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The John–Nirenberg Inequality for the
Regularized BLO Space on
Non-homogeneous Metric Measure Spaces

Haibo Lin, Zhen Liu, and Chenyan Wang

Abstract. Let (X, d , µ) be a metric measure space satisfying the geometrically doubling condition
and the upper doubling condition. In this paper, the authors establish the John-Nirenberg inequality
for the regularized BLO space R̃BLO(µ).

1 Introduction

In the classical Euclidean space (the Euclidean space equippedwith the Lebesguemea-
sure), the John–Nirenberg inequality for the space BMO(Rn) established by John and
Nirenberg [12] examines the rate of logarithmic growth of functions in BMO(Rn);
see, for instance [5, p. 123]. In 2001, Tolsa [15] introduced the regularized BMO space
RBMO(µ) for non-doubling measures and established a version of John–Nirenberg
inequality suitable for the spaceRBMO(µ). In [9], Hytönen also established the John–
Nirenberg inequality for the space RBMO(µ) on non-homogeneous metric mea-
sure spaces. On the other hand, Coifman and Rochberg [2] introduced the space
BLO(Rn) as a subspace of BMO(Rn). We mention that the ûrst author and his co-
authors constructed a nonnegative function in BMO(Rn) but not in BLO(Rn) in
[14]. Recently, Wang et al. [16] established the John–Nirenberg inequality for the
space BLOp(Rn) with 0 < p ≤ 1 and proved the equivalence between the BLOp(Rn)
spaces for p ∈ (0,∞). Moreover, Jiang [11] and Lin and Yang [13], respectively, in-
troduced the space RBLO(µ) for non-doubling measures and the space RBLO(µ) on
non-homogeneousmetricmeasure spaces. We refer the reader to themonograph [18]
for more developments on harmonic analysis for non-doubling measures.

he aim of this paper is to establish the John–Nirenberg inequality for the regu-
larized BLO space, R̃BLO(µ), via the discrete coeõcient on non-homogeneous met-
ric measure spaces. To state our main result, we ûrst recall some necessary nota-
tion and notions. he following notion of geometrically doubling can be found in
[3, pp. 66–67] and is also known as metrically doubling (see [8, p. 81]).
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Deûnition 1.1 A metric space (X, d) is said to be geometrically doubling if there
exists some N0 ∈ N+ ∶= {1, 2, . . .} such that for any ball B(x , r) ⊂ X with x ∈ X and
r ∈ (0,∞), there exists a ûnite ball covering {B(x i , r/2)}i of B(x , r) such that the
cardinality of this covering is at most N0.

he following deûnition of upper doubling was originally introduced by Hytönen
[9].

Deûnition 1.2 Ametric measure space (X, d , µ) is said to be upper doubling if µ is
a Borel measure on X and there exist a dominating function λ ∶ X × (0,∞) → (0,∞)
and a positive constant C(λ), depending on λ, such that for each x ∈ X, r ↦ λ(x , r) is
non-decreasing and for all x ∈ X and r ∈ (0,∞),

µ(B(x , r)) ≤ λ(x , r) ≤ C(λ)λ(x , r/2).

Remark 1.3 (i) If λ(x , r) ∶= µ(B(x , r)) for any x ∈ X and r ∈ (0,∞), then the
upper doubling space (X, d , µ) is just the space of homogeneous type in the sense
of Coifman and Weiss [3, 4]; if (X, d , µ) = (Rn , ∣ ⋅ ∣, µ) and, for any x ∈ Rn and
r ∈ (0,∞), λ(x , r) ∶= Crκ with C being a positive constant, then (X, d , µ) is just
the n-dimensional Euclidean space equipped with the non-doubling measure only
satisfying the polynomial growth condition introduced by Tolsa [15].

(ii) It was proved in [10] that there exists another dominating function λ̃ such that
λ̃ ≤ λ, C

(λ̃) ≤ C(λ) and, for any x , y ∈ X with d(x , y) ≤ r,

(1.1) λ̃(x , r) ≤ C
(λ̃) λ̃(y, r).

If a metric measure space (X, d , µ) is both upper doubling and geometrically dou-
bling, then it is simply called a non-homogeneous metric measure space. By Remark
1.3, we always assume that the dominating function λ satisûes (1.1). In the whole pa-
per, for any ball B ⊆ X, we denote its center and radius by cB and rB , respectively, and,
moreover, for any ρ ∈ (0,∞), we denote the ball B(cB , ρrB) by ρB. When we speak
of a ball B in (X, d , µ), it is understood that it comes with a ûxed center and radius,
although these, in general, are not uniquely determined by B as a set; see [8, pp. 1–2].
In other words, for any two balls B, S ⊆ X, if B = S, then cB = cS and rB = rS . From
this, we deduce that if B ⊆ S, then rB ≤ 2rS , which guarantees that the deûnition of the
following discrete coeõcient K̃(ρ)

B ,S makes sense; see [6, pp. 314–315] for some details.
We mention that the discrete coeõcient K̃(ρ)

B ,S was introduced by Bui and Duong [1]
as an analogue of the quantity introduced by Tolsa [15] in the setting of non-doubling
measures; see also [6, 7].

Deûnition 1.4 For any ρ ∈ (1,∞) and any two balls B ⊂ S ⊂ X, let

K̃(ρ)
B ,S ∶= 1 +

N(ρ)B ,S
∑

k=−⌊logρ 2⌋

µ(ρkB)
λ(cB , ρkrB)

.

644

https://doi.org/10.4153/S0008439519000729 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000729


he John–Nirenberg Inequality

Here and herea�er, for any a ∈ R, ⌊a⌋ represents the greatest integer which is not
larger than a, and N(ρ)

B ,S is the smallest integer satisfying ρN(ρ)B ,S rB ≥ rS .

Remark 1.5 Hytönen [9] introduced a continuous version, KB ,S , of the coeõcient
K̃(ρ)
B ,S as follows: for any two balls B ⊂ S ⊂ X, let

KB ,S ∶= 1 + ∫
(2S)/B

1
λ(cB , d(x , cB))

dµ(x).

Obviously, KB ,S ≤ CK̃(ρ)
B ,S with C being a positive constant independent of the balls B

and S. On (Rn , ∣ ⋅ ∣, µ) with µ satisfying the polynomial growth condition, KB ,S and
K̃(ρ)
B ,S are equivalent, namely, C1KB ,S ≤ K̃(ρ)

B ,S ≤ C2KB ,S with C1 ,C2 being positive con-
stants independent of the balls B and S, but KB ,S and K̃(ρ)

B ,S are usually not equivalent
on (X, d , µ); see [7] for more details.

Before we recall the deûnition of the regularized BLO space R̃BLO(µ), we also
need the following notion of an (α, β)-doubling ball introduced in [9].

Deûnition 1.6 Let α, β ∈ (1,∞). A ball B ⊂ X is said to be (α, β)-doubling if
µ(αB) ≤ βµ(B).

In (X, d , µ), if β is large enough, then, for any B(x , r) ⊂ X with x ∈ X and
r ∈ (0,∞), there exists some j ∈ Z+ ∶= {0}∪N+ such that α jB is (α, β)-doubling, and,
for µ-a.e. x ∈ X, there exist arbitrary small (α, β)-doubling balls centered at x with the
radii of the form α− jr for j ∈ N+ and any preassigned number r ∈ (0,∞); see [9, Lem-
mas 3.2 and 3.3] for more details. In what follows, let ν ∶= log2 C(λ) and n0 ∶= log2 N0,
where N0 is as in Deûnition 1.1. hroughout the paper, for any α ∈ (1,∞) and ball
B, the smallest (α, βα)-doubling ball of the form α jB with j ∈ Z+ is denoted by B̃α ,
where

βα ∶= max{αn0 , αν} + 30n0 + 30ν = αmax{n0 ,ν} + 30n0 + 30ν ;(1.2)

see [10] for the details.
he following regularized BLO space R̃BLO(µ) was introduced in [17].

Deûnition 1.7 Let η, ρ ∈ (1,∞), and let βρ be as in (1.2). A real-valued function
f ∈ L1

loc(µ) is said to be in the space R̃BLOη ,ρ(µ) if there exists a nonnegative constant
C such that for all balls B,

1
µ(ηB) ∫B

[ f (y) − essinf
B̃ρ

f ]dµ(y) ≤ C ,

and that for all (ρ, βρ)-doubling balls B ⊂ S,

essinf
B

f − essinf
S

f ≤ CK̃(ρ)
B ,S .

Moreover, the R̃BLOη ,ρ(µ) norm of f is deûned to be the minimal constant C as
above and denoted by ∥ f ∥R̃BLOη ,ρ(µ).
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Remark 1.8 (i) If we replace K̃(ρ)
B ,S by KB ,S in Deûnition 1.7, then R̃BLOη ,ρ(µ) be-

comes the space RBLOη ,ρ(µ) in [13].
(ii) In [17, Remark 2.6(i)], Yang et al. pointed out that R̃BLOη ,ρ(µ) is independent

of the choices of the constants η, ρ ∈ (1,∞), and, moreover, there is an equivalent
norm for ∥ ⋅ ∥R̃BLOη ,ρ

(µ) as follows. Let η, ρ ∈ (1,∞). Suppose that for any given
f ∈ L1

loc(µ), there exist a nonnegative constant C̃ and a real number fB for any ball B
such that for all balls B,

1
µ(ηB) ∫B[ f (y) − fB]dµ(y) ≤ C̃ ,(1.3)

that for all balls B ⊂ S,

∣ fB − fS ∣ ≤ C̃K̃(ρ)
B ,S ,(1.4)

and that for all balls B,

fB ≤ essinf
B

f .(1.5)

Deûne the norm ∥ f ∥∗,η ,ρ ∶= inf{C̃}, where the inûmum is taken over all the nonneg-
ative constants C̃ as above. hen the norm ∥ ⋅ ∥∗,η ,ρ is independent of the choice of
the constant η ∈ (1,∞); namely, for any ûxed ρ ∈ (1,∞), let η1 > η2 > 1, then

(1.6) ∥ ⋅ ∥∗,η1 ,ρ ≤ ∥ ⋅ ∥∗,η2 ,ρ ≤ C(η1 ,η2 ,ρ)∥ ⋅ ∥∗,η1 ,ρ ,
where C(η1 ,η2 ,ρ) is a positive constant, depending on η1, η2 and ρ. Moreover, the
norms ∥ ⋅ ∥∗,η ,ρ and ∥ ⋅ ∥R̃BLOη ,ρ(µ) are equivalent; namely,

(1.7) C(ρ)∥ ⋅ ∥∗,η ,ρ ≤ ∥ ⋅ ∥R̃BLOη ,ρ(µ) ≤ C(η ,ρ)∥ ⋅ ∥∗,η ,ρ ,

where C(ρ) and C(η ,ρ) are positive constants, depending on ρ and η, ρ, respectively.

We now give the main result of this paper.

heorem 1.9 Let (X, d , µ) be a non-homogeneous metric measure space. hen, for
any η ∈ (2,∞), there exists a positive constant c such that for any f ∈ R̃BLO(µ), any
ball B0 = B(x0 , r) and any t ∈ (0,∞),

µ({x ∈ B0 ∶ [ f (x) − fB0] > t}) ≤ 2µ(ηB0)e−c t/∥ f ∥R̃BLO(µ) ,(1.8)

where fB0 is as in Remark 1.8(ii) with B replaced by B0.

In Section 2, we mainly give the proof ofheorem 1.9. Hytönen [9, p. 487] pointed
out that only the basic covering lemma rather than the Besicovitch covering theorem
is available in the present setting; we have to borrow some ideas from the proof of
[9, Proposition 6.1] to prove heorem 1.9. hough the proof of heorem 1.9 follows
essentially the samemethod used in the Hytönen work on RBMO(µ) in [9], wemake
amore detailed and eòective discussion; see, for instance, the proof of (2.4). Moreover,
we obtain that the range of η in heorem 1.9 is sharp by the present method (see
Remark 2.7), and it is unclear whether the John–Nirenberg inequality (1.8) for the
space R̃BLO(µ) holds true for η ∈ (1, 2].
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We now make some conventions on notation. hroughout the whole paper, we
denote by C, C̃, or c a positive constant, which is independent of the main param-
eters, but they may vary from line to line. Constants with subscripts, such as C1
and c1, do not change in diòerent occurrences. Moreover, we use C(α), c(α), or c̃(α)
to denote a positive constant depending on the parameter α. For any ball B and
f ∈ L1

loc(X), mB( f ) stands for the mean of f over the ball B, namely, mB( f ) ∶=
1

µ(B) ∫B f (y)dµ(y).

2 The Proof of Theorem 1.9

To proveheorem 1.9, we ûrst recall some useful properties of K̃(ρ)
B ,S that were proved

in [6].

Lemma 2.1 Let (X, d , µ) be a non-homogeneous metric measure space. Let ρ ∈
(1,∞) and K̃(ρ)

B ,S be as in Deûnition 1.4.
(i) here exists a positive constant c(ρ), depending on ρ, such that for all balls B ⊂

R ⊂ S, K̃(ρ)
B ,R ≤ c(ρ)K̃(ρ)

B ,S .
(ii) For any α ∈ [1,∞), there exists a positive constant c(α ,ρ), depending on α and ρ,

such that for all balls B ⊂ S with rS ≤ αrB , K̃(ρ)
B ,S ≤ c(α ,ρ).

(iii) For any α ∈ [1,∞), there exists a positive constant c̃(α ,ρ), depending on α and ρ,
such that for all balls B, K̃(ρ)

B ,B̃α
≤ c̃(α ,ρ).

(iv) here exists a positive constant c̃(ρ), depending on ρ, such that for all balls B ⊂
R ⊂ S, K̃(ρ)

B ,S ≤ K̃(ρ)
B ,R + c̃(ρ)K̃

(ρ)
R ,S .

he following basic covering lemma, which can be called the 5r-covering lemma,
is a simple corollary of [8, heorem 1.2] and [9, Lemma 2.5].

Lemma 2.2 Let (X, d) be a geometrically doubling metric space. hen every fam-
ily F of balls of uniformly bounded diameter contains an at most countable disjointed
subfamily G such that

⋃
B∈F

B ⊂ ⋃
B∈G

5B.

he following lemma is a special case of [9, Corollary 3.6].

Lemma 2.3 Let (X, d , µ) be a non-homogeneous metric measure space. Let ρ ∈
[5,∞). hen, for any f ∈ L1

loc(µ) and µ-a.e. x ∈ X,
f (x) = lim

B↓x
(ρ ,βρ)−doubl ing

mB( f ),

where the limit is along the decreasing family of all (ρ, βρ)-doubling balls containing x,
ordered by set inclusion.

Before proving heorem 1.9, we also need the following lemmas.

647

https://doi.org/10.4153/S0008439519000729 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000729


H. Lin, Z. Liu, and C. Wang

Lemma 2.4 Let (X, d , µ) be a non-homogeneous metric measure space. hen, for
any f ∈ R̃BLOη ,ρ(µ) and any two balls B1 , B2 satisfying

(2.1) d(cB1 , cB2) ≤ c1 max{rB1 , rB2} ≤ c2 min{rB1 , rB2}
with c1 and c2 being positive constants independent of the balls B1 and B2,

∣ fB1 − fB2 ∣ ≤ C(c1 ,c2 ,η ,ρ)∥ f ∥R̃BLOη ,ρ(µ) ,

where C(c1 ,c2 ,η ,ρ) is a positive constant, depending on c1, c2, η and ρ, and fB i is as in
Remark 1.8(ii) with B replaced by B i , i = 1, 2.

Proof From (2.1), we see that there exist some positive constants m andM, depend-
ing on c1 and c2, such that

B1 ∪ B2 ⊆ mB1 and 2mB1 ⊆ MB2 .

his, together with (ii) and (i) of Lemma 2.1, the fact that (1.3) through (1.5) hold with
C̃ = ∥ f ∥∗,η ,ρ and (1.7), shows that

∣ fB1 − fB2 ∣ ≤ ∣ fB1 − fmB1 ∣ + ∣ fmB1 − fB2 ∣

≤ K̃(ρ)
B1 ,mB1

∥ f ∥∗,η ,ρ + K̃(ρ)
B2 ,mB1

∥ f ∥∗,η ,ρ

≤
c(m ,ρ)
C(ρ)

∥ f ∥R̃BLOη ,ρ(µ) +
c(ρ)
C(ρ)

K̃(ρ)
B2 ,MB2

∥ f ∥R̃BLOη ,ρ(µ)

≤
c(m ,ρ) + c(ρ)c(M ,ρ)

C(ρ)
∥ f ∥R̃BLOη ,ρ(µ) .

By choosingC(c1 ,c2 ,η ,ρ) ∶= [c(m ,ρ)+c(ρ)c(M ,ρ)]/C(ρ), we ûnish the proof of Lemma2.4.
∎

Lemma 2.5 Let (X, d , µ) be a non-homogeneous metric measure space. Let ρ ∈
(1,∞). hen, for any f ∈ R̃BLOη ,ρ(µ) and any (ρ, βρ)-doubling ball B,

mB( f ) − fB ≤ C(ρ ,βρ)∥ f ∥R̃BLOη ,ρ(µ) ,

where C(ρ ,βρ) is a positive constant, depending on ρ and βρ , and fB is as inRemark 1.8(ii).

Proof From the property of the (ρ, βρ)-doubling ball, the fact that (1.3) holds with
C̃ = ∥ f ∥∗,η ,ρ and (1.7), it follows that

mB( f ) − fB =
µ(ρB)
µ(B)

1
µ(ρB) ∫B[ f (x) − fB]dµ(x)

≤ βρ∥ f ∥∗ ≤
βρ

C(ρ)
∥ f ∥R̃BLOη ,ρ(µ) .

By choosing C(ρ ,βρ) ∶= βρ/C(ρ), we ûnish the proof of Lemma 2.5. ∎

Lemma 2.6 Let (X, d , µ) be a non-homogeneous metric measure space. Let α, ρ ∈
(1,∞). hen, for any f ∈ R̃BLOη ,ρ(µ) and any ball B,

fB − fB̃α ≤ C(α ,ρ)∥ f ∥R̃BLOη ,ρ(µ) ,
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where C(α ,ρ) is a positive constant, depending on α and ρ, and fB and fB̃α are as in
Remark 1.8(ii).

Proof From the fact that (1.4) holds with C̃ = ∥ f ∥∗,η ,ρ , Lemma 2.1(iii) and (1.7), it
follows that

fB − fB̃α ≤ K̃(ρ)
B ,B̃α

∥ f ∥∗,η ,ρ ≤
c̃(α ,ρ)
C(ρ)

∥ f ∥R̃BLOη ,ρ(µ) .

By choosing C(α ,ρ) ∶= c̃(α ,ρ)/C(ρ), we ûnish the proof of Lemma 2.6. ∎

Now we turn to proveheorem 1.9.

Proof of Theorem 1.9. Let α ∶= 5η and let K ∶= 2C∗∥ f ∥R̃BLOη ,ρ(µ), where

C∗ ∶= βα(C3 + C4 + C5 + C6 + C7 + C8 + C9C10 + C9C11)

with C3 through C11 will be chosen later. Now we consider the following two cases of
t ∈ (0,∞).

Case (I) t ∈ (0, 2K). In this case, by choosing c ∈ (0, ln 2
4C∗ ], we have

ec t/∥ f ∥R̃BLOη ,ρ(µ) ≤ e2K ln 2/(4C∗∥ f ∥R̃BLOη ,ρ(µ)) ≤ 2,

which implies that (1.8) holds.

Case (II) t ∈ [2K ,∞). In this case, we ûrst let η ∈ (4,∞). For any x ∈ B0 such that
f (x) − fB0 > t, let Bx be the biggest (α, βα)-doubling ball with center x and radius
α−ir for some i ∈ Z+ such that

(2.2) Bx ⊆
√
ηB0 and fBx − fB0 > K .

In fact, since η ∈ (4,∞), we have that for any x ∈ B0 and any i ∈ Z+, B(x , α−ir) ⊂√ηB0. On the other hand, by Lemma 2.3, we see that for any x ∈ B0 with f (x) −
fB0 > t ≥ 2K, there exist arbitrarily small (α, βα)-doubling balls B∗ = B(x , α−ir)
with i ∈ Z+ such that mB∗( f ) − fB0 > 2K. It then follows from Lemma 2.5 that

fB∗ − fB0 = mB∗( f ) − fB0 − [mB∗( f ) − fB∗] > 2K − C3∥ f ∥R̃BLOη ,ρ(µ) > K ,

where C3 ∶= C(ρ ,βρ), which implies that for any x ∈ B0, the ball Bx satisfying (2.2)
exists. From the fact that mBx ( f ) ≥ essinfBx f ≥ fBx , we further conclude that

1
µ(Bx) ∫Bx

[ f (x) − fB0]dµ(x) = mBx ( f ) − fBx + fBx − fB0 > K .(2.3)

Moreover, we claim that

(2.4) K < fBx − fB0 ≤
3
2
K .

To prove (2.4), we consider the following two cases.
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Case (i) fα̃Bx
α − fB0 ≤ K. In this case, by Lemmas 2.4 and 2.6, we have

K < fBx − fB0 = fBx − fαBx + fαBx − fα̃Bx
α + fα̃Bx

α − fB0

≤ ∣ fBx − fαBx ∣ + C(α ,ρ)∥ f ∥R̃BLOη ,ρ(µ) + K

≤ (C4 + C5)∥ f ∥R̃BLOη ,ρ(µ) + K ≤ 3
2
K ,

where C4 ∶= C(1,α ,η ,ρ) and C5 ∶= C(α ,ρ);

Case (ii) fα̃Bx
α − fB0 > K. In this case, notice that α̃Bx

α
is the (α, βα)-doubling ball

of the form α iBx with i ∈ N+ and Bx is the biggest (α, βα)-doubling ball of the form
B(x , α−ir) with i ∈ Z+. From the maximality of Bx , we deduce that B(x , r) ⊂ α̃Bx

α
.

LetAx be the smallest ball of the form B(x , α ir), i ∈ N+, satisfying B(x , α ir) ⊈ √ηB0.
Notice that rB0 = r, B(x , r) ⊂ √ηB0 and B(x , α ir) ⊈ √ηB0 for any i ≥ ⌊logα(

√η −
1)⌋ + 1 =∶ i0, we have r ≤ rAx ≤ α i0 r, which implies that Bx ⊂ Ax ⊂ α i0 α̃Bx

α
. It then

follows from Lemmas 2.4 and 2.1 that

∣ fAx − fB0 ∣ ≤ C6∥ f ∥R̃BLOη ,ρ(µ) ≤ K ,

where C6 ∶= C(1,α i0 ,η ,ρ) and

K̃(ρ)
Bx ,Ax

≤ c(ρ)K̃(ρ)
Bx ,α i0 α̃Bx

α ≤ c(ρ)[K̃(ρ)
Bx ,α̃Bx

α + c̃(ρ)K̃(ρ)
α̃Bx

α ,α i0 α̃Bx
α ]

≤ c(ρ)[K̃(ρ)
Bx ,αBx

+ c̃(ρ)K̃(ρ)
αBx ,α̃Bx

α + c̃(ρ)c(α ,ρ)]

≤ c(ρ)[c(α ,ρ) + c̃(ρ) c̃(α ,ρ) + c̃(ρ)c(α ,ρ)].

he above estimates, together with the fact that (1.4) holds with C̃ = ∥ f ∥∗,η ,ρ and (1.7),
shows that

K < fBx − fB0 = fBx − fAx + fAx − fB0

≤ K̃(ρ)
Bx ,Ax

∥ f ∥∗,η ,ρ + ∣ fAx − fB0 ∣

≤
c(ρ)[c(α ,ρ) + c̃(ρ) c̃(α ,ρ) + c̃(ρ)c(α ,ρ)]

C(ρ)
∥ f ∥R̃BLOη ,ρ(µ) + K

= C7∥ f ∥R̃BLOη ,ρ(µ) + K ≤ 3
2
K ,

where C7 ∶= c(ρ)[c(α ,ρ) + c̃(ρ) c̃(α ,ρ) + c̃(ρ)c(α ,ρ)]/C(ρ). his completes the proof of
our claim.
By Lemma 2.2, there exists a disjointed subfamily {B j ∶= Bx j} j∈J such that

(2.5) [ ⋃
x∈B0

Bx] ⊂ [ ⋃
j∈J
5B j].
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Writing A j ∶= 5B j . If x ∈ B0 and f (x) − fB0 > nK with n ∈ N+, then x ∈ A j for some
j ∈ J, and hence by (2.4) and Lemma 2.4,

f (x) − fA j = f (x) − fB0 + fB0 − fB j + fB j − fA j

≥ [ f (x) − fB0] − [ fB j − fB0] − ∣ fB j − fA j ∣

≥ nK − 3
2
K − C8∥ f ∥R̃BLOη ,ρ(µ) > (n − 2)K ,

where C8 ∶= C(1,5,η ,ρ). his, together with (2.5), implies that for n ∈ [2,∞),
{x ∈ B0 ∶ [ f (x) − fB0] > nK}

⊆ ⋃
x∈B0 ∶ f (x)− fB0>nK

{y ∈ Bx ∶ [ f (y) − fB0] > nK}

⊆ ⋃
j∈J

{y ∈ A j ∶ [ f (y) − fA j] > (n − 2)K}.

Meanwhile, by Remark 1.8(ii), (1.6), and (1.7), we see that
(2.6) ∥ ⋅ ∥R̃BLO√η ,ρ(µ) ≤ C9∥ ⋅ ∥R̃BLOη ,ρ(µ) ,

where C9 ∶= C(
√η ,√η ,ρ) is a constant from (1.6). From the fact that the balls B j = Bx j

are (α, βα)-doubling, disjoint, and contained in√ηB0, (2.3), (1.5), (1.6), (1.7), Lemma
2.4, and (2.6), we deduce that

∑
j∈J

µ(ηA j) = ∑
j∈J

µ(αB j) ≤ βα∑
j∈J

µ(B j)(2.7)

≤ βα
K
∑
j∈J
∫
B j

[ f (x) − fB0]dµ(x)

≤ βα
K
∑
j∈J
∫
B j

[( f (x) − f√ηB0) + ∣ f√ηB0 − fB0 ∣]dµ(x)

≤ βα
K ∫√ηB0

[( f (x) − f√ηB0) + ∣ f√ηB0 − fB0 ∣]dµ(x)

≤ βα
K

[µ(√η ⋅ √ηB0)∥ f ∥∗,√η ,ρ + C10µ(
√
ηB0)∥ f ∥R̃BLO√η ,ρ(µ)]

≤ βα
K

[C11µ(ηB0)∥ f ∥R̃BLO√η ,ρ(µ) + C10µ(ηB0)∥ f ∥R̃BLO√η ,ρ(µ)]

≤ βα
K

[C9C11 + C9C10] µ(ηB0)∥ f ∥R̃BLOη ,ρ(µ) ≤
1
2
µ(ηB0),

where C10 ∶= C(1,√η ,η ,ρ) and C11 ∶= 1
C(ρ)

.
Now from iterating with the balls A j in place of B0, we obtain

{x ∈ B0 ∶ [ f (x) − fB0] > 2nK}
⊆ ⋃

j1
{x ∈ A j1 ∶ [ f (x) − fA j1

] > 2(n − 1)K}

⊆ ⋃
j1 , j2

{x ∈ A j1 , j2 ∶ [ f (x) − fA j1 , j2
] > 2(n − 2)K}

⊆ ⋅ ⋅ ⋅ ⊆ ⋃
j1 , j2 , . . . , jn

{x ∈ A j1 , j2 , . . . , jn ∶ [ f (x) − fA j1 , j2 ,.. . , jn
] > 0},
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and then

µ({x ∈ B0 ∶ [ f (x) − fB0] > 2nK}) ≤ ∑
j1 , . . . , jn−1 , jn

µ(A j1 , . . . , jn−1 , jn)

≤ ∑
j1 , . . . , jn−1

∑
jn

µ(ηA j1 , . . . , jn−1 , jn)

≤ ∑
j1 , . . . , jn−1

1
2
µ(ηA j1 , . . . , jn−1)

≤ ⋅ ⋅ ⋅ ≤ 1
2n µ(ηB0).

Choosing n ∈ N+ such that 2nK ≤ t < 2(n + 1)K. It then follows from the above
estimates that

µ({x ∈ B0 ∶ [ f (x) − fB0] > t}) ≤ µ({x ∈ B0 ∶ [ f (x) − fB0] > 2nK})
≤ 2−nµ(ηB0)

≤ 2−(2K)
−1 t+1µ(ηB0)

= 2e−c t/∥ f ∥R̃BLOη ,ρ(µ)µ(ηB0).

Since −n ≤ 1 − t
2K , by choosing c ∈ (0, ln2

4C∗ ], we see that (1.8) holds.
For η ∈ (2,∞), let γ ∈ (0, 1) such that ηγ > 2. In this case, we can ûnd a ball Bz be

the biggest (α, βα)-doubling ball with center z and radius α−ir for some i ∈ Z+, such
that Bz ⊆ ηγB0 and fBz − fB0 > K, and the rest of the proof is completely analogous to
the above. Hence, we ûnish the proof of heorem 1.9. ∎

Remark 2.7 (i) In the proof of (2.7), we need that ηγ < η, which implies that
γ ∈ (0, 1).

(ii) he range of η in heorem 1.9, namely, η ∈ (2,∞), is sharp by the present
method. In fact, in the proof of heorem 1.9, we need to ûnd the biggest (α, βα)-
doubling ball Bx such that Bx ⊆ ηγB0, which implies that rBx + rB0 ≤ 2rB0 ≤ ηγrB0

with γ ∈ (0, 1). By letting γ → 1, we have that η ≥ 2. hus, η ∈ (2,∞). However, it
is unclear that whether the John–Nirenberg inequality (1.7) for the space R̃BLO(µ)
holds true for η ∈ (1, 2].

Corollary 2.8 Let (X, d , µ) be a metric measure space of non-homogeneous type.
hen, for every η ∈ (2,∞) and p ∈ [1,∞), there exists a positive constant C such that
for any f ∈ R̃BLO(µ) and all balls B,

[ 1
µ(ηB) ∫B[ f (x) − fB]

pdµ(x)]
1/p

≤ C∥ f ∥R̃BLO(µ) ,

where fB is as in Remark 1.8(ii).

652

https://doi.org/10.4153/S0008439519000729 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000729


he John–Nirenberg Inequality

Proof From the situation of the corollary andheorem 1.9, we conclude that
1

µ(ηB) ∫B[ f (x) − fB]
pdµ(x)

= p
µ(ηB) ∫

∞

0
tp−1µ({x ∈ B ∶ [ f (x) − fB] > t})dt

≤ 2p∫
∞

0
tp−1e−c t/∥ f ∥R̃BLO(µ)dt

= 2pΓ(p)
cp

∥ f ∥p
R̃BLO(µ)

,

which completes the proof of Corollary 2.8. ∎
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