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CATEGORICAL EQUIVALENCE OF FINITE GROUPS

LAszLO ZADORI

We determine the minimal relational sets related to finite groups. With the help
of this result we prove that two categorically equivalent finite groups are weakly
isomorphic.

1. INTRODUCTION

In (1) Bergman and Berman define the notion of categorically equivalent algebras.
In [6] we introduce minimal relational sets and point out the relationship between
categorical equivalence of algebras and minimal relational sets corresponding to the
algebras. In this paper we shall describe the minimal relational sets assigned to finite
groups, see Theorem 3.1. Moreover, by using this description, in Corollary 3.3 we shall
show that two categorically equivalent finite groups are weakly isomorphic.

2. DEFINITIONS AND EARLIER RESULTS

A relational set is a set equipped with some relations. All relational sets occuring
in this paper are of a fixed type. Morphisms between relational sets of the same type are
relation preserving maps. Product and retract of relational sets of a fixed type are meant
as usual. A morphism r from a relational set to itself is called idempotent, if r? = r.
A relational set is finite if its base is finite and its relations are finitary. Note that this
definition allowes finite relational sets to have infinitely many relations. Relational sets
here will be denoted by boldface type capital letters and their base sets by the same
capital ones.

In the next section we shall need the following simple lemma.

LEMMA 2.1. Let G be a finite relational set and S C G. Then the minimal
S-containing idempotent images of G are isomorphic.

PRrROOF: Let  : G — G and ¢ : G - G be idempotent morphisms such
that 7(G) and ¢(G) are minimal S-containing. By finiteness of G there exists some
positive integer m such that the m-th power of rq and ¢r are idempotent. Then
S C(rg™(G) € r(G) and S C (¢gr)™(G) C ¢q(G). By the minimality of r(G) and
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q(G), (rq)™(G) = r(G) and (¢r)™(G) = ¢(G). Thus, r(G) and ¢(G) are isomorphic
via q‘r(G)~ D

Let G and H be finite relational sets of the same type. A pair (H, f) is called a
G-coloured relational set, if f is a partially defined map from H to G. If f does not
extend to a fully defined morphism from H to G then (H, f) is called G-nonertendible.
For two G-coloured relational sets (K,g) and (H, f) we write (K,g) C (H, f) and
say that (K, g) is containedin (H, f), if K C H, uk C ug for each relational symbol
u in the given type and g C f. A G-obstruction is a G-coloured, G-nonextendible
relational set (H, f), where H is finite and every G-coloured relational set (K, g)
properly contained in (H, f) is G-extendible.

A G-obstruction (H, f) is a minimal obstruction, if for every morphism g : G - G
where (H, gf) is also a G-obstruction there exists a morphism ¢’ : G — G such that
(H,g'gf) = (H, f). A pair formed by two distinct elements a and b in G is called
a minimal pair, if for every morphism ¢ : G — G with g(a) # g(b) there exists a
morphism ¢’ : G — G such that ¢’g(a) = a and ¢g’g(b) = b. We call a relational set R
a minimal relational set of G if there exists a minimal G-obstruction (H, f) (a minimal
pair (a,b)) such that R is one of the idempotent images of G that contain the range
of f (a and b) and have minimum cardinality. By Lemma 2.1, in this definition ‘have
minimum cardinality’ can be replaced by ‘are minimal with respect to containment’.
The following is a special case of [6, Theorem 1.14].

THEOREM 2.2. Let G be a finite relational set and suppose that G is a retract
of the product of some of its retracts G;, 1 € I. Then every minimal relational set of
G is a retract of G; for some 1 € I.

A variety of algebras is considered to be a category here; the objects are the
algebras in the variety and the morphisms are the homomorphisms between them. Two
algebras A and B are called categorically equivalent, if there is a categorical equivalence
between the varieties they generate that sends A to B. Two algebras A and B are
called weakly isomorphic, if there exists an isomorphism that maps A to an algebra
with a base set and term operations coinciding with the ones of B. Note that weakly
isomorphic algebras are categorically equivalent. We say that a relational set G is a
relational set for an algebra A if the base sets of G and A are the same and the set of
morphisms from finite powers of G to G equals the set of term operations of A.

Throughout the paper in notation we do not differentiate between an algebra and
its base set. The following theorem appears in [6] as part of Theorem 2.5.

THEOREM 2.3. Two finite algebras A and B are categorically equivalent if and
only If there exist finite relational sets, A for A and B for B such that A and B are
of the same type and have the same minimal relational sets up to isomorphism.
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The interested reader can find a different characterisation of categorically equivalent
algebras in McKenzie [4].

3. MINIMAL RELATIONAL SETS ASSIGNED TO FINITE GROUPS

Let G be a finite group of exponent m with m > 2. Let p;, ¢ € I, denote the
pairwise distinct prime divisors of m. Let g; be the highest p;-power dividing m. So
m=[]qg. Let Gi={g9: g% =1}. Let G = (G, R) a relational set of a fixed type for

i€l
the group G. For example, R can be taken to be the set of subgroups of finite powers
of G. Define G; to be the relational set on G; by restricting the relations of G to G;,
1€1.

THEOREM 3.1. Let G be a finite group of exponent m = [[ ¢;, with m > 2.

iel
Then the minimal relational sets of G are the G;, i € I. These relational sets are
pairwise nonisomorphic.

PROOF: The unary term operations of G are of the form «; : ¢ — ¢* for some
positive integer /. The map ¢y is idempotent if and only if g‘2 =g for all g € G, that
is, m divides (I — 1)!. Since ! and !—1 are mutually prime, the latter condition holds if
and only if there exist mutually prime positive integers P and @ such that m = PQ, P
divides |~ 1 and @ divides . Observe, that for such P and Q, o(G) = {g: g¥ = 1}.
Moreover, if [ is a positive integer such that g; divides [ — 1 and m/g; divides [ then
a(G) = Gy. It is clear now that the idempotent images of G' form a Boolean-lattice-
ordered set with respect to containment. We call this lattice L. In the lattice L the
top element is G, the bottom element is {1} and the atoms are just the G;, i € I.

We claim that the minimal relational sets of G are the G;, i € I. First, we show
that the G; are indeed minimal relational sets. Let 1 € I. Obviously, 1 € G;. Choose
a € G; such that its order equals p;. The elements 1 and a form a minimal pair in
G since for each n with a,(1) # an(a) there exists an s such that a,a,(1) =1 and
asan(a) = a. Moreover, G; is a minimal relational set with respect to the minimal
pair (1,a) as G; is an atom of L.

It remains to prove that G has no other minimal relational sets. It looks compli-
cated to describe the minimal G-obstructions and the related minimal relational sets
of G. Instead, we show that G is a retract of the product [[ G;. Then by applying
Theorem 2.2, we get that each minimal relational set is a r:aix{act of some of the G;,
1 € I, whence it coincides with one of them.

To prove that G is a retract of [] G; let I; be integers such that ¢; divides [; —1
iel

https://doi.org/10.1017/5000497270003118X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003118X

406 L. Zadori 4]

and m/g¢; divides [;, ¢ € I. Define the maps

T HGi =G, (9i)icr ™ Hgi

il i€l

and
e:G— HGi, g (a;i(g))iel.
iel
Observe, that r is a morphism from [[ G; to G and e is a morphism from G to
i€l
[] G:. Moreover, since m divides (Zl,-) -1, r((a,i(g))iel) =g foral g € G.
iel i€l
Thus, re equals the identity on G, that is, r is a retraction from [] G; to G.
i€l

To prove that the G; are pairwise nonisomorphic observe that the only morphism
between G and Gj;, k # j, is the constant 1. This is due to the fact that for any
morphism ¢ : Gg — G; the morphism toy, : G — Gj is of the form «a; for some [ and

oy maps any ¢ in Gg to an element whose order divides the order of g. 0

Next we shall show how to reconstruct the relational set G from its minimal
relational sets.

THEOREM 3.2. Let G be a finite group of exponent m = [[ ¢;, with m > 2.
i€l
The relational set [| G; has a minimal idempotent image containing set
i€l

S:U{(l,...,l, g,l,...,l): gEG,-}

il X
and isomorphic to G.

Proor: Consider the morphisms e and r defined in the end of the proof of The-

orem 3.1. Since e is a coretraction it is an embedding of G into [] G;. The image
€l
e(@) certainly contains S. Moreover, er : [[ G; = [] G: is an idempotent morphism
i€l i€l
with image e(G).
Let ¢t : [[ G; — ] Gi be an arbitrary idempotent morphism whose image contains

i€l i€l

S and lies in e(G). We want show that t(H Gi) = e(G), which will conclude the proof

i€l

of the theorem. Let s = rte. Observe that s is an idempotent morphism from G to G.

Moreover, |J G; € s(G). This means, that in the lattice L of idempotent images of
i€l

G, s(G) is greater than or equal to the join of atoms. Since L is Boolean, s(G) = G.

So s is the identity map on G. Hence ¢ maps onto e(G), that is, t<H G,') =e(@). O
el
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CorOLLARY 3.3. Finite groups are categorically equivalent if and only if they
are weakly isomorphic.

PROOF: Suppose that G and G’ are categorically equivalent finite groups. We
shall prove that G and G’ are weakly isomorphic. Assume that G is at least two
element; otherwise the claim is obvious. Then by Theorem 2.3 there exist two relational
sets G for G and G’ for G’ such that G and G’ are of the same type and have the
same minimal relational sets up to isomorphism. Without loss of generality we assume
that these minimal sets actually are the same, say G;, i € I. Let

S:U{OWWL

gJV”J):gEG&.

i€l z

By the previous theorem, both G and G’ are mimimal S-containing idempotent images
of the product of these minimal relational sets. Hence, by Lemma 2.1, G is isomorphic
to G’. Thus, G and G’ are weakly isomorphic. 0

4. CONCLUDING REMARKS

There is a long standing conjecture of Suzuki apparent in [5]: the abstract subal-
gebra lattices of finite powers of a finite group determine the group up to isomorphism.
Since, by [4], the subalgebra lattices of related powers of categorically equivalent alge-
bras are isomorphic the truth of Suzuki’s conjecture would imply our result in Corollary
3.3. On the other hand, there is a concrete version of Suzuki’s conjecture, stated as a
conjecture by Hulanicki and Swierzkowski in [2]. Namely, that two weakly isomorphic
finite groups are isomorphic. In other words, if two group operations on the same finite
set generate the same clone of operations then the corresponding groups are isomorphic.
This would mean that the concrete subalgebra lattices of finite powers of a finite group
determine the group up to isomorphism.

It is interesting to note that in [3] Liiders proved that the abstract relational clone
of any finite algebra determines the algebra up to categorical equivalence. Relational
clones are slightly more complicated structures than the sequences of subalgebra lattices
of finite powers. For the exact definition of relational clones see [3]. Here, it is enough
to know that the relational clone of an algebra is an algebra whose base set is the set
of subalgebras of finite powers of the algebra and whose set of operations contains the
usual meet of subalgebras besides others. Hence, if the relational clones of two algebras
are isomorphic then so are the subalgebra lattices of the related finite powers. Liider’s
result combined with Corollary 3.3 gives that the abstract relational clone of a finite
group determines the group up to weak isomorphism.

https://doi.org/10.1017/5000497270003118X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003118X

408 L. Zadori (6]

REFERENCES

[1] C. Bergman and J. Berman, ‘Morita equivalence of almost-primal clones’, J. Pure Appl.
Algebra 108 (1996), 175-201.

[2] A. Hulanicki and Swierzkowski, ‘On group operations other than xy or yx’, Publ. Math.
Debrecen 9 (1962), 142-148.

[3] O. Liiders, ‘Category equivalence and relational clones’, (preprint, 1996).

[4] R.N. McKenzie, ‘An algebraic version of categorical equivalence for varieties and more
general algebraic categories’, in Logic and Algebra (Pontignano, 1994), (A. Ursini and P.
Agliand, Editors), Lecture Notes in Pure and Applied Mathematics 180 (Marcel Dekker,
New York, 1996), pp. 211-243.

[5] M. Suzuki, ‘Structure of a group and the structure of its lattice of subgroups’ (Springer-
Verlag, Berlin, Heidelberg, New York).

[6] L. Zadori, ‘Relational sets and categorical equivalence of algebras’, Iniernat. J. Algebra
Comput. (1996) (to appear).

JATE, Bolyai Intézet
Aradi vértanik tere 1
H-6720 Szeged
Hungary

https://doi.org/10.1017/5000497270003118X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003118X

