr T2. Let
k(t) be the MIT of X such that k(t) is increasing. Then E(T1X) ≤ E(T2X), where TiX is the remaining
lifetime for the lifetime Ti, i = 1, 2.

Proof. We use the fact that for two random variables W1 and W2, W1 ≤st W2 is equivalent to
E([(W1)) ≤ E([(W2)) for any increasing function [. Based on this fact, we have

E(T1X) =
∫ ∞
0 k(x)G(x)dF1(x)∫ ∞

0 G(x)dF1(x)

≤
∫ ∞
0 k(x)G(x)dF2(x)∫ ∞

0 G(x)dF2(x)
= E(T2X),

where the inequality follows from the assumption that k(t) is assumed to be increasing and Lemma 3.11
under which the condition T1 ≤hr T2 implies that (T1 |T1 > X) ≤st (T2 |T2 > X). �
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The following proposition can be proved using a modified version of Lemma 3.11 which we omit
the details of the proof.

Proposition 3.13. Let T be a random lifetime and consider two random ages X1 and X2 such that
X1 ≤hr X2. Let m(t) be the MRL of T such that m(t) is increasing. Then E(T1X) ≤ E(T2X), where TiX is
the remaining lifetime for the lifetime Ti, i = 1, 2.

4. Decomposition of the MRLR

This section gives a decomposition theorem regarding the MRLR E(TX). In what follows, we assume
that all integrals exist. We have the following theorem.

Theorem 4.1. The expectation E(TX) can be decomposed as

E(TX) = Cov (T ,G∗(T)) + Cov (X,F∗(X)) + E(T − X), (13)

where G∗(T) = G (T )
E(G (T ) ) and F∗(X) = F (X )

E(F̄ (X ) ) .

Proof. Using integration by parts, we have∫ ∞

0
F̄ (t)G(t)dt =

∫ ∞

0
tG(t)dF (t) −

∫ ∞

0
tF̄ (t)dG(t)

= E [TG(T)] − E
[
XF̄ (X)

]
= Cov(T ,G(T)) + Cov(X,F (X)) + E(T)E(G(T)) − E(X)E(F̄ (X)). (14)

Using the fact that ∫ ∞

0
F̄ (x)dG(x) = E(F̄ (X)) = E(G(T)),

from (6) and (14) we arrive at the decomposition in (13). �

Representation (13) may be interpreted as follows. The MRL E(TX) can be decomposed into two
non-negative parts: one is the difference between the means of lifetime random variable T and random
age X and the other one is the sum of covariance between lifetime T and G(T) and the covariance
between X and F(X).

The next corollaries immediately follow from this theorem.

Corollary 4.2. In the particular case that T d
= X, since E(F (T)) = 1

2 , the covariance representation
(13) reduces to covariance representation of GMD.

E(TX) = Cov (T ,G∗(T)) + Cov (X,F∗(X)) + E(T − X)
= 2Cov (T ,F (T)) + 2Cov (X,F (T))
= 4Cov (T ,F (T)).

It is easy to see that, in the case when Ḡ(t) = F̄U (t), Eq. (14) results in the covariance representation
of extended GMD.

Corollary 4.3. As F and G are both non-decreasing functions the covariances in (13) are both
nonnegative and thus we have E(TX) ≥ E(T − X).

https://doi.org/10.1017/S026996482400010X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482400010X


340 M. Asadi and A. Berred

Corollary 4.4. As an application of Cauchy-Schwartz inequality, we obtain the following inequality.

E(TX) = Cov (T ,G(T)) + Cov (X,F (X)) + E(T − X)
≤ [fTfG∗ (T ) + fXfF∗ (X ) ] + E(T − X)

≤ fT + fX

a
+ E(T − X) (15)

where a = E(G(T)), fT (fX) denotes the standard deviation of T (X), and fG (T ) (fF (X ) ) is the standard
deviation of G(T) (F (X)).

From the results of Corollaries 4.3 and 4.4, we conclude that, E(TX) is bounded as follows:

E(T − X) ≤ E(TX) ≤
fT + fX

a
+ E(T − X).

5. MRL in random age: dependent case

Althoughwe have assumed that T and X are independent, in practical situations these may be dependent.
In order to model the dependency between two random variables, the copula function has proved to be
a very flexible tool independent of their marginal behavior. For more information on the concept of
copula and its applications, we refer to the monographs by Nelsen [29]. In a recent paper, Navvaro and
Sarabia [28] studied the copula representations for the sum of random variables.

A two-dimensional copula is a bivariate distribution function whose marginal distributions are uni-
form on (0, 1). The importance of copulas is described in Sklar’s theorem which proves how copulas
link joint distribution functions to their one-dimensional marginlas. In fact, according to Sklar’s the-
orem, any bivariate distribution H (x, y) of variables T and X, with marginal distributions F(x) and
G(y), can be written as H (x, y) = C(F (x),G(y)), where C is a copula. Thus, any copula and any two
marginal distributions result in the construction of a bivariate distribution. Analogously, the bivariate
survival function of T and X with marginal survival functions F̄ (x) and Ḡ(x) can be written in terms of
bivariate survival copula as H̄ (x, y) = C̄(F̄ (x), Ḡ(y)), where C̄ is a bivariate survival function whose
marginals are uniformly distributed on (0, 1). According to the definition, we have

C̄(u, v) = u + v − 1 + C(1 − u, 1 − v).

Assume that T and X are dependent random variables with survival functions F̄ and Ḡ, respectively.
In this case, the reliability function of TX can be written as follows:

P(TX > t) = P(T − X > t |T > X)

=

∫ ∞
0 P(T > x + t |X = x)dG(x)∫ ∞

0 P(T > x |X = x)dG(x)
. (16)

Furthermore, let the dependency between T and X is characterized by joint survival copula
C̄(F̄ (x), Ḡ(x)). Then it can be easily shown that (see [23])

P(T > x + t |X = x) = m

mv
C̄(F̄ (x + t), Ḡ(x)),
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where m
mv C̄(u, v) is the partial derivative of the survival copula in terms of v. Thus, substituting the RHS

of this last equality in (16), we get

P(TX > t) = P(T − X > t |T > X)

=

∫ ∞
0

m
mv C̄(F̄ (x + t), Ḡ(x))dG(x)∫ ∞

0
m
mv C̄(F̄ (x), Ḡ(x))dG(x)

.

From this, we get

E(TX) =
∫ ∞

0
P(TX > t)dt

=

∫ ∞
0

(∫ ∞
0

m
mv C̄(F̄ (x + t), Ḡ(x))dG(x)

)
dt∫ ∞

0
m
mv C̄(F̄ (x), Ḡ(x))dG(x)

=

∫ ∞
0

(∫ ∞
x

m
mv C̄(F̄ (t), Ḡ(x))dt

)
dG(x)∫ ∞

0
m
mv C̄(F̄ (x), Ḡ(x))dG(x)

=

∫ ∞
0

(∫ t
0

m
mv C̄(F̄ (t), Ḡ(x))dG(x)

)
dt∫ ∞

0
m
mv C̄(F̄ (x), Ḡ(x))dG(x)

=

∫ ∞
0

(
F̄ (t) − C̄(F̄ (t), Ḡ(t))

)
dt∫ ∞

0
m
mv C̄(F̄ (x), Ḡ(x))dG(x)

=

∫ ∞
0 F̄ (t)dt −

∫ ∞
0 C̄(F̄ (t), Ḡ(t))dt∫ ∞

0
m
mv C̄(F̄ (x), Ḡ(x))dG(x)

. (17)

In particular case that T and X are independent, we have C̄(F̄ (t), Ḡ(t)) = F̄ (t)Ḡ(t) and thus
m
mv C̄(F̄ (x), Ḡ(x)) = F̄ (t). This implies that, E(TX) in (17) reduces to the MRLR E(TX) in (6).

As an example let T and X have a joint distribution that follows the Ali-Mikhail-Haq survival copula
with the joint survival function

H̄ (x, y) = C̄(F̄ (x), Ḡ(x)) = F̄ (x)Ḡ(y)
1 − UF (x)G(y) , x, y > 0, U ∈ [−1, 1] .

Then, simple calculations show that

E(TX) =
∫ ∞
0 F̄ (t)dt −

∫ ∞
0 C̄(F̄ (t), Ḡ(t))dt∫ ∞

0
m
mv C̄(F̄ (x), Ḡ(x))dG(x)

=

∫ ∞
0 q1(t)F̄ (t)G(t)dt∫ ∞
0 q2(t)F̄ (t)dG(x)

,

where q1(x) = 1−UF (x)
1−UF (x)G (x) and q2(x) = 1−UF (x)

[1−UF (x)G (x) ]2 . Trivially, for the case that T and X are indepen-
dent (that is, U = 0) we have q1 (x) = q2(x) = 1, and hence we arrive at the MRLR in the independent
case.
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6. Concluding remarks

In this paper, we investigated the MRL of a non-negative random variable T at a random age X
(MRLR). The results unveiled that there is a significant relationship between the MRLR and several
well-established measures of variability. In particular, the MRLR can be considered an extension of
GMD. Under the proportional hazards model, we demonstrated how the MRLR encompasses both the
extended GMD and the extended CRE as special cases. It is also shown that the MRLR can be repre-
sented as the conditional expectation of the ordinary MRL of T and the expectation of the MIT of X.
Furthermore, we presented a decomposition result revealing that the MRLR can be decomposed into
two covariance functionals and the difference between the means of lifetime T and the random age X.
Additionally, we established some stochastic comparison results between the MRLs of two systems at
random ages. Finally, we considered the case that T and X are dependent. Under this condition, we have
given the formula for E(TX) in the case where a copula function characterizes the dependency structure
between T and X. Assessing the several properties of E(TX) and its possible connections to variability
measures in the dependent are promising problems that need further investigation which we leave for
future study.
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