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Abstract
Disaster Risk Financing (DRF) presents a massive challenge to governments worldwide in protecting
against catastrophic disaster losses. This study explores the development of a Disaster Fund that optimally
integrates various DRF instruments, considering several real-world factors, including limited reserves,
constrained risk horizons, risk aversion, risk tolerance, insurance structures, and premium pricing strate-
gies. We demonstrate that the Value-at-Risk (VaR) and Tail VaR constraints are equivalent when the
government has a limited risk horizon. Furthermore, we investigate the optimality of various insurance
structures under different premium principles, conduct comparative statics on key parameters, and ana-
lyze the influence of a VaR constraint on the optimal mix of disaster financing instruments. Lastly, we apply
our Disaster Fund model to the National Flood Insurance Program dataset to assess the optimal disaster
financing strategy within the context of our framework.

Keywords: Contingent credit; Disaster Risk Financing; expected utility maximization; flood insurance; tail value at risk;
value at risk

1. Introduction andmotivation
A robust disaster risk management plan is crucial for the survival and resilience of any nation.
A single catastrophic event has the potential to erase decades, if not centuries, of economic
progress and threaten livelihoods. According to MunichRe (2021), global losses from natural
catastrophes in 2020 amounted to USD 210 billion, marking a significant increase compared to
2019. In the United States, more than 85% of all natural disasters incur costs exceeding a billion
dollars, and the cumulative cost of weather and climate disasters since 1980 has surpassed $1.875
trillion (Smith, 2021). Furthermore, the ongoing trend of rising temperatures and precipitation
driven by climate change is expected to have severe consequences, including the loss of biodi-
versity, environmental degradation, and increased security and health risks (Linnerooth-Bayer &
Hochrainer-Stigler, 2015; ADB, 2017; Jongman et al., 2014).

Disaster Risk Financing (DRF) aims to mitigate the fiscal impacts and economic losses caused
by natural hazards, enhancing a country’s financial resilience to such events (WorldBank, 2015).
Insufficient protection against disaster risks can result in inadequate funding for rebuilding
infrastructure and hinder disaster relief efforts. Conversely, excessive protection may lead to
inefficient use of public funds and substantial opportunity costs, limiting a nation’s potential
for growth and development. As a result, an increasing number of countries are adopting more
proactive and cost-effective approaches to disaster planning to address the extensive human, eco-
nomic, and fiscal consequences of natural disasters (Mahul et al., 2018). A robust DRF strategy
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provides governments with rapid access to financial resources during crises, promotes proactive
risk management, complements the private insurance sector in transferring catastrophic losses,
minimizes humanitarian impacts, and reduces the economic costs of reconstruction (Mahul et al.,
2018). However, selecting the appropriate combination and scale of DRF instruments remains
a significant challenge. The Global Risk Financing Facility highlights the limited availability of
theoretical and empirical studies to guide the effective utilization of risk financing mechanisms
(Spencer, 2021).

This paper examines how governments can effectively manage residual financial risks1 by
employing a combination of DRF instruments, including reserve funds, insurance, contingent
credit (CC), and ex-post financing, within the expected utility maximization framework. We
incorporate a broad spectrum of real-world considerations commonly used in DRF to derive
insights that may not have been previously analyzed or proven. Specifically, we investigate the
effects of various factors on the design of a Disaster Fund, including: (i) premium principles, (ii)
insurance structures, (iii) risk tolerances and risk horizons, and (iv) the influence of higher-order
moments of the loss distribution. The proposed Disaster Fundmodel is highly adaptable, straight-
forward to interpret, and accommodates the distinct circumstances of countries with varying
degrees of risk aversion, economic and budgetary limitations, and disaster risk profiles.

Our analysis reveals that imposing a Value-at-Risk (VaR) constraint and a Tail VaR (TVaR)
constraint yields equivalent outcomes when the quantiles of the VaR and TVaR measures exceed
the government’s risk horizon. Under the expected loss premium principle, the Contingent
Credit-Insurance (CC-I) layer structure emerges as optimal; however, this may not hold under
the standard deviation premium principle. We perform comparative statics to analyze how the
optimal mix of DRF instruments adjusts to changes in key inputs, including insurance loadings,
interest rates on loans and CC, and risk aversion. Notably, the imposition of a VaR constraint can
either increase or decrease the level of insurance coverage, depending on the quantile of the loss
distribution relative to the unconstrained optimal parameters. To illustrate the practicality of the
Disaster Fund model, we calibrate it using actual flood data from the National Flood Insurance
Program (NFIP) in the United States. We explore the optimal mix of DRF instruments and
provide visual representations of the parameter space for constructing optimal disaster financing
structure under various model specifications.

Given the ambiguity and uncertainty surrounding a government’s true underlying utility func-
tion, we avoid deriving closed-form solutions under specific utility functions. While closed-form
solutions can often appear elegant and intuitive, they typically require overly restrictive assump-
tions that omit critical characteristics of real-world scenarios. Instead, the primary contribution of
this paper lies in uncovering valuable and previously underexplored insights that are both essen-
tial and practical for governments designing DRF funds within an expected utility maximization
framework.

1.1 DRF literature review
A review of existing DRF literature reveals an abundance of qualitative studies on DRF adoption
but a relative scarcity of quantitative methods and practical guidance for governments on
optimally constructing a DRF fund to manage disaster risk (e.g., Kunreuther, 1974; Settle, 1985;
Lewis & Murdock, 1996; Harrington, 1997; Weingartner et al., 2017; Noy & Edmonds, 2019;
Oseno & Obiri, 2020; Surminski et al., 2019; Ahmed, 2021). While many studies emphasize
the principle of prioritizing risk retention before transferring risk, they often stop short of

1This approach is consistent with the UnitedNations Office for Disaster Risk Reduction (UNDRR) recommended forms
of disaster risk management actions: (i) Prospective (pre-disaster actions), (ii) Corrective (after-disaster recovery), and (iii)
Compensatory (residual risks) (UNDRR, 2021). Therefore, we assume that the government has taken appropriate actions to
manage disaster risk and focus on the final form of action by examining how the government can optimally manage disaster
risks that are impractical to mitigate or eliminate.
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determining the optimal threshold for retention (Punkdrik, 2010; Kashiwagi, 2011;
Zelinschi et al., 2013; WorldBank, 2018). These studies frequently rely on arbitrary benchmarks,
such as a 1-in-200-year or 1-in-500-year return period, without providing clear justification
or assessing the effectiveness and optimality of employing multiple DRF instruments (Vasche
& Williams, 1987; Cornia & Nelson, 2003; Barnichon, 2008; Truong, 2021). Moreover, limited
research explores the integration of multiple DRF instruments by analyzing diverse insurance
structures, real-world constraints, and varied loss profiles to derive optimal strategies for DRF.

The body of quantitative research on the construction of DRF strategies remains limited. In
Clarke &Mahul (2011), the authors analyze a range of DRF instruments – savings, loans, CC, and
insurance – within a two-period model that maximizes the expected utility of consumption under
the expected loss premium principle. They conclude that a layered financing structure is opti-
mal and emphasize the importance of CC. However, their study does not explicitly quantify the
optimal allocation of each DRF instrument. Clarke et al. (2017) propose a cost-minimizing strat-
egy for combining disaster risk financial instruments, assuming a risk-neutral government. This
framework results in a naturally layered strategy, where DRF instruments are utilized sequentially
in order of increasing cost, subject to availability. However, governments are often risk-averse
to significant losses, rendering a purely cost-benefit analysis inadequate (Stewart et al., 2011). In
contrast to these studies, we advance the literature by determining the optimal allocation of mul-
tiple DRF instruments. Our approach incorporates additional practical considerations, including
risk aversion, alternative insurance structures, premium principles, VaR and TVaR constraints,
risk tolerance, and risk horizon. This comprehensive framework provides a more realistic DRF
strategy for addressing the complexities of managing catastrophic risk.

Our paper also connects to the optimal (re)insurance literature. Arrow (1974) established that
the optimal insurance contract under the expected loss premium principle is the excess-of-loss
contract, where insurance payouts are triggered only for losses exceeding a specified deductible.
The landmark paper by Arrow (1974) has spurredmany extensions such as (1) different risk objec-
tive functions and constraints (Huberman et al., 1983; Browne, 1995; Huang, 2006; Cai and Tan,
2007; Cai et al., 2008; Balbás et al., 2009; Liang & Guo, 2010; Chi & Tan, 2011), (2) different
premium principles (Young, 1999; Chi & Tan, 2013; Liang & Yuen, 2016a; Chi & Zhou, 2017;
Liang et al., 2022), and (3) different reinsurance structures (Huberman et al., 1983; Zhang et al.,
2007; Kaluszka & Okolewski, 2008; Liang & Guo, 2011; Ghossoub, 2019). Kaluszka & Okolewski
(2008) further demonstrated that the excess-of-loss contract remains optimal even when there is
an upper bound on insured losses. Our Disaster Fund model can be viewed as a specialized form
of the optimal reinsurance problem, where we consider a (1) stepwise increasing cost associated
with the use of reserves, (2) proportional and layering insurance structures, (3) expected loss and
standard deviation premium principles, (4) VaR and TVaR constraints on terminal fund value,
and (5) variable attachment and exhaustion points for both insurance and CC.

We organize the rest of this article as follows. Section 2 introduces the various DRF instru-
ments and key real-world considerations for managing disaster risk, followed by our Disaster
Fund methodology and its associated maximization setup. Section 3 presents our theoretical find-
ings and conducts comparative statics. Section 4 provides an empirical study onU.S. flood risk and
illustrates the optimal solution to the Disaster Fund model, highlighting the influence of various
constraints and assumptions. Finally, Section 5 concludes the paper. Technical details, including
proofs and additional figures, are provided in the appendix.

2. Disaster Fundmodel
2.1 Types of DRF instruments
Following the World Bank classification (Mahul et al., 2018) and a substantial body of DRF liter-
ature (Kashiwagi, 2011; Zelinschi et al., 2013; WorldBank, 2018), we group DRF instruments into
three broad categories.
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• Budgetary Measures: These measures refer to the allocation of funds by the government for
disaster-related expenditures and are typically risk-retention strategies. These funds can be
regular injections (e.g., a proportion of GDP) into reserve funds or reallocations from other
programs. For ex-ante reserve funds, a sum of money is set aside for disaster relief, allowing
the government to react swiftly when disaster strikes. On the other hand, ex-post borrowing
and reallocating funds require no preparatory planning but carry high financial and opportu-
nity costs since interest rates will be extremely high after a disaster, and the government must
sacrifice otherwise potentially lucrative and valuable development and improvement projects.

• Market-based Instruments: These instruments are usually risk-transfer mechanisms, includ-
ing insurance and insurance-linked securities such as catastrophic bonds and swaps.
Adopting such instruments is imperative for a risk-averse decision-maker since they help
remove uncertainty. These instruments transfer risk away from the government to third
parties, such as the (re)insurance industry or the catastrophe bond capital market.

• Contingent Credit: These instruments are specific to DRF and combine elements of risk
retention and risk transfer. An external third party, typically a well-established supranational
organization2, agrees to lend a pre-agreed amount of funds to the participating countries in
the event of a disaster. The loan typically carries a much lower interest rate compared to ex-
post financing. However, countries must determine the maximum drawdown amount and
pay a small upfront fee, both at the outset and at recurring intervals during the agreement,
based on the maximum available drawdown before a disaster occurs.

Lastly, governments can turn to ex-post borrowing (from the public or other nations) and
humanitarian aid (relying on donor countries for assistance) as a last resort to finance disaster
losses. However, these ex-post financing options are highly uncertain and costly. The Disaster
Fund focuses on the most representative and widely used DRF instruments in each category –
reserve fund, insurance, CC, and ex-post borrowing.

2.2 Real-world considerations
In this section, we identify several practical constraints and considerations that governments face
in managing disaster risk, which will subsequently be incorporated into the construction of the
Disaster Fund model.

Observation 1. (Limited reserves) The government can allocate only a limited amount of funds as
reserves for disaster financing.

Funds injections into the Disaster Fund have competing uses and opportunity costs, such as
investing in development and improvement projects. Hence, it cannot be inexhaustible, making
storing huge amounts of money to self-insure against disaster risk practically infeasible. Political
opposition and protests are also likely to occur if a disproportionately large amount of cash is
locked away for some future probabilistic event instead of improving citizens’ current welfare.
For example, Baratz & Moskowitz (1978) note that California’s Proposition 13, which limited tax
rates on citizens, was partly motivated by public discontent over a $5 billion surplus held by the
government while taxpayers felt overburdened by excessive taxation. Consequently, the limited
reserves that the government can accumulate are often insufficient to cover significant disaster
losses, requiring the government to explore other funding sources.

Observation 2. (Limited risk horizon) A government will only protect itself from disaster risk up
to a certain threshold.

2Several prominent CC facilities include the World Bank’s Catastrophe Development Policy Loan (CaT DDO) and the
Asian Development Bank’s contingent disaster financing (ADB CDF). Each facility varies in its loan contract terms, including
the fee structure, interest rates, and repayment period.
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A government typically does not protect itself from the entire spectrum of disaster risk,
particularly when the risk involves exceptionally large losses. For example, within the past 10 years
(2010–2020), there have been 8,235 emergency declarations and 14,539major disaster declarations
by U.S. states, which are instances where the individual states face disaster damages beyond their
planned capability and resources and, thus, request federal assistance. (FEMA, 2023). Similarly,
the National Flood Insurance Program (NFIP) in the U.S. relies on federal borrowings to cover
extreme flood losses, as its purchase of public reinsurance and issuance of catastrophe bonds only
provide coverage up to a certain threshold (Horn, 2024). There are several possible explanations
for a government to adopt a limited risk horizon. For enormous losses, governments may con-
sider such disasters too unlikely to occur, or theymay believe that securing protection against such
remote events is not justified given the associated effort and opportunity costs. Budget constraints
(insurance premiums covering the whole disaster loss are impractically high) and a myopic mind-
set (it is highly unlikely for a disaster to occur within the next few years) are common reasons
to forsake planning efforts for such massive losses. The scarcity of market participants willing
to absorb high-severity, low-likelihood disaster risk further exacerbates the issue. Additionally,
moral hazardmay play a role, as governmentsmight expect humanitarian aid from other countries
or organizations in the event of catastrophic disasters.

Observation 3. (Risk aversion) For potentially monumental losses, governments exhibit risk
aversion behavior.

A critical consideration often overlooked in many DRF papers is the government’s risk aver-
sion. Stewart et al. (2011) suggest that for non-catastrophic events, governments typically adopt
a net present value (NPV) approach to evaluate projects, implying risk neutrality. However, this
NPV method fails to account for many of the risk-averse actions governments take regarding
catastrophic losses3. Kaufman (2014) discusses why many governments tend to overlook the
risk-reduction benefits of their actions by failing to account for uncertainties, and strongly recom-
mends that policymakers adjust their decision-making processes to include risk-aversion analysis.
Harris (2014) further highlights that governments often exhibit risk-neutrality in response to cli-
mate events due to political factors. By framing climate change as “unpredictable, unavoidable, or
simply natural,” governments may justify their inaction. However, this mindset can be detrimen-
tal, as “by the time climate change impacts are bad enough for policymakers to react effectively, it
will probably be too late” (Harris, 2014). These examples underscore the importance of adopting
a utility-based framework in disaster risk management that accounts for the government’s risk
aversion.

Observation 4. (Risk tolerance) Governments seek to limit risk exposure.

Governments typically define acceptable risk levels to ensure they can address essential disaster
response requirements while maintaining balanced risk exposure. To achieve this, they establish
targets based on preferred risk measures, selected to align with specific objectives such as solvency
or capital adequacy requirements (Bernard & Tian, 2009; Chen et al., 2010; Melnikov & Smirnov,
2012). Among these, VaR and TVaR4 are the most commonly employed risk measures.

Under the VaR constraint, the government necessitates that the terminal value of the Disaster
Fund remains above a pre-determined threshold after a disaster loss at or below the p-th per-
centile if its distribution occurs. For example, insurers under Solvency II must meet a 99.5%
VaR requirement (BIS, 2019), while banks under Basel III adhere to a 99.9% VaR standard

3An example highlighted by Stewart et al. (2011) is the enforcement of strengthening cockpit doors to prevent terrorists
from accessing the cockpit. While the cost of reinforcing all cockpit doors significantly outweighs the expected benefit of
deterring a terrorist attack, the government still implements this measure. This illustrates the government’s preference to
avoid uncertainty, even when the cost appears disproportionate.

4Also known as Conditional Tail Expectation or Expected Shortfall.
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(EU Commission, 2015). The VaR measure is widely adopted due to its simplicity, interpretabil-
ity, and ease of communication, making it a popular choice among regulators and financial
institutions for quantifying risk.

Conversely, a TVaR constraint limits exposure to extreme disaster losses by ensuring that the
conditional expected terminal value of the Disaster Fund in the tail of the distribution remains
above a specified threshold. The TVaR measure is highly relevant for DRF, given that disaster
losses are often characterized by high skewness and fat tails. Unlike VaR, which only consid-
ers losses up to a certain quantile, TVaR accounts for the average severity of losses beyond this
threshold, addressing the limitations of VaR in ignoring extreme tail risks. In the financial sector,
the significance of TVaR has been increasingly recognized. Basel IV, implemented starting in 2023,
mandates the use of TVaR at the 97.5% confidence level as a primary risk measure, underscoring
its effectiveness in providing a comprehensive assessment of extreme risk scenarios (pwc, 2016;
FTSE, 2022).

Observation 5. (Insurance structure) The two primary types of insurance coverage are excess-of-
loss and proportional structures.

Undermany optimal insurance problems, the excess-of-loss indemnity structure often emerges
as the optimal structure (see, e.g., Arrow, 1974; Denuit & Vermandele, 1998; Kaluszka &
Okolewski, 2008). The superiority of the excess-of-loss structure arises from its flexibility to
allow the policyholder to self-insure and avoid paying insurance loading for low-severity risk
while removing high-severity risk, which is more volatile and uncertain, especially when the
policyholder is highly risk-averse relative to the insurer.

However, practical considerations may render the proportional insurance structure prefer-
able in certain contexts. For example, Huberman et al. (1983) argue that deductible contracts
are suboptimal when there exist economies of scale in cost management. Lampaert & Walhin
(2006) highlight that proportional insurance can reduce moral hazard and is simpler to price.
Additionally, Raviv (1992) shows that co-insurance arrangements are optimal when insurers
exhibit risk aversion or when insurance costs are non-linear. Similarly, our study’s inclusion of
numerous real-world considerations in designing the DRF fund may suggest that the excess-of-
loss structure is not necessarily optimal. These considerations introduce complexities that can
alter the balance of costs and benefits associated with each insurance structure, potentially favoring
the proportional structure under specific circumstances.

Observation 6. (Insurance premium) Insurers set premium loadings based on both the expectation
and the volatility of the claim payments.

Variability-based premium principles have been extensively explored in the actuarial litera-
ture (see, e.g., Kaluszka, 2001; Chi, 2012; Liang and Yuen, 2016b). Notably, Zeng & Luo (2013)
demonstrate that under the standard deviation or variance premium principle, the proportional
insurance structure emerges as optimal. Furthermore, Landsman& Sherris (2001) critique that the
expected value principle does not preserve a consistent risk ordering, as it neglects the variability
of risks by assuming that two risks are indifferent as long as their expected payouts are equivalent –
an oversight that is particularly significant in catastrophic loss scenarios. Lane &Mahul (2008) also
provide empirical evidence showing that catastrophe bonds are priced with up to a 44.9% pre-
mium loading on the standard deviation of losses, in addition to accounting for expected loss. In
this paper, we adopt a hybrid approach that combines both the expected loss and standard devi-
ation premium principles, ensuring a more realistic pricing mechanism. Premium loadings on
expected loss help cover claims payouts, administrative charges, and profit margins of the insurer,
while loadings on the standard deviation of losses compensate for the high uncertainty and risk
borne by the insurer in relation to non-catastrophic risks.
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Figure 1. The Disaster Fund model. We consider two strategies, which consist of three distinct layers for losses with various
severities, along with the parameters to optimize.

2.3 Disaster Fund
Consider a government seeking to establish a Disaster Fund for effective disaster risk manage-
ment. The design of the Disaster Fund must incorporate the various instruments discussed in
Section 2.1, while also adhering to the constraints and considerations outlined in Section 2.2.

Firstly, since the reserve fund is the most cost-effective form of capital, the government will
prioritize its use. Therefore, for low-severity losses up to a certain endogenous threshold L, the
government will opt to use the reserve funds over other instruments. This approach is akin to
self-insuring against the first portion of disaster risk from 0 to L. To integrate Observation 1 into
the Disaster Fund model, we impose a cap on the availability of the reserve fund, denoted as kL,
which is exogenously determined. Once the reserve fund is depleted, the government must then
rely on alternative methods to finance the remaining losses5.

From Observation 2, there exists an upper threshold loss amount U such that losses above U
beyond which the government does not plan in advance to cover disaster losses, as these losses
exceed its defined risk horizon. For losses surpassing U, the government will resort to ex-post
financing methods, such as borrowing or reallocating budget from other sources, since ex-post
financing generally comes with extremely high interest rates and significant opportunity costs,
making it a last resort option after all ex-ante alternatives have been exhausted. Furthermore, we
introduce an exogenous upper bound kU for U where the government will cease arranging addi-
tional DRF instruments. This limit could be driven by external factors, such as the unavailability
of insurance markets or CC facilities willing to cover extremely severe losses.

Lastly, for the remaining losses of moderate loss severity between L and U, the government
will adopt a combination of risk retention and risk transfer strategies – specifically, insurance and
CC – to cover disaster losses. This approach aligns with the World Bank’s recommended tiers
of risk management: (i) self-retention to finance small but recurrent disasters, (ii) CC mecha-
nisms for less frequent but more severe events, and (iii) disaster risk transfer, such as insurance,
to cover major natural disasters (GFDRR, 2015). Our primary focus will be on this layer of risk
management. The left diagram of Fig. 1 summarizes the key elements of the model discussed
thus far.

Let

• R0 ∈R denotes the initial wealth allocated to the fund by the government,
• FCC, rCC, re ≥ 0 denote the per-unit upfront administrative charge of CC6, rate of interest for

CC, and the rate of interest for ex-post borrowing, respectively,

5Note that L is endogenously determined and is influenced by key variables in the optimization problem, such as the
government’s risk aversion and VaR requirement. On the other hand, kL is an exogenous constraint, which can be interpreted
as a budgetary or regulatory limitation independent of the utility maximization problem.

6For example, theWorld Bank’s CC facility, the IBRDDevelopment Policy Loan with Catastrophe Deferred Drawdown
Option (Cat DDO), charges an upfront fee of $0.005 per dollar of the total CC arrangement (WorldBank, 2021). Similarly,
the Asian Development Bank (ADB) charges between $0.001 and $0.0025 per dollar of the total CC amount for its contingent
disaster financing (CDF) loans (ADB, 2019).
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• X denotes a continuous7, non-negative random variable modeling the disaster loss with a
cumulative distribution function FX(x) and a density function fX(x),

• YI(X), YCC(X), Ye(X)≥ 0 denote the cashflows from insurance claims, CC, and ex-post
financing, respectively, and

• CI , CCC ≥ 0 denote the insurance premium and upfront cost for arranging CC, respectively.

To establish the Disaster Fund, the government determines the allocation of each DRF instru-
ment to adopt across various loss severities, governed by endogenous variables L,M,U for the
CC-I layer structure and L, α,U for the proportional structure. At the fund’s inception, the gov-
ernment pays the insurance premiumCI and the upfront cost of the CCCCC. Upon the occurrence
of a disaster event, the government raises the realized disaster loss amount X in full according to
the predetermined Disaster Fund strategy. The realized loss will first be raised through the reserve
fund L, followed by a mix of insurance payout YI(X) and CC YCC(X) if the reserve fund is insuf-
ficient to cover the entire disaster loss, and finally, the government resorts to ex-post financing
Ye(X) as a last resort. Subsequently, if CC facilities or ex-post financing are utilized, the govern-
ment is obligated to repay the loans with interest charged at rCC and re, respectively. Thus, the
terminal Disaster Fund value after disaster occurrence and loan repayments is

R1(X)= R0 − CI − CCC (fund initiation) (1)
− X + YI(X)+ YCC(X)+ Ye(X) (disaster occurrence)
− (1+ rCC)YCC(X)− (1+ re)Ye(X). (loan repayment)

= R0 − CI − CCC − X + YI(X) (2)
− rCCYCC(X)− reYe(X).

Equation (1) groups cashflows occurring at different points in time. In contrast, disregarding the
terms CCC, YCC(X), and Ye(X), Equation (2) coincides with the utility maximization problem of
the renowned Arrow (1974) model. However, disaster losses are often extraordinarily large, mak-
ing it impractical for governments to self-retain risk, evenwhen thismay be the utility-maximizing
solution. Consequently, governments must resort to borrowing to manage retained risk, incur-
ring additional interest payments compared to the zero interest cost associated with using initial
wealth. For each DRF instrument, a marginal unit of disaster loss is financed by

(i) one dollar of initial wealth,
(ii) one dollar of insurance payoff,
(iii) (1+ rCC) dollars from a CC loan, or
(iv) (1+ re) dollars from an ex-post loan.

In an unconstrained scenario, option (i) is the most cost-effective, followed by (iii), with (iv)
being the least favorable. Consequently, the government will naturally prioritize funding disaster
losses using its own wealth, then CC, and finally ex-post borrowing. To reflect real-world con-
straints, the limited reserve constraint caps the wealth allocated as a reserve at kL, and the limited
risk horizon constraint imposes an upper limit kU on the combined use of CC and insurance. Any
self-retained risk exceeding kL must be financed through CC, and losses beyond kU necessitate
ex-post financing.

In summary, our model is a one-period static framework based on Arrow (1974)’s setup, with
modifications tailored to the context of disaster losses. Specifically, self-retention becomes costly
beyond a certain threshold as borrowing is required. The rising cost of capital discourages self-
retention and promotes the purchase of insurance.

7It is straightforward to generalize X. For example, we might wish for X to have a point mass at zero. This does not
affect our results since all losses below threshold L are covered by the reserve fund.
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We assume that initial wealth is not a limiting constraint, meaning the initial fund is sufficiently
large to cover at least the reserve fund, the insurance premium, and the CC upfront fee, such that
R0 > L+ CI + CCC. In practice, loan repayments often occur over future periods and may extend
across multiple years. However, for analytical convenience, we simplify the model into a single-
period framework. Heuristically, the interest rates rCC and re can be interpreted as adjusted rates,
reflecting the net impact of the discounted time value of money and the potential investment
returns of the fund over the repayment period.

2.4 Insurance structures and premium principles
Based on Observation 5, we consider two distinct structures for combining insurance and CC to
address mid-severity losses between L andU. Under the excess-of-loss (Layer CC-I) structure, CC
is arranged to cover losses within the interval [L,M], while insurance is used to cover the remain-
ing losses within the range [M,U]. In contrast, the proportional (prop) structure entails a fixed
proportional allocation parameter α ∈ [0, 1], where insurance covers $α of each marginal unit of
disaster loss and CC covers the remaining $(1− α). As a result, insurance provides protection for
up to α(U − L) of the total disaster loss, while CC is responsible for (1− α)(U − L).

Furthermore, in line with Observation 6, we assume that insurance premiums are loaded by
two factors: a multiplier ρ1 ≥ 0 on the expected payout and a multiplier ρ2 ≥ 0 on the standard
deviation of the payout. Overall, the terms in Equation (1) are governed by

CI = (1+ ρ1)E(YI(X))+ ρ2
√
Var(YI(X)), (3)

CCC =
{
(1− α)(U − L)FCC for proportional strategy
(M − L)FCC for layer CC-I strategy

, (4)

YI(X)=
{

α[(X − L)+ ∧ (U − L)] for proportional strategy
(X −M)+ ∧ (U −M) for layer CC-I strategy

, (5)

YCC(X)=
{
(1− α)[(X − L)+ ∧ (U − L)] for proportional strategy
(X − L)+ ∧ (M − L) for layer CC-I strategy

, (6)

Ye(X)= (X −U)+, (7)

where (x)+ : x �→max (0, x), x∧ y : (x, y) �→min (x, y), and the decision variables satisfy{
L≤U, 0≤ α ≤ 1, for proportional structure
L≤M ≤U, for CC-I structure

. (8)

2.5 VaR and TVaR constraints
Referring to Observation 4, we consider a government that seeks to limit the risk associated with
the terminal value of the Disaster Fund by using the VaR and TVaRmeasures. Let p ∈ (0, 1) denote
the confidence level. We define

VaRp(R1) := F−1
R1 (1− p), and (9)

TVaRp(R1) := E[R1|R1 ≤VaRp(R1)], (10)
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where FR1 ( · ) is the cumulative distribution function of R18. Therefore, under the VaR and TVaR
constraints, the government requires the following conditions to hold

VaRp(R1)≥ kVaR, for VaR constraint, and, (11)

TVaRp(R1)≥ kTVaR, for TVaR constraint, (12)

for some kVaR ∈R and kTVaR ∈R exogenously determined by the government.

2.6 Expected utility maximization problem
To simplify notations, let � denote the feasible parameter space for the decision variables under
the various insurance structures. Specifically, we have θ = (L, α,U) ∈ � for proportional struc-
ture and θ = (L,M,U) ∈ � for layer CC-I structure. To address the risk aversion behavior of
governments as outlined in Observation 3, we assume the existence of a convex utility function
U(w; γ ) that reflects the government’s preferences, where γ ≥ 0 is the risk aversion parameter,
and U

′(w)> 0, U′′(w)< 0.
To determine the optimal set of parameter values θ , we aim to maximize the expected utility of

the terminal Disaster Fund value, as expressed in Equation (1), subject to the constraints discussed
in Sections 2.3 and 2.5. Thus, the maximization problem is

max
θ∈�

E
(
U(R1(X; θ); γ )

)
s.t.

L< kL, VaRp(R1)≥ kVaR,
U < kU TVaRp(R1)≥ kTVaR

(13)

Intuitively, under utility maximization, the government aims to maximize the terminal value
of the Disaster Fund after a disaster event, while simultaneously minimizing the uncertainty asso-
ciated with that value. The trade-off between these two competing objectives is governed by the
risk aversion parameter γ . A higher value of γ indicates a stronger preference for minimizing
uncertainty, thus prioritizing stability over potential returns.

3. Analytical results
In this section, we provide a graphical interpretation of the Disaster Fund model, perform
comparative statics, and highlight key analytical features of the model.

3.1 Graphical interpretation of Disaster Fund
Fig. 2 illustrates the terminal value of the Disaster Fund across various disaster loss severities. The
vertical intercept represents the terminal Disaster Fund value when there are no disaster losses.
A larger initial reserve R0 shifts the entire graph up vertically. A higher level of insurance cov-
erage results in a greater initial premium payment, thereby lowering the vertical intercept. For
both insurance structures, the loss magnitude is divided into three distinct regions [0, L), [L,U)
and [U,∞), separated by kinks at the attachment point L and exhaustion point U of the mid-
severity insurance layer. For small losses within the range 0 to L, the reserve fund fully covers
each incremental dollar of disaster loss, producing a linear decline with a gradient of −1. For
losses exceeding U, the steep gradient reflects the high cost of ex-post financing, characterized by
a gradient of −(1+ re).

8In this paper, the VaR and TVaRmetrics are applied to the wealthR1 rather than their traditional use in actuarial science
for the loss X, for simplicity in notation. In other words, the p-th percentile of X corresponds to the (1− p)-th percentile of
R1. Defining VaR and TVaR in terms of wealth and loss is fundamentally equivalent.
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Figure 2. Graphs of terminal Disaster Fund value R1(x) as a function of realized disaster losses x under the (a) proportional
and (b) layer CC-I insurance structures. In each graph, the blue curve illustrates the Disaster Fund value with lower insurance
coverage and higher contingent credit (CC) arrangements relative to the green curve, which depicts an alternative Disaster
Fund with higher insurance and lower CC.

The shape of the graph for intermediate losses between L and U varies depending on the
specific insurance structure employed. Under the proportional structure illustrated in Fig. 2(a),
each marginal dollar of loss is split such that a fraction $α is funded by the insurer, while the
remaining $(1− α) is financed through borrowing from the CC facility, resulting in a gradient of
(1− α)(1+ rCC) for the mid-severity layer, which is generally less steep compared to the gradi-
ent for losses between 0 and L. On the other hand, there are two distinct sub-layers in the CC-I
structure in Fig. 2(b). For losses between L and M, the gradient 1+ rCC is slightly steeper than
−1 due to the interest charged by CC. In contrast, since the insurance payout covers the entire
disaster losses for losses betweenM and U, the terminal Disaster Fund value is unaffected, result-
ing in a horizontal segment with a zero gradient. The point M marks the boundary between the
two sub-layers, delineating the transition from CC financing to full insurance coverage within the
intermediate loss range.

Lastly, we examine how the imposition of various constraints impacts the terminal Disaster
Fund value. The constraint L< kL (respectively,U < kU) restricts the attachment point L (respec-
tively, the exhaustion pointU) on the horizontal axis to be positioned leftward of the threshold kL
(respectively, KU). In contrast, the VaR constraint asserts that the graph’s height at the p-th quan-
tile of the loss distribution must remain above the threshold kVaR. Similarly, the TVaR constraint
can be heuristically interpreted as necessitating that the weighted average height of the graph for
losses exceeding the p-th quantile is greater than the threshold kTVaR.

Propositions 1 and 2 highlight several interesting analytical characteristics of our Disaster Fund
model concerning the VaR and TVaR constraints. Let pU = FX(U).

Proposition 1. Setting VaRp1 (R1)≥ kVaR is equivalent to setting VaRp2 (R1)≥ k∗
VaR where k∗

VaR =
kVaR + (1+ re)(F−1

X (p1)− F−1
X (p2)), ∀ p1, p2 ≥ pU.

Proposition 1 simplifies the consideration of the VaR constraint for high percentile values
p> pU by allowing it to be re-expressed at a lower percentile. When combined with the con-
straint U ≤ kU , it suffices to focus on p= pkU = FX(kU), as any VaR constraint with a larger p
can be equivalently reformulated as a constraint on VaRpkU (R1). Intuitively, for losses beyond
U, all strategies converge to relying exclusively on ex-post financing. Consequently, imposing
a threshold on the terminal Disaster Fund value for one segment of losses beyond U is not
unique; the constraint can effectively be “shifted” anywhere within the range [U,∞). Graphically,
VaRp1 (R1)−VaRp2 (R1) is the vertical distance in the ex-post financing layer, 1+ re corresponds
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to the gradient and F−1
X (p1)− F−1

X (p2) is the horizontal distance of the ex-post financing layer.
This relationship highlights the linear dependence of the ex-post financing segment, regardless of
the type of insurance structure adopted for lower severity losses.

Proposition 2. Setting TVaRp(R1)≥ kTVaR is equivalent to setting VaRp(R1)≥ k∗
VaR where k∗

VaR =
kTVaR − (1+ re)F−1

X (p)+ (1+ re)TVaRp(X), ∀ p> pU.

Proposition 2 establishes that, for a given loss distribution, the VaR and TVaR constraints are
equivalent. This equivalence is particularly advantageous since the TVaR threshold is typically
more difficult to determine and quantify in practice. Consequently, the government can limit its
focus to the VaR measure without losing analytical generality. In conjunction with Proposition 1,
the TVaR and VaR constraints can jointly be simplified to the form VaRpkU (R1)≥ k̄VaR, where
pkU = FX(kU) and k̄VaR =max{kVaR, k∗

VaR}. This simplification significantly reduces the complex-
ity of the maximization problem by eliminating the need to separately consider VaR or TVaR
constraints for higher percentiles.

For commonly used parametric loss distributions X, the analytical expression for the TVaR
TVaRp(X) can often be derived explicitly, facilitating the calculation of k∗

VaR in Proposition 2.
For instance, when the loss follows an exponential distribution X ∼ Exp(λ), TVaRp(X)=
1
λ
(1− ln (1− p)), while for a lognormal distribution X ∼ LN(μ, σ 2), we have TVaRp(X)=
1

1−p e
μ+0.5σ 2

	
(
σ − 	−1(p)

)
, where 	( · ) is the CDF of the standard normal distribution N(0, 1).

3.2 Premium principles
Building upon the extensive literature on optimal insurance structures, the optimal design for
the Disaster Fund’s insurance coverage depends on the pricing methodology of the insurance
contract. Consider a simplified scenario in which the VaR and TVaR constraints are not binding,
and the upfront cost of CC is negligible9, then Propositions 3 and 4 outline the implications of
various insurance structures on the Disaster Fund.

Proposition 3. Under the expected loss premium principle (i.e., when ρ2 = 0), the layer CC-I
structure is the optimal insurance structure.

Proposition 4. Under the standard deviation premium principle (i.e., when ρ2 > 0), for sufficiently
large losses (specifically for x> argx {YI(x)= E(YI(X))}), if the pdf of the loss distribution fX(x) is
decreasing in x, CC-I structure is not the optimal insurance structure.

Proposition 3 indicates that when the insurance premium principle does not account for the
volatility of the payout, it is always preferable to adopt the layered CC-I structure for the Disaster
Fund. This is because higher-severity losses lead to a greater reduction in utility for the risk-averse
government compared to lower-severity losses. In contrast, Proposition 4 suggests that when the
premium includes a loading based on the standard deviation of the payout, the proportional
structure may be more advantageous than the CC-I structure.

In practice, due to the substantial uncertainty in characterizing disaster losses and the poten-
tially catastrophic magnitudes of the associated payouts, insurers typically impose significant
loadings on the variability of disaster risk payouts. Consequently, when ρ2 is significant, we may
observe the proportional structure outperforming the CC-I structure.

9In practice, the upfront cost is usually small relative to the notional CC arrangement, as it primarily covers administra-
tive expenses. For example, the World Bank’s Catastrophe Deferred Drawdown Option (Cat DDO) incurs an upfront fee of
only 0.50% of the committed loan amount (WorldBank, 2021), while the Asian Development Bank (ADB) charges an upfront
fee of up to 0.25% depending on the loan type to make CC accessible to less developed countries (ADB, 2019).
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Table 1. Comparative statics for the optimal parameters ϕ ∈ θ∗ under the proportional
and CC-I structures in response to changes in exogenous variable ξ . As ξ increases, the
optimal parameter ϕ will either increase ↑, decrease ↓, or the direction of influence is
indeterminate↑↓. Sincewithout imposing constraints on L, L∗CC-I =M∗

CC-I under the layer
CC-I structure, the column for L∗CC-I is excluded

Proportional Structure CC-I Structure

ξ L∗prop α∗
prop U∗

prop M∗
CC-I U∗

CC-I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ1 ↑ ↓ ↓ ↑ ↓
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ2 ↑ ↓ ↓ ↑ ↓
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FCC ↑ ↑↓ ↓ ↑↓ ↓
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rCC ↑↓ ↑ ↑↓ ↑↓ ↓
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

re ↓ ↑ ↑ ↓ ↑
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ ↓ ↑ ↑ ↓ ↑

3.3 Comparative statics
In this section, we perform a comparative static analysis to assess the impact of key external factors
on the optimal solution, assuming that all constraints are non-binding, in order to focus on the
direction of influence. To facilitate this analysis, we first introduce Lemma 1.

Lemma 1. Suppose θ∗ is the maximizer and ϕ ∈ θ is one of the decision variables to optimize in
Equation 13. Moreover, assume that ∂2EU(θ∗)

∂ϕ2 |ϕ=ϕ∗ < 0. Then, for any exogenous variable ζ (e.g.
ρ1, ρ2, rCC, FCC or re), if an increase (resp. decrease) in ζ leads to an increase (resp. decrease) in
first-order derivative ∂EU(θ∗)

∂ϕ
, the optimal ϕ∗ will be increasing (resp. decreasing) in ζ .

Lemma 1 provides insights into how changes in ζ affect the optimal solution ϕ∗. It is sufficient
to examine the change in ∂EU

∂ϕ
as ζ varies to deduce the impact of ζ on ϕ∗. Table 1 presents the com-

parative statics for the optimal parameters under both the proportional and CC-I structures10.
As insurance premium becomes more expensive (i.e., higher ρ1, ρ2), the government tends to

adopt less insurance, reflected in higher values of L∗
prop andM∗

CC-I and lower values of α
∗
prop,U∗

prop
and U∗

CC-I. Moreover, when the upfront fee FCC for arranging CC is high, the government will
generally opt for less CC, leading to a higher L∗

prop and lower U∗
prop and U∗

CC-I. However, the effect
of FCC on α∗

prop and M∗
CC-I is inconclusive as higher FCC can (i) reduce preference for CC due to

higher cost, leading to a higher α∗
prop and lowerM∗

CC-I, and (ii) deplete terminal wealth, prompting
the government to reduce insurance purchase to lower premium payments and offset the wealth
reduction caused by the higher upfront cost causing a lower α∗

prop and higherM∗
CC-I.

Similarly, the net impact of an increase in rCC on the optimal L∗
prop,U∗

prop and M∗
CC-I is inde-

terminate since a higher interest rate on CC has two opposing effects: (i) deter the use of CC and
propel the government to adopt insurance, which lowers L∗

prop and M∗
CC-I and increases U∗

prop,
and (ii) deplete terminal wealth due to higher loan repayment, causing the government to lower
insurance purchase to in an effort to stabilize the terminal fund value, which in turn increases
L∗
prop andM∗

CC-I while decreasing U∗
prop.

A higher ex-post borrowing interest rate re has an unambiguous effect of increasing insurance
uptake to avoid incurring substantial costs to secure additional funding for extremely large losses.
Similarly, a higher risk aversion γ motivates the government to rely more on insurance over CC
and ex-post borrowing, driven by a preference tominimize volatility in the terminal Disaster Fund
value.

10Table 1 shows the direction of change prior to applying any parameter value constraints. For instance, if the optimal
α∗ = 1. Although an increase in risk aversion γ increases α, α∗ will remain bounded at 1.
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3.4 The VaR constraint
While the constraints L≤ kL and U ≤ kU directly affect the optimal decision variables, the influ-
ence of the VaR constraint on these variables is more complex. To facilitate discussion, let
ϕ ∈ {L,M,U} denote a decision variable of interest and let ϕ∗ and ϕ# denote the optimal param-
eters for our optimization problem in Equation (13) obtained without and with VaR constraint
(VaRp(R1)≥ kVaR), respectively.

Proposition 5. Under a binding VaR constraint, ϕ# will be either higher (resp. lower) than ϕ∗
depending on whether F−1

X (pVaR) is higher (resp. lower) than ϕ∗.

• For Proportional Structure:

F−1
X (pVaR)< L∗ ⇒ L# > L∗, and F−1

X (pVaR)> L∗ ⇒ L# < L∗.

F−1
X (pVaR)<U∗ ⇒U# <U∗, and F−1

X (pVaR)>U∗ ⇒U# >U∗.
• For CC-I Structure:

F−1
X (pVaR)<M∗ ⇒M# >M∗, and F−1

X (pVaR)>M∗ ⇒M# <M∗.

F−1
X (pVaR)<U∗ ⇒U# <U∗, and F−1

X (pVaR)>U∗ ⇒U# >U∗.

Proposition 5 outlines the ramifications of enforcing a binding VaR constraint. Intuitively, if
the VaR constraint is active and pVaR-th quantile loss F−1

X (pVaR) is high (resp. low), the optimal
strategy involves increasing (resp. decreasing) insurance coverage by reducing (resp. raising) L
and raising (resp. lowering) U.

3.5 The case of CARA utility
The Constant Absolute Risk Aversion (CARA) utility function, widely favored in the literature for
its broad adoption and mathematical tractability, is expressed as

U(w; γ )= −e−γw, for γ > 0.

Due to themultiplicative property of exponential utilityU(w1 +w2)=U(w1)U(w2), the optimiza-
tion problem becomes independent of the initial fund injection R0 when there are no VaR or TVaR
constraints. In other words, the magnitude of R0 does not affect the values of the optimal decision
variables θ∗, and it can be omitted when VaR or TVaR constraints are absent.

Alternatively, if a government’s preference is governed by a CARA utility function, it is possi-
ble to endogenize the initial fund injection R0 and determine the minimum value of R0 necessary
to satisfy the government’s risk requirement, as quantified by a VaR constraint with pVaR above
the exhaustion point U. The government can first solve the expected utility maximization prob-
lem without the VaR constraint to obtain the optimal decision variables θ∗. Subsequently, the
minimum R0 required to satisfy the VaR requirement is

R0 = inf
{
r0 > 0 | VaRpVaR(R1(X); θ∗, r0)≥ kVaR

}

= inf

⎧⎨
⎩r0 > 0

∣∣∣∣∣ r0 − CI − CCC − F−1
X (pVaR)+ YI

(
F−1
X (pVaR)

)
−rCCYCC

(
F−1
X (pVaR)

)
− reYe

(
F−1
X (pVaR)

) ≥ kVaR

⎫⎬
⎭

= kVaR + CI + CCC + F−1
X (pVaR)− YI

(
F−1
X (pVaR)

)
+ rCCYCC

(
F−1
X (pVaR)

)
+ reYe

(
F−1
X (pVaR)

)
. (14)
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Intuitively, R0 represents the minimum initial fund injection required to satisfy the VaR con-
straint VaRpVaR(R1)≥ kVaR. Graphically, as illustrated in Fig. 2, adjusting R0 shifts the entire graph
vertically upwards or downwards, while leaving the structure of the different layers (such as the
reserve fund, insurance, CC, and ex-post financing) unchanged. In this context, R0 functions as a
vertical adjustment that alters the terminal fund value but does not impact the optimization pro-
cedure. The government can first determine the optimal Disaster Fund structure independently
of R0 and calculate the necessary R0 to inject to meet the required VaR level kVaR.

4. An application to the NFIP
The National Flood Insurance Program (NFIP) is a public-private partnership with a network
of insurers and the federal government that provides affordable flood insurance protection for
households and commercial buildings in the United States (FEMA, 2024a). Managed by the
Federal Emergency Management Agency (FEMA), the NFIP serves over five million policyhold-
ers, withmore than $1.3 trillion in coverage (FEMA, 2024a). NFIP is one of the largest government
flood insurance programs in the world (Michel-Kerjan and Kunreuther, 2011).

To fund claims payments following disaster occurrences, the NFIP relies not only on premium
proceeds from flood insurance policies but also on private reinsurance and catastrophe bonds.
In the year 2020 alone, NFIP secured $1.33 billion in disaster loss coverage through agreements
with 27 reinsurers, paying an aggregate premium of $205 million. Additionally, in February 2020,
FEMA issued $400 million in catastrophe bonds, incurring a first-year premium cost of $50.28
million (Horn and Webel, 2024; FEMA, 2024b)11. Once these funding sources are exhausted, the
NFIP can access its borrowing authority to secure loans from the Treasury. By the end of 2020,
the NFIP’s cumulative debt to the Treasury stood at $20.5 billion (Horn, 2024).

Structurally, our Disaster Fund model closely aligns with the NFIP’s financing mechanism.
Low-severity losses are absorbed directly, medium-severity risks are shared with external parties,
and extremely large losses are managed through borrowings. From a cash flow perspective, both
purchasing reinsurance and issuing catastrophe bonds function similarly, as they involve regular
payments in exchange for financial protection in the event of a loss. As a result, in our Disaster
Fund model, these mechanisms are grouped together under insurance. To enhance the model’s
versatility, especially for less developed countries, we also incorporate a CC line. Setting FCC =
rCC = 0 effectively removes CC from the model, allowing flexibility to align with varying financial
structures.

4.1 Data
Using the loss data from OpenFEMA12, we employ the NFIP as a case study to explore the con-
struction of the Disaster Fund for flood risk management under various practical constraints and
considerations. To ensure relevance and avoid potential seasonality, we aggregate all individual
claims and policies at the annual level and restrict the data to the period from 2002 to 202013 .
While most flood insurance policies are single-year contracts, a subset of policies spans multi-
ple years; for these, we distribute the total premium amount evenly across all applicable years.

11The reinsurance contracts feature a deductible level set at $4 billion for a single named storm event, covering 10.25%
of losses between $4 billion and $6 billion, 34.68% of losses between $6 billion and $8 billion, and 21.8% of losses between $8
billion and $10 billion. The catastrophe bonds covered 3.33% of losses between $6 billion and $9 billion, and 30% of losses
between $9 billion and $10 billion.

12We extract the NFIP Redacted Claims and Policies from https://www.fema.gov/about/openfema/data-sets. Policy
claims data extends back to 1970, while premium data is available from 2009 onward.

13For example, flood seasons typically occur in the cold season (October to March), especially along the Eastern region
and West Coast of the United States (Villarini, 2016). In addition, older data appear noticeably different from recent data,
with significantly lower volatility and magnitudes, even after adjusting for inflation. Thus, we focus only on the more recent
data to better reflect contemporary loss patterns.

https://doi.org/10.1017/S1748499525100080 Published online by Cambridge University Press

https://www.fema.gov/about/openfema/data-sets
https://doi.org/10.1017/S1748499525100080


16 Jayen Tan and Jinggong Zhang

Table 2. Parameters for the Disaster Fundmodel for empirical simulations

Parameters Values Parameters Values Parameters Values

kU F−1
X (1− 1/500) = 5.405 kVaR 26 FCC 0.01

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kL F−1
X (1− 1/10) = 0.940 kTVaR 20 ρ1 0.25

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pVaR, pTVaR 1− 1/500= 99.8% rCC 0.025 ρ2 [0, 3]
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R0 29.181 re 0.07 γ [0.2, 0.6]

Furthermore, to ensure the claims data possess similar exposures across years, we calculate the
annual premium growth rate over the last 12 years (2009 to 2020), which is approximately 4%,
and inflate the annual claims data by a factor of 1.04(2020−Year) to bring all losses to 2020 expo-
sure levels. By scaling all claims data to 2020 levels, we account for both the growing number of
policyholders and the effects of inflation. Additionally, we conduct several time-series analyses (at
5% significance level) to ensure that the loss data (i) is homoskedastic (Breusch-Pagan test), (ii)
has no autocorrelation (Breusch-Godfrey and Ljung-box test), (iii) is stationary (ADF and KPSS
test), and (iv) is absent of time trend (regression slope t-test). Moreover, we rescale the loss data
by dividing by $10 billion for brevity. Next, we fit the loss data to several candidate distributions –
including Weibull, gamma, and lognormal – using the maximum likelihood estimation method.
Among all distributions, the lognormal distribution emerges as the best fit, as it achieves the low-
est Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling test statistics, as well as the
lowest AIC and BIC values. The fitted loss distribution is X ∼ LN(μ = −1.466, σ 2 = 1.0962).

We set kU at the 99.8th percentile of the loss distribution, corresponding to the highest recur-
rence interval of a 1-in-500-year event, as documented by FEMA (e.g., FEMA, 2021). Additionally,
we set kL to align with the common rule of thumb in literature and practice, where 1-in-10-year
period losses are retained. Both pVaR and pTVaR are set at 99.8% to be consistent with U, following
Proposition 1. Without the loss of generality, we focus on the VaR constraint and set kVaR = 26 for
illustrative purposes to effectively demonstrate the functionality of the Disaster Fund model14.

For the simulation exercise, we adopt the CARA utility with an initial fund injection of R0 =
29.181, which corresponds to the 99.9995th percentile of the loss distribution. Under expected
utility theory, it is widely known that wealth and risk aversion are indistinguishable (Yaari, 1987).
We will put less emphasis on R0 and focus on highlighting the characteristics of the DRF model.
Moreover, as established in Section 3.5, when a CARA utility function is adopted and the VaR
constraint is non-binding, R0 does not influence the optimal decision parameters. Next, we set
the necessary input parameters, referring to Clarke et al. (2017) for guidance. In practice, govern-
ments tailor these parameters to reflect their specific requirements, economic conditions, and risk
profiles. A summary of all parameter values can be found in Table 2.

4.2 Empirical findings
4.2.1 Base case
Fig. 3 presents the optimal decision variables, including the optimal amounts of insurance and
CC for mid-severity losses, as well as the comparison between the expected utility and the VaR

14Setting kVaR = 26 ensures that the VaR constraint can showcase both the effects of a binding and non-binding VaR
requirement within the simulation parameter space. Furthermore, following Proposition 2, the VaR and TVaR constraints
are equivalent, allowing us to disregard the TVaR constraint. For example, if TVaR is set at an arbitrarily low value, say 20,
the equivalent VaR requirement implied by the TVaR constraint is

k∗
VaR = 20− 1.07 · F−1

X (0.998)+ 1.07 · 1
0.002

e−1.466+0.5×1.0962	
(
1.096− 	′(0.998)

)
= 22.619< 26= kVaR,

and hence, the TVaR constraint is not binding. If the TVaR constraint becomes more restrictive than the VaR constraint, we
can replace the original VaR constraint with the implied k∗

VaR.
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(d) (e) (f)

Figure 3. (a) and (b) show the optimal parameters θ∗; (c) shows the differences in expected utility between the insurance
structures; (d) and (e) show the amount of insurance and contingent credit; and (f) shows the VaR99.5% value for both insur-
ance structures. All plots depict risk aversion parameter γ ∈ [0, 10] and premium loading ρ2 ∈ [0, 1]. Optimization adopts
CARA utility and parameters from Table 2. To make α∗ span the entire vertical axis for illustrative purposes, we multiply
kU = 5.4 (upper limit of the plot) to α∗ ∈ [0, 1] so that its new range becomes [0, 5.4].

of the terminal Disaster Fund value, as derived from the maximization problem in Equation 13.
From Figs. 3(a) and (b), two distinct extremes in θ∗ ∈ � can be observed. When risk aversion
γ is high and premium loading ρ2 is low, the mid-severity loss layer is predominantly covered
by insurance, with minimal to no reliance on CC. As γ decreases and ρ2 increases, the amount of
insurance reduces while CC usage rises. In contrast, at the opposite extreme, where γ is low and ρ2
is high, the VaR constraint becomes binding, resulting in a minimal amount of insurance required
to meet the VaR requirement, as indicated by the plateauing of α∗ and M∗. This aligns with our
intuition, where higher risk aversion and lower insurance premium loading incentivize the gov-
ernment to shift from CC to insurance. When less insurance is purchased, the VaR constraint is
more likely to be violated.

In practice, it is crucial for the government to identify which region it falls into. If the gov-
ernment has high risk aversion and its VaR constraint is not binding, it will face significant price
risk for disaster insurance, as its demand for insurance is highly price inelastic. In this case, the
government is vulnerable to fluctuations or inflation in the insurance market. Conversely, if the
government operates under an active VaR constraint, the optimal amount of insurance becomes
extremely sensitive to the government’s chosen threshold kVar, and insurance decisions are no
longer driven solely by utility maximization. By relaxing the VaR constraint (i.e., decreasing kVar),
the government can significantly influence its insurance amount and move closer to the optimal
utility-maximizing level of insurance. Lastly, if the government falls into the middle region, where
the VaR constraint is not binding and the optimal amount of insurance and CC changes rapidly
across γ and ρ2, the optimal fund construction is highly sensitive to the model’s parameters and
assumptions, such as the shape of the utility function and the magnitude of the risk aversion
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parameter. These factors are often difficult to measure accurately and are prone to miscalibra-
tion in practice. Greater care should be taken when interpreting the outputs of the Disaster Fund
model in this context.

4.2.2 Proportional structure vs CC-I structure
From Fig. 3(d) and (e), both the proportional and layer CC-I structures generally suggest compa-
rable amounts of insurance and CC. Consequently, both structures exhibit similar VaR values,
as shown in Fig. 3(f). However, Fig. 3(c) indicates that the layer CC-I structure outperforms
the proportional structure since it yields a higher expected utility EUCC-I ≥ EUprop, particularly
for low γ and high ρ2. The flexibility of the CC-I structure, particularly the lack of a common
attachment point L for insurance and CC, enables the government to purchase insurance only
for high-severity losses. This flexibility makes the CC-I structure superior to the proportional
structure in utility maximization.

One puzzling question remains: under what circumstances will the proportional structure
outperform the CC-I structure? To explore this, we simulate the optimal parameters without con-
straining the exhaustion point U, effectively letting kU → ∞. We plot the results in Fig. B.7 in
Appendix B and find that the proportional structure will dominate the CC-I structure only at
extremely high loss quantiles. To ensure robustness, we repeat the experiment using a Gamma
loss distribution, which is less skewed and has a smaller tail compared to the lognormal distri-
bution, leading to lower quantile values. Similarly, we observe that the proportional structure can
still outperform the layer CC-I structure. The optimalU∗ is approximately 9.3, which corresponds
to a 106, 903-year return period.

When considering losses of exceedingly high magnitudes, the proportional structure may out-
perform the layer CC-I structure, as it allows for partial coverage of eachmarginal unit of loss. This
reduces the overall variability of the insurance payoff and can lead to substantial premium reduc-
tions, particularly when the premium loading ρ2 is large and the loss severity is high. However, it
remains uncertain whether such extreme loss quantiles are realistic or fall within the risk horizon
of any government or Disaster Fund’s objectives.

4.2.3 Influence of higher-order moments
Disaster losses are often characterized by significant right skewness and fat tails, reflecting the
frequent occurrence of extreme events. While the impact of the mean and variance of the loss
distribution on optimal insurance decisions is well-established and intuitive, the influence of
higher-ordermoments, such as skewness and kurtosis, is less direct and has not been as extensively
studied. In this section, we investigate how the higher moments of the disaster loss distribution
affect the optimal construction of the Disaster Fund.

Under fat-tailed losses, the government tends to purchase more insurance. When comparing
Figs. 4(a)–(d) with Figs. 3(a)–(b), we observe that higher-order moments cause the region where
insurance and CC change rapidly (referred to as the middle region in Section 4.2.1) to shift toward
higher values of γ and lower values of ρ2. This trend is also apparent in Figs. 4(e)–(f), where the
amount of insurance is lowest under X3, followed by X2, and then X1 for any given (γ , ρ2)-pair.

Moreover, the region where insurance and CC change rapidly is narrowest under the lognormal
distribution, indicating that, under highly skewed and fat-tailed losses, the government is more
likely to lien toward either one extreme – (I) arrange for insurance without any CC or (2) purchase
the minimum amount of insurance necessary to meet the VaR constraint – and less probable to
adopt a mix of insurance and CC above the VaR requirement.
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Table 3. Three illustrative loss distributions, along with their first four moments. X1 corresponds to the best-
fit loss distribution in Section 4.1. X2 and X3 are two alternative distributions fitted with the same first two
moments but possess smaller higher-order moments

Loss Distribution, Xi ($10 billion) E(Xi) StdDev(Xi) Skew(Xi) Ex. Kur(Xi)

X1 ∼ LogNormal(− 0.357, 0.833) 0.421 0.641 37.4 222.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X2 ∼Weibull(0.667, 0.667) 0.421 0.641 3.72 23.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X3 ∼ Gamma(0.667, 0.667) 0.421 0.641 3.05 13.9

(a) (b) (e)

(c) (d) (f)

Figure 4. Similar plot to Fig. 3 under distributions X1, X2, X3 (refer to Table 3).

4.2.4 Utility function
For robustness, we repeated the analysis using the Constant Relative Risk Aversion (CRRA) utility
function, with the results presented in Fig. B.8 in Appendix B. The key characteristics of the
Disaster Fund remain consistent with those observed under the CARA utility function. This sim-
ulation refutes concerns that the DRF model is highly sensitive to small variations in risk aversion
or overly dependent on the specific form of the utility function.

4.3 Optimal parameters under the Disaster Fundmodel
Finally, we apply our Disaster Fund model to the NFIP to analyze its optimal combination of
disaster financing tools. For illustration, in addition to the parameters in Table 2, we assume that
insurance is available to NFIP at ρ2 = 0.2, and that NFIP’s preferences are represented by a CARA
utility function with a risk aversion parameter of 0.2.

From Fig. 5(a), under the proportional strategy, the government should arrange insurance and
CC to cover losses between $9 billion and $47 billion, with insurance covering 65% of the losses.
The expected terminal value of the Disaster Fund in this case is $287 billion, with a standard
deviation of $2.01 billion.

Similarly, Fig. 5(b) shows that under the CC-I strategy, the optimal configuration is to arrange
CC for losses from $9 billion (L= 0.9) to $22 billion (M = 2.2) and purchase insurance for losses
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Figure 5. Optimal decision variables across risk aversion parameter γ under the (a) proportional and (b) layer CC-I structure,
with ρ2 = 0.2 and all remaining parameter values from Table 2. The top red line denotes U∗, and the bottom green line
denotes L∗. The middle gray line represents α∗ for the (a) proportional structure and M∗ for the (b) CC-I structure. The red
area denotes the proportion (for proportional structure) or amount (for CC-I structure) of insurance, while the green area
represents the proportion/amount of contingent credit. The dashed line highlights γ = 0.2, which is used in the discussion.

between $22 billion and $46 billion (U∗ = 4.6). This corresponds to $13 billion of CC and $24
billion of insurance coverage. The expected terminal value of the Disaster Fund remains $287
billion, while the standard deviation increases to $2.82 billion.

For the VaR constraint to become binding, the threshold kVaR must be set above $244.5 billion.

4.4 An alternative budget constraint
As robustness check, we consider the budget constraint L+ CI + CCC as an alternative specifica-
tion to our limited reserve constraint L≤ kL. This budget constraint caps the total initial monetary
outlay prior to loan repayments at kL, thereby imposing an upper limit on the total insurance pre-
mium and the upfront cost of arranging CC, with all remaining funds allocated to the costless
reserve fund.

Fig. 6 replicates Fig. 3 after replacing the limited reserve constraint L≤ kL with the budget
constraint L+ CI + CCC ≤ kL. Our empirical findings remain largely consistent under the bud-
get constraint framework, as evidenced by the close resemblance between Figs. 3 and 6. The
key distinction introduced by the budget constraint specification is the minor reallocation of
funds, characterized as a small transfer from CC adoption to the costless reserve fund. However,
the magnitude of these changes is relatively insignificant.

For the layer CC-I strategy, in the absence of the VaR constraint, the optimal M∗ and U∗ are
identical to those obtained under the limited reserve constraint, indicating that the amount of
insurance and the severity of insured losses remain unchanged. For low levels of risk aversion γ

and the standard deviation loading factor ρ2, the optimal L∗ also remains across both constraints.
However, for higher values of γ and ρ2, the budget constraint slightly increases the optimal L∗, as
it induces a substitution effect from CC toward the reserve fund. Given that the reserve fund does
not incur an upfront cost, the government prioritizes its full utilization before resorting to CC.
Nonetheless, since the upfront cost of CC FtextCC is relatively small, the overall impact is minimal.

On the other hand, when the VaR constraint is binding, L∗ becomes marginally higher com-
pared to the non-binding VaR constraint case, particularly for low γ and ρ2 values. Since the
amount of insurance is fixed at a minimum level to satisfy the VaR requirement, the new bud-
get constraint allows slightly more CC to be substituted with reserve fund. Moreover, as the total
budget kL increases under the new constraint, the allocation to the reserve fund L∗ rises, especially
when γ is low and ρ2 is high. In contrast, the value of M∗ exhibits only a marginal increase and
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(d) (e) (f)

Figure 6. Base case results replicating Fig. 3 with the alternative constraint L+ CI + CCC ≤ kL.

exhaustion point of U∗ remains relatively constant.15 Intuitively, the increase in kL induces only
a minor reallocation from CC to the costless reserve fund, with negligible impact on the overall
balance between risk transfer (insurance) and risk retention (CC and reserve fund) mechanisms.

A similar pattern emerges under the proportional strategy. Under the new budget constraint,
both the optimal L∗ and α∗ increase, while optimal U∗ remains relatively stable. Consistent with
the observations under the layer CC-I strategy, the model favors greater reliance on the reserve
fund at the expense of CC, with insurance coverage remaining essentially unchanged relative to
the limited reserve constraint. Additionally, there is a modest shift toward insuring more severe
losses, with both L∗ and α∗ rising to preserve the same total insurance coverage. The presence of
the VaR constraint leads to a more pronounced increase in L∗ and α∗, while U∗ decreases slightly
to preserve the total amount of insurance coverage. As the constraint is relaxed through higher
values of kL, L∗ increases, U∗ stays constant, and α∗ increases slightly, resulting in a negligible
influence on the amount of insurance uptake and a slight decline in CC arrangement.

Overall, the differences in the optimal DRF structure between the limited reserve constraint
and the budget constraint are negligible.

5. Conclusion and discussion
With the increasing severity and frequency of disasters driven by climate change, it has become
more critical than ever for governments to develop comprehensive DRF strategies to mitigate the
severe social, political, humanitarian, and environmental consequences. While a variety of DRF

15For extremely low γ and ρ2 where no insurance and CC is adopted, we haveM∗ and U∗ increasing by the exact same
quantity as L∗ such that L∗ =M∗ =U∗.

https://doi.org/10.1017/S1748499525100080 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499525100080


22 Jayen Tan and Jinggong Zhang

instruments are available, each comes with its own strengths and limitations.16 Therefore, it is
essential to identify the optimal combination of these instruments and plan well in advance before
a disaster occurs. Sound disaster preparedness is fundamental to ensuring a country’s resilience,
stability, and long-term prosperity.

We propose a highly flexible and interpretable Disaster Fund model that integrates several
practical aspects of DRF design. Governments often operate with limited reserves and constrained
risk horizons due to budgetary limitations, short-term planning, ormyopic risk assessment. Under
extreme risk, governments also exhibit risk aversion – an important factor that much of the
existing DRF literature overlooks for the sake of simplification. Our model further incorporates
familiar insurance structures prevalent in the (re)insurance market, including excess-of-loss and
proportional insurance, along with common premium loadings based on the expected value and
standard deviation of insurance payouts. By leveraging a utility maximization framework, we
analytically derive various comparative statics and apply our model to the NFIP dataset.

Our findings are extensive and provide significant insights into the design of DRF strategies.
We establish analytically that the VaR and TVaR requirements are equivalent under a limited risk
horizon, allowing regulators to focus on managing one risk requirement (typically VaR since it is
simpler to understand and calculate). In addition, we demonstrate that the proportional structure
can outperform the layer CC-I structure, particularly when insurers impose a high premium load-
ing on payout variability and the government has a long risk horizon. Our empirical case study fur-
ther validates this result. We perform comparative statics of several key exogenous variables, and
the results largely align with our intuition. Furthermore, we analytically identify how the optimal
parameters respond to the imposition of a binding VaR constraint, offering clarity on its effects.
Empirically, we fit the claims and premium data from NFIP into our DRF model and identify
the existence and significance of several prominent regions that characterize a government’s DRF
strategy. Moreover, after accounting for the mean and variance, a highly skewed and fat-tailed
loss distribution encourages higher insurance adoption and reduces the government’s likelihood
of mixing insurance and CC. Lastly, we show that our results are robust under various utility
functions and illustrate a possible construction of the Disaster Fund model for flood losses. These
findings contribute to both the theoretical understanding and practical implementation of DRF
strategies, ensuring governments are better prepared to manage catastrophic losses effectively.

While our analysis is based on a stylized model, it is important to acknowledge that, in
real-world settings, additional intangible or institutional costs may exist that are not explicitly
captured in our framework. For example, access to CC facilities provided by supranational insti-
tutions such as the World Bank is often conditional on the implementation of satisfactory policy
frameworks and disaster risk management programs. These may include stringent repayment
schedules, requirements for disaster relief plans, and constraints on capital structure, which can
limit a country’s fiscal sovereignty and operational flexibility. Consequently, countries may per-
ceive insurance, particularly parametric or index-linked contracts with fewer administrative and
policy requirements, as a simpler and less restrictive alternative. Furthermore, eligibility criteria
and country-specific borrowing limits may constrain access to CC facilities, leading some coun-
tries to favor insurance solutions. Limited experience in DRF and management can also influence
preferences. For instance, uncertainty about the distribution of disaster-related losses or the tra-
jectory of future interest rates may prompt policymakers to prefer insurance instruments, which
offer predefined payouts and eliminate exposure to such unknown risks, unlike CC, which shifts
the burden into the future and introduces repayment uncertainty. Additionally, insurance premi-
ums may not always follow a simple expected loss or standard deviation-based pricing principle.

16Reserve funds are inexpensive but constrained by budget limitations arising from competing priorities. Insurance
transfers risk to third parties but can be costly, particularly for catastrophic losses. CC provides rapid access to funds with
favorable interest rates, but it requires governments to retain the risk and commit to future repayment. Finally, ex-post
financing, though straightforward and requiring minimal planning, is often slow, uncertain, and expensive.
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For moderate loss events, insurance may be priced favorably due to better insurability, making
the insurance-CC hybrid Insurance-Contingent Credit (I-CC) strategy economically attractive in
practice.

DRF is a highly complex process. The Disaster Fund model requires that the government spec-
ify its utility function and understand the premium principles used by insurers, which should
be analyzed empirically before adopting the DRF model. More advanced disaster loss model-
ing techniques can significantly improve the accuracy and practical relevance of the results and
recommendations. Additionally, extending the model to include other unique risk requirements
beyond VaR and TVaR would be straightforward and beneficial.

We believe that our proposedmethodology and findings can inspire future research in this area
and contribute to the limited body of quantitative DRF literature. Future research can explore the
following directions: (i) derive closed-form solutions to the optimization problem, (ii) incorporate
additional DRF instruments into the Disaster Fund model, (iii) expand the range of consid-
erations and constraints, such as limited insurance capacity and maximum CC, (iv) develop a
more concrete methodology for governments to determine values of exogenous variables such
as kU , kL, kVaR, and kTVaR (or endogenize them into the model), and (v) extend the model to a
multi-period framework.

Funding statement. Tan acknowledges research funding from Nanyang Business School International PhD Scholarship.
Zhang acknowledges the research funding support from the Singapore Ministry of Education Academic Research Fund Tier
1 Grant (RG49/24).

Competing interests. The authors declare that they have no conflict of interest.

Data availability statement. The authors confirm that the data and code supporting the findings of this study are available
as supplementary materials accompanying the article.

References
ADB (2017). A region at risk: the human dimensions of climate change in Asia and the Pacific. Asian Development Bank.
ADB (2019). Contingent disaster financing under policy-based lending in response to natural hazards. Asian Development

Bank. Available at: https://www.adb.org/sites/default/files/institutional-document/518061/disaster-financing-policy-paper.
pdf.

Ahmed,M. (2021). Disaster Risk Insurance. Springer International Publishing, pp. 175–211.
Arrow, K. J. (1974). Optimal insurance and generalized deductibles. Scandinavian Actuarial Journal, 1974(1), 1–42.
Balbás, A., Balbás, B. & Heras, A. (2009). Optimal reinsurance with general risk measures. Insurance: Mathematics and

Economics, 44(3), 374–384.
Baratz, J. C. &Moskowitz, J. H. (1978). Proposition 13: How and why it happened. The Phi Delta Kappan, 60(1), 9–11.
Barnichon, R. (2008). International reserves and self-insurance against external shocks. International Monetary Fund.
Bernard, C. & Tian, W. (2009). Optimal reinsurance arrangements under tail risk measures. Journal of Risk and Insurance,

76(3), 709–725.
BIS (2019). Minimum capital requirements for market risk. Bank for International Settlements, Report.
Browne, S. (1995). Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the

probability of ruin.Mathematics of Operations Research, 20(4), 937–958.
Cai, J. & Tan, K. S. (2007). Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures. ASTIN

Bulletin: The Journal of the IAA, 37(1), 93–112.
Cai, J., Tan, K. S., Weng, C. & Zhang, Y. (2008). Optimal reinsurance under VaR and CTE risk measures. Insurance:

Mathematics and Economics, 43(1), 185–196.
Chen, S., Li, Z. & Li, K. (2010). Optimal investment–reinsurance policy for an insurance company with VaR constraint.

Insurance: Mathematics and Economics, 47(2), 144–153.
Chi, Y. (2012). Optimal reinsurance under variance related premium principles. Insurance: Mathematics and Economics,

51(2), 310–321.
Chi, Y. & Tan, K. S. (2011). Optimal reinsurance under VaR and CVaR risk measures: a simplified approach. ASTIN Bulletin:

The Journal of the IAA, 41(2), 487–509.
Chi, Y. & Tan, K. S. (2013). Optimal reinsurance with general premium principles. Insurance: Mathematics and Economics,

52(2), 180–189.

https://doi.org/10.1017/S1748499525100080 Published online by Cambridge University Press

https://www.adb.org/sites/default/files/institutional-document/518061/disaster-financing-policy-paper.pdf
https://www.adb.org/sites/default/files/institutional-document/518061/disaster-financing-policy-paper.pdf
https://doi.org/10.1017/S1748499525100080


24 Jayen Tan and Jinggong Zhang

Chi, Y. & Zhou, M. (2017). Optimal reinsurance design: A mean-variance approach. North American Actuarial Journal,
21(1), 1–14.

Clarke,D.&Mahul,O. (2011). Disaster risk financing and contingent credit: a dynamic analysis.World Bank Policy Research
Working Paper, (5693).

Clarke, D. J.,Mahul, O., Poulter, R. & Teh, T.-L. (2017). Evaluating sovereign disaster risk finance strategies: a framework.
The Geneva Papers on Risk and Insurance-Issues and Practice, 42(4), 565–584.

Cornia, G. C. & Nelson, R. D. (2003). Rainy day funds and value at risk. State Tax Notes, 29(3), 563–567.
Denuit, M. & Vermandele, C. (1998). Optimal reinsurance and stop-loss order. Insurance: Mathematics and Economics,

22(3), 229–233.
EU Commission (2015). Solvency II Overview, Frequently asked questions. The European Commission. Available at:

https://ec.europa.eu/commission/presscorner/detail/en.
FEMA (2021). Unit 3: NFIP flood studies and maps. The Federal Emergency Management Agency. Available at:

https://www.fema.gov/pdf/floodplain/nfip_sg_unit_3.pdf.
FEMA (2023). OpenFEMA dataset: Disaster declarations summaries. The Federal EmergencyManagement Agency. Available

at: https://www.fema.gov/openfema-data-page/disaster-declarations-summaries-v2.
FEMA (2024a). Flood insurance. The Federal Emergency Management Agency. Available at: https://www.fema.gov/

flood-insurance.
FEMA (2024b). National flood insurance program’s reinsurance program. The Federal Emergency Management Agency.

Available at: https://www.fema.gov/flood-insurance/work-with-nfip/reinsurance.
FTSE (2022). Market risk regulatory evolution – a shift from var. FTSE Russell. Available at: https://www.ftserussell.com/

blogs/market-risk-regulatory-evolution-shift-var.
GFDRR (2015). PCRAFI country note: Samoa. International Bank for Reconstruction and Development, World Bank,

Report, The Global Facility for Disaster Reduction and Recovery.
Ghossoub,M. (2019). Optimal insurance under rank-dependent expected utility. Insurance: Mathematics and Economics, 87,

51–66.
Harrington, S. E. (1997). Insurance derivatives, tax policy, and the future of the insurance industry. The Journal of Risk and

Insurance, 64(4), 719–725.
Harris, P. G. (2014). Risk-averse governments. Nature Climate Change, 4(4), 245–246.
Horn,D. P. (2024). National flood insurance program borrowing authority, Congressional Research Service, Report.
Horn, D. P. & Webel, B. (2024). Introduction to the national flood insurance program (NFIP). Report. Congressional

Research Service.
Huang, H.-H. (2006). Optimal insurance contract under a value-at-risk constraint. The Geneva Risk and Insurance Review,

31(2), 91–110.
Huberman, G., Mayers, D., & Smith C. W. (1983). Optimal insurance policy indemnity schedules. The Bell Journal of

Economics, 14(2), 415–426.
Jongman, B.,Hochrainer-Stigler, S., Feyen, L.,Aerts, J. C.,Mechler, R., Botzen,W.W., Bouwer, L. M., Pflug,G., Rojas, R.

&Ward, P. J. (2014). Increasing stress on disaster-risk finance due to large floods. Nature Climate Change, 4(4), 264–268.
Kaluszka,M. (2001). Optimal reinsurance undermean-variance premium principles. Insurance: Mathematics and Economics,

28(1), 61–67.
Kaluszka, M. & Okolewski, A. (2008). An extension of arrow’s result on optimal reinsurance contract. Journal of Risk and

Insurance, 75(2), 275–288.
Kashiwagi, M. (2011). Japan: How should funds be raised for rebuilding after the disaster? Canon-Ifri Paper Series, 4, The

Canon Institute for Global Studies.
Kaufman, N. (2014). Why is risk aversion unaccounted for in environmental policy evaluations? Climatic Change, 125(2),

127–135.
Kunreuther,H. (1974). Disaster insurance: a tool for hazard mitigation. Journal of Risk and Insurance, 41(2), 287–303.
Lampaert, I. & Walhin, J. (2006). On the optimality of proportional reinsurance. Scandinavian Actuarial Journal, 2005(3),

225–239.
Landsman, Z. & Sherris, M. (2001). Risk measures and insurance premium principles. Insurance: Mathematics and

Economics, 29(1), 103–115.
Lane, M. & Mahul, O. (2008). Catastrophe risk pricing: an empirical analysis. World Bank Policy Research Working Paper,

4765.
Lewis, C. M. & Murdock, K. C. (1996). The role of government contracts in discretionary reinsurance markets for natural

disasters. The Journal of Risk and Insurance, 93, 567–597.
Liang, X., Wang, R. & Young, V. R. (2022). Optimal insurance to maximize RDEU under a distortion-deviation premium

principle. Insurance: Mathematics and Economics, 104, 35–59.
Liang, Z. & Guo, J. (2010). Optimal proportional reinsurance under two criteria: Maximizing the expected utility and

minimizing the value at risk. The ANZIAM Journal, 51(4), 449–463.
Liang, Z. & Guo, J. (2011). Optimal combining quota-share and excess of loss reinsurance to maximize the expected utility.

Journal of Applied Mathematics and Computing, 36(1), 11–25.

https://doi.org/10.1017/S1748499525100080 Published online by Cambridge University Press

https://ec.europa.eu/commission/presscorner/detail/en
https://www.fema.gov/pdf/floodplain/nfip_sg_unit_3.pdf
https://www.fema.gov/openfema-data-page/disaster-declarations-summaries-v2
https://www.fema.gov/flood-insurance
https://www.fema.gov/flood-insurance
https://www.fema.gov/flood-insurance/work-with-nfip/reinsurance
https://www.ftserussell.com/blogs/market-risk-regulatory-evolution-shift-var
https://www.ftserussell.com/blogs/market-risk-regulatory-evolution-shift-var
https://doi.org/10.1017/S1748499525100080


Annals of Actuarial Science 25

Liang, Z. & Yuen, K. C. (2016a). Optimal dynamic reinsurance with dependent risks: variance premium principle.
Scandinavian Actuarial Journal, 2016(1), 18–36.

Liang, Z. & Yuen, K. C. (2016b). Optimal dynamic reinsurance with dependent risks: variance premium principle.
Scandinavian Actuarial Journal, 2016(1), 18–36.

Linnerooth-Bayer, J. & Hochrainer-Stigler, S. (2015). Financial instruments for disaster risk management and climate
change adaptation. Climatic Change, 133(1), 85–100.

Mahul,O., Signer,B. L.&Krishna,K.A. (2018). Disaster Risk Finance: A primer core principles and operational framework.
World Bank Policy Research Working Paper.

Melnikov, A. & Smirnov, I. (2012). Dynamic hedging of conditional value-at-risk. Insurance: Mathematics and Economics,
51(1), 182–190.

Michel-Kerjan, E. & Kunreuther,H. (2011). Redesigning flood insurance. Science, 333(6041), 408–409.
MunichRe (2021). Record hurricane season and major wildfires – the natural disaster figures for 2020. Available at:

https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/
2021/2020-natural-disasters-balance.html.

Noy, I. & Edmonds, C. (2019). Increasing fiscal resilience to disasters in the pacific. Natural Hazards, 97(3), 1375–1393.
Oseno, B. & Obiri, J. (2020). Disaster risk financing model. International Journal of Management, Social Sciences, and

Humanities, 2(3), 169–176.
Punkdrik, S. (2010). Disaster risk management in East Asia and the Pacific, GFDRRWorking Paper Series, Report.
PwC (2016). Basel IV: Revised internal models approach for market risk. PricewaterhouseCoopers. Available at:

https://www.pwc.com/gx/en/advisory-services/basel-iv/regulatory-toolbox.pdf.
Raviv, A. (1992) The design of an optimal insurance policy. In Foundations of Insurance Economics. Huebner International

Series on Risk, Insurance and Economic Security. pp. 251–263.
Settle, A. K. (1985). Financing disaster mitigation, preparedness, response, and recovery. Public Administration Review, 45,

101–106.
Smith, A. B. (2021). 2020 U.S. billion-dollar weather and climate disasters in historical context. Available at: https://

www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical.
Spencer, J. (2021). Literature review of evidence on Disaster Risk Finance. LIt Review.pdf. https://www.globalriskfinancing.

org/sites/default/files/2021-01/MEL.
Stewart,M. G., Ellingwood, B. R. &Mueller, J. (2011). Homeland security: A case study in risk aversion for public decision-

making. International Journal of Risk Assessment and Management, 15(5–6), 367–386.
Surminski, S.,Panda,A.& Lambert, J. P. (2019). Disaster insurance in developing Asia: an analysis ofmarket-based schemes.

ADB Exonomics Working Paper Series, 590.
Truong, D. D. (2021). Disaster risk financing options for developing country: A case study of Vietnam. PalArch’s Journal of

Archaeology of Egypt/Egyptology, 18(17), 44–67.
UNDRR (2021). Disaster risk management. United Nations Office for Disaster Risk Reduction. Available at:

https://www.undrr.org/terminology/disaster-risk-management.
Vasche, J. D. & Williams, B. (1987). Optimal government budgeting contingency reserve funds. Public Budgeting and

Finance, 7(1), 66–82.
Villarini, G. (2016). On the seasonality of flooding across the continental United States. Advances in Water Resources, 87,

80–91.
Weingartner, L., Simonet, C. & Caravani, A. (2017). Disaster risk insurance and the triple dividend of resilience. Overseas

Development Institute.
World Bank (2015). What is disaster risk finance (DRF)? World Bank Group. Available at: https://www.financial

protectionforum.org/what-is-disaster-risk-finance-drf.
World Bank (2018). Disaster Risk Finance country note: Uzbekistan. World Bank Group. http://documents.worldbank.org/

curated/en/298611591598372455.
World Bank (2021). IBRD Catastrophe Deferred Drawdown Option (Cat DDO). World Bank Group. Available at: https://

thedocs.worldbank.org/en/doc/1820b53ad5cba038ff885cc3758ba59f-0340012021/original/Cat-DDO-IBRD-Product-
Note.pdf.

Yaari,M. E. (1987). The dual theory of choice under risk. Econometrica: Journal of the Econometric Society, 55, 95–115.
Young, V. R. (1999). Optimal insurance under Wang’s premium principle. Insurance: Mathematics and Economics, 25(2),

109–122.
Zelinschi, G. A., Domide, G. S. & Vîrban, A. R. N. (2013). Creation and operationalization of the national reserve fund

in case of natural calamities in Romania–alternative for post-disaster financing improvement. Theoretical and Applied
Economics, 20(Special I), 61–73.

Zeng, X. & Luo, S. (2013). Stochastic pareto-optimal reinsurance policies. Insurance: Mathematics and Economics, 53(3),
671–677.

Zhang, X., Zhou, M. & Guo, J. (2007). Optimal combinational quota-share and excess-of-loss reinsurance policies in a
dynamic setting. Applied Stochastic Models in Business and Industry, 23(1), 63–71.

https://doi.org/10.1017/S1748499525100080 Published online by Cambridge University Press

https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2021/2020-natural-disasters-balance.html
https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2021/2020-natural-disasters-balance.html
https://www.pwc.com/gx/en/advisory-services/basel-iv/regulatory-toolbox.pdf
https://www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical
https://www.climate.gov/news-features/blogs/beyond-data/2020-us-billion-dollar-weather-and-climate-disasters-historical
https://www.globalriskfinancing.org/sites/default/files/2021-01/MEL
https://www.globalriskfinancing.org/sites/default/files/2021-01/MEL
https://www.undrr.org/terminology/disaster-risk-management
https://www.financialprotectionforum.org/what-is-disaster-risk-finance-drf
https://www.financialprotectionforum.org/what-is-disaster-risk-finance-drf
http://documents.worldbank.org/curated/en/298611591598372455
http://documents.worldbank.org/curated/en/298611591598372455
https://thedocs.worldbank.org/en/doc/1820b53ad5cba038ff885cc3758ba59f-0340012021/original/Cat-DDO-IBRD-Product-Note.pdf
https://thedocs.worldbank.org/en/doc/1820b53ad5cba038ff885cc3758ba59f-0340012021/original/Cat-DDO-IBRD-Product-Note.pdf
https://thedocs.worldbank.org/en/doc/1820b53ad5cba038ff885cc3758ba59f-0340012021/original/Cat-DDO-IBRD-Product-Note.pdf
https://doi.org/10.1017/S1748499525100080


26 Jayen Tan and Jinggong Zhang

A. Appendix: Proofs
A.1 Proof of Proposition 1
For every p≥ pU , we have VaRp(R1)=VaRpU (R1)− (1+ re)(F−1

X (p)−U). Therefore, ∀ p1,
p2 ≥ pU ,

VaRp1 (R1) = VaRpU (R1)− (1+ re)(F−1
X (p1)−U)

= VaRp2 (R1)− (1+ re)(F−1
X (p1)− F−1

X (p2)).

Hence, VaRp1 (R1)≥ kVaR if and only if VaRp2 (R1)≥ kVaR + (1+ re)(F−1
X (p1)− F−1

X (p2)).

A.2 Proof of Proposition 2
By Proposition 1 we have,

TVaRp(R1) = 1
1− p

∫ 1

p
VaRq(R1) dq

= 1
1− p

∫ 1

p

[
VaRp(R1)− (1+ re)(F−1

X (q)− F−1
X (p))

]
dq

= VaRp(R1)− (1+ re)

(
1

1− p

∫ 1

p
F−1
X (q) dq

)
+ (1+ re)F−1

X (p)

= VaRp(R1)− (1+ re)TVaRp(X)+ (1+ re)F−1
X (p).

Hence, TVaRp(R1)≥ kTVaR if and only if VaRp(R1)≥ kTVaR − (1+ re)F−1
X (p)+ (1+ re)TVaRp(X).

A.3 Proof of Proposition 3
We consider the optimization problem under the parameter space�where the constraints L≤ kL
and U ≤ kU are satisfied. Since the upfront cost of contingent credit is insignificant FCC = 0, we
have CCC = 0. Our maximization problem becomes

max E [U (R0 − CI − X + YI + YCC + Ye − (1+ rCC)YCC − (1+ re)Ye)] ,

where CI ≥ (1+ ρ1)E(YI)+ ρ2
√
Var(YI) and 0≤ YI(x)≤ YI(U), ∀x ∈ [L,U].

Consider the Lagrangian function on any arbitrary x ∈ [L,U], then we have

L(YI(x))=U

(
R0 − CI − x+ YI(x)− rCCYCC(x)

)
fX(x)

+ λ1
[
CI − (1+ ρ1)E(YI(X))− ρ2

√
Var(YI)

]
+ λ2

[
VaRp(R1)− kVaR

]
,

where λ1 ≥ 0 due to the Karush-Khun-Tucker theorem, and we drop the last constraint since
insurance purchase is not binding for x ∈ [L,U]. Moreover, Ye = 0 and since each marginal unit
of loss must be covered by either insurance or contingent credit, we have YI(x)+ YCC(x)= 1.
Hence, the first-order derivative wrt YI is

∂L(YI(x))
∂YI(x)

=U
′(R0 − CI − (1+ rCC)x+ (1+ rCC)YI(x)

)
fX(x)

− λ1

[
(1+ ρ1)+ ρ2√

Var(YI)

(
YI(x)− E(YI(X))

)(
1− fX(x)

)]
fX(x) := 0.
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Table 4. Signs of first order derivatives of the terms in LHS and RHS of Equation (A.1)

LHS and RHS LHS implies RHS implies Possible?

Constant ∂YI
∂x = 1 ∂YI

∂x = YI−E(YI)
1−fX

∂fX
∂x < 0 No

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Decreasing ∂YI
∂x > 1 ∂YI

∂x <
YI−E(YI)
1−fX

∂fX
∂x < 0 No

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Increasing ∂YI
∂x < 1 ∂YI

∂x >
YI−E(YI)
1−fX

∂fX
∂x Yes

Thus, we obtain the following first-order condition (FOC),

U
′(R0 − CI − (1+ rCC)x+ (1+ rCC)YI(x)

)
= λ1

[
(1+ ρ1)+ ρ2√

Var(YI)

(
YI(x)− E(YI(X))

)(
1− fX(x)

)]
. (A.1)

Consider the expected loss premium principle, where ρ2 = 0. Then, Equation (A.1) gives

U
′(R0 − CI − CCC − (1+ rCC)x+ (1+ rCC)YI(x)

)
= λ1(1+ ρ1),

where the RHS is a constant. Hence, the excess of loss insurance structure is optimal since for any
x above the deductible, we must have ∂

∂xYI(x)= 1.

A.4 Proof of Proposition 4
Following Equation (A.1) in Appendix A.3, we consider ρ2 > 0. Consider any arbitrary x ∈
( argx {YI(x)= E(YI(X))},U). Thus, we have YI(x)> E(YI(X)) and ∂fX(x))

∂x < 0. We will prove by
contradiction that the RHS and LHS of Equation (A.1) is increasing wrt x.

From Equation (A.1), differentiating the terms inside the U′ function on the LHS gives (1+
rCC)( ∂YI(x)

∂x − 1), and differentiating the RHS gives λ1ρ2√
Var(YI(X))

( ∂YI(x)
∂x (1− fX(x))− ∂fX(x)

∂x (YI(x)−
E(YI(x)))).

Table 4 shows the sign of ∂YI
∂x when both the LHS and RHS of Equation (A.1) is constant,

decreasing or increasing. Suppose both RHS and LHS of Equation (A.1) are constant when x
increases, then the LHS suggests that ∂YI

∂x is equals to 1 while the RHS suggests that ∂YI
∂x is negative.

By contradiction, LHS and RHS cannot be constant as x increases. Next, similar to the previous
case, if both LHS and RHS are decreasing when x increases, then LHS implies that ∂YI

∂x is posi-
tive while the RHS implies the opposite, suggesting that LHS and RHS cannot be decreasing as x
increases.

Thus, it follows that both LHS and RHSmust be increasing as x increases and the LHS suggests
that ∂YI

∂x < 1, indicating that the CC-I structure is no longer optimal.

A.5 Proof of Lemma 1
By the first order condition, we have

∂EU
∂ϕ

∣∣∣
ϕ=ϕ∗ = 0.

By the Implicit Function Theorem,

∂ϕ∗

∂ζ
= −

[
∂

∂ζ

(
∂EU
∂ϕ

∣∣∣
ϕ=ϕ∗

)]
/

[
∂2EU
∂ϕ2

∣∣∣
ϕ=ϕ∗

]
.
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Since ∂2EU
∂ϕ2 |ϕ=ϕ∗ < 0, we have

sign
(

∂ϕ∗

∂ζ

)
= sign

[
∂

∂ζ

(
∂EU
∂ϕ

∣∣∣
ϕ=ϕ∗

)]
.

A.6 Proof of Table 1
Proportional structure: optimal L
For the proportional strategy, let

wprop,1(x)= R0 − CI − FCC(U − L)(1− α)− x,
wprop,2(x)= R0 − CI − FCC(U − L)(1− α)− L− (x− L)(1− α)(1+ rCC), and
wprop,3(x)= R0 − CI − FCC(U − L)(1− α)− L− (U − L)(1− α)(1+ rCC)

− (x−U)(1+ re). (A.2)

Then, the expected utility function is,

EU(L, α,U)=
∫ L

0
U(wprop,1(x))fX(x) dx+

∫ U

L
U(wprop,2(x))fX(x) dx

+
∫ ∞

U
U(wprop,3(x))fX(x) dx, (A.3)

where 0≤ α ≤ 1, 0≤ L≤U, CI = (1+ ρ1)E(YI)+ ρ2
√
Var(YI). To simplify the notations, let

Y = 0∨ (X − L)∧ (U − L), then YI = αY . Also, we have

E(Y)=
∫ U

L
(x− L)fX(x) dx+ (U − L)(1− FX(U)) and E(YI)= αE(Y).

Differentiating premium CI by L, we have

∂E(Y)
∂L

=
∫ U

L
−fX(x) dx+ FX(U)− 1= −[1− FX(L)]< 0,

∂E(Y2)
∂L

= ∂

∂L

[∫ U

L
(x− L)2fX(x) dx+ (U − L)2(1− FX(U))

]
= −2E(Y),

∂Var(Y)
∂L

= ∂

∂L
[
E(Y2)− E(Y)2)

]= −2E(Y)FX(L)< 0,

∂CI
∂L

= α

[
(1+ ρ1)

∂E(Y)
∂L

+ ρ2
∂
√
Var(Y)
∂L

]

= −α

[
(1+ ρ1)[1− FX(L)]+ ρ2√

Var(Y)
E(Y)FX(L)

]
≤ 0.

Thus, the FOC is

∂EU
∂L

=
(

−∂CI
∂L

+ FCC(1− α)
) ∫ L

0
U

′(wprop,1(x))fX(x) dx

+
(

−∂CI
∂L

+ FCC(1− α)− 1+ (1+ rCC)(1− α)
)

×[∫ U

L
U

′(wprop,2(x))fX(x) dx+
∫ ∞

U
U

′(wprop,3(x))fX(x) dx
]
:= 0 (A.4)
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When α > rCC
1+rCC ,

17 since U
′( · )> 0, the first order condition can be thought of as a balance

between two terms of opposite signs. We focus on the case where the optimal parameters takes
finite values to observe the comparative static effects. Let δj =

∫ L
0 U

′(wprop,j(x))fX(x) dx> 0 for all
j ∈ {1, 2, 3} be the “weightings” on the coefficient values, then we can re-express Equation (A.4) in
two equivalent forms,

∂EU
∂L

= δ1

>0︷ ︸︸ ︷(
−∂CI

∂L
+ FCC(1− α)

)

+ (δ2 + δ3)

<0︷ ︸︸ ︷(
−∂CI

∂L
+ FCC(1− α)− 1+ (1+ rCC)(1− α)

)
(A.5)

= (δ1 + δ2 + δ3)

>0︷ ︸︸ ︷(
−∂CI

∂L
+ FCC(1− α)

)
+(δ2 + δ3)

<0︷ ︸︸ ︷
(−1+ (1+ rCC)(1− α)) . (A.6)

Note that for the FOC ( ∂EU
∂L = 0) to hold, the signs of the coefficients must be given as shown in

Equations (A.5) and (A.6).
As ρ1 and ρ2 increases, ∂CI

∂L increases and the magnitude of the positive coefficient in Equation
(A.6) increases, leading to a higher ∂EU

∂L . Concurrently, a higher ρ1 and ρ2 inflates the premium
amount CI , resulting in lower terminal wealth {wprop,i}i∈{1,2,3} and a higher {δi}i∈{1,2,3}. Since the
positive coefficient receives a higher increase (due to δ1), ∂EU

∂L will increase. Together, by Lemma 1,
the optimal L∗ is higher.

We follow the same procedure for the remaining exogenous variables. A higher FCC will rein-
force the positive coefficient in Equation (A.6), giving rise to a higher ∂EU

∂L . Furthermore, similar
to the previous analysis, the terminal wealth {wprop,i}i∈{1,2,3} will be lower, and weights {δi}i∈{1,2,3}
will be higher. ∂EU

∂L increases due to a higher increase in weights relative to the negative coefficient.
Overall, L∗ increases.

As rCC increases, the magnitude of the negative coefficient decreases in Equation (A.6), leading
to a higher ∂EU

∂L . However, a higher rCC decreases {wprop,i}i∈{2,3}, causing {δi}i∈{2,3} to be higher.
Referencing to Equation (A.5), the weights on the negative coefficient will decrease, implying a
higher ∂EU

∂L . Hence, the net effect is indeterminate.
As for re, an increase in re will not affect the coefficients. Instead, the terminal wealth wprop,3

will decrease, leading to an increase in δ3, and by Equation (A.5), ∂EU
∂L will decrease, which

lowers L∗.
Finally, for γ , we cannot rely on the same procedure since we cannot apply Lemma 1. Focusing

on Equation (A.3), an increase in risk aversion γ increases the convexity of the utility function
U( · ), causing lower terminal wealth states (i.e., wprop,3) to weight more than higher terminal
wealth states (i.e., wprop,3). Thus, the state whereby disaster loss exceeds the premium amount
is weighted more compared to that where disaster loss is low, implying that the government will
find it beneficial to purchase more insurance. Hence, the optimal L∗ decreases.

17Otherwise, ∂EU
∂L > 0 for all L, and thus, L∗ = ∞. Then, U∗ = ∞ and α∗ drops out of the optimization.
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Proportional structure: optimal α
Under the same procedure, we can derive the FOC with respect to α.18

∂CI
∂α

= (1+ ρ1)
∂E(YI)

∂α
+ ρ2

∂
√
Var(YI)
∂α

= (1+ ρ1)E(Y)+ ρ2
√
Var(Y)> 0

∂EU
∂α

=
(

−∂CI
∂α

+ FCC(U − L)
) [ ∫ L

0
U

′(wprop,1(x))fX(x) dx

+
∫ U

L
U

′(wprop,2(x))fX(x) dx+
∫ ∞

U
U

′(wprop,3(x))fX(x) dx
]

+ (1+ rCC)[∫ U

L
(x− L)U′(wprop,2(x))fX(x) dx+

∫ ∞

U
(U − L)U′(wprop,3(x))fX(x) dx

]
:= 0

(A.7)

Let

δ1 :=
∫ L
0 U

′(wprop,1(x))fX(x) dx,
δ2,1 :=

∫ U
L U

′(wprop,2(x))fX(x) dx,
δ2,2 :=

∫ U
L (x− L)U′(wprop,2(x))fX(x) dx,

δ3,1 :=
∫ ∞
U U

′(wprop,3(x))fX(x) dx, and
δ3,2 := (U − L)δ3,1.

Then, we have

∂EU
∂α

= (δ1 + δ2,1 + δ3,1)

<0︷ ︸︸ ︷(
−∂CI

∂α
+ FCC(U − L)

)
+(δ2,1 + δ3,1)

>0︷ ︸︸ ︷
(1+ rCC) (A.8)

An increase in ρ1 and ρ2 magnifies the negative coefficient in Equation (A.8) and increases the
weights on the negative coefficient more significantly, suggesting a decrease in ∂EU

∂α
and a drop

in α∗. A higher FCC lowers the magnitude of the negative coefficient and, at the same time, gives a
more proportionate boost in the weights on the negative coefficient. Hence, both effects combined
have an indeterminate impact.

As rCC increases, the positive coefficient is larger while {δi}i∈{2,3} to be higher, leading to a
higher ∂EU

∂α
and α∗. Increasing re augments δ3, which generates a higher α∗. Lastly, following the

same argument as before, since a larger γ makes lower terminal wealth states weigh more and
higher terminal wealth states weigh less, the government will wish to increase α∗ to acquire more
insurance protection.

Proportional structure: optimal U
Likewise, following the same steps and notations in the optimal L case, we obtain

∂E(Y)
∂U

= 1− FX(U)> 0,
∂E(Y2)

∂U
= 2(U − L)(1− FX(U)),

18In practice, FCC ≈ 0 will be insignificant relative to the ∂CI
∂α

term. Thus, we can consider the FOC as a balance between
two terms of opposite signs:− ∂CI

∂α
+ FCC(U − L)< 0 and (1+ rCC)> 0 sinceU′( · )> 0.We omit the proofs for higher values

of ρ1, ρ2, rCC , FCC , i, re, and higher risk aversion γ as they follow the same argument discussed under optimal L.
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∂Var(Y)
∂U

= 2(U − L)(1− FX(U))− 2E(Y)(1− FX(U))

= 2(1− FX(U))[U − L− E(Y)]> 0, and,
∂CI
∂U

= α

[
(1+ ρ1)

∂E(Y)
∂U

+ ρ2
∂
√
Var(Y)
∂U

]

= α

[
(1+ ρ1)[1− FX(U)]+ ρ2√

Var(Y)
(1− FX(U))[U − L− E(Y)]

]
≥ 0.

Thus, the FOC is
∂EU
∂U

=
(

−∂CI
∂U

− FCC(1− α)
)

×[∫ L

0
U

′(wprop,1(x))fX(x) dx+
∫ U

L
U

′(wprop,2(x))fX(x) dx
]

+
(

−∂CI
∂U

− FCC(1− α)− (1+ rCC)(1− α)+ (1+ re)
)

×[∫ ∞

U
U

′(wprop,3(x))fX(x) dx
]
:= 0 (A.9)

and can be re-expressed as (following the same definitions for δ1, δ2, δ3 for optimal L)

∂EU
∂U

= (δ1 + δ2)

<0︷ ︸︸ ︷(
−∂CI

∂U
− FCC(1− α)

)

+ δ3

>0︷ ︸︸ ︷(
−∂CI

∂U
− FCC(1− α)+ (1+ re)− (1+ rCC)(1− α)

)
(A.10)

= (δ1 + δ2 + δ3)

<0︷ ︸︸ ︷(
−∂CI

∂U
− FCC(1− α)

)
+δ3

>0︷ ︸︸ ︷
((1+ re)− (1+ rCC)(1− α)) . (A.11)

Higher values of ρ1 and ρ2 increase ∂CI
∂U , and thus, the negative coefficient, causing ∂EU

∂U to fall
while increasing all {δi}i∈{1,2,3}, leading to a decrease in ∂EU

∂U too. Thus, the optimal U∗ decreases.
Increasing FCC will lead to a more significant negative coefficient in Equation (A.11) and higher
weightage on the negative coefficient, suggesting a lower U∗.

As rCC increases, the positive coefficient in Equation (A.11) decreases and {δi}i∈{2,3} increases.
The resulting net effect is indeterminate. If the increase in δ3 is large, we may observeU∗ increase.
Otherwise, U∗ tends to be lower. As re increases, both the positive coefficient and the weight δ3
rises, resulting in a rise inU∗ too. Under a higher risk aversion γ , since we place a higher emphasis
on states of the world with huge disaster loss, the government will opt for a higher U∗.

CC-I structure: optimal L
For the CC-I structure, let⎧⎪⎪⎪⎨

⎪⎪⎪⎩
wCC−I,1(x) = R0 − CI − FCC(M − L)− x,
wCC−I,2(x) = R0 − CI − FCC(M − L)− L− (x− L)(1+ rCC),
wCC−I,3 = R0 − CI − FCC(M − L)− L− (M − L)(1+ rCC), and
wCC−I,4(x) =wCC−I,3 − (x−U)(1+ re).

(A.12)
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Then, the expected utility function is

EU(L,M,U)=
∫ L

0
U(wCC−I,1(x))fX(x) dx+

∫ M

L
U(wCC−I,2(x))fX(x) dx

+U(wCC−I,3) (FX(U)− FX(M)) +
∫ ∞

U
U(wCC−I,4(x))fX(x) dx,

where 0≤ L≤M ≤U, CI = (1+ ρ1)E(YI)+ ρ2
√
Var(YI), YI = 0∨ (X −M)∧ (U −M). Thus,

E(YI)=
∫ U
M (x−M)fX(x) dx+ (U −M)(1− FX(U)).

It is straightforward to observe that insurance is not affected by the parameter L, thus it follows
that ∂E(YI)

∂L = ∂Var(YI)
∂L = ∂CI

∂L = 0.

∂EU
∂L

= FCC

[ ∫ L

0
U

′(wCC−I,1(x))fX(x) dx+
∫ M

L
U

′(wCC−I,2(x))fX(x) dx

+U
′(wCC−I,3) (FX(U)− FX(M)) +

∫ ∞

U
U

′(wCC−I,4(x))fX(x) dx

]

+ rCC

[ ∫ M

L
U

′(wCC−I,2(x))fX(x) dx

+U
′(wCC−I,3) (FX(U)− FX(M)) +

∫ ∞

U
U

′(wCC−I,4(x))fX(x) dx

]

> 0 ∀ L<M

Thus, without constraint, L∗ =M∗.
We omit the proof of optimal parametersM∗ andU∗ under the CC-I structure for brevity since

it follows exactly the same line of argument as the proportional structure case.

A.7 Proof of Proposition 5
For brevity, we only sketch the proof forU#

prop. Replicating the same steps, we can derive the proofs
for all the remaining parameters L#prop,M#

CC−I ,U#
CC−I in Proposition 5. When we impose the VaR

constraint, the objective function and the Lagrange function becomes

max
θ∈�

EU s.t. VaRp(R1)≥ kVaR, and

L= EU− λ1(kVaR −VaRp(R1)), where λ1 ≥ 0, while the FOC is
∂L

∂U
= ∂EU

∂U
+ λ1

∂VaRp(R1)
∂U

:= 0.

Note that when the VaR constraint is active (i.e., VaRp(R1)< kVaR), the Lagrange multiplier
λ1 > 0. Since we have already obtain ∂EU

∂U in the Section A.6, our goal here is to find out ∂VaRp(R1)
∂U

and determine whether ∂VaRp(R1)
∂U is higher or lower for the constrained case, compared to the

unconstrained one, under the same value of U.
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Since VaRp(R1) can exist in the three different regions of Fig. 2, by adopting the same notations
in Equation (A.2), we obtain

∂VaRp(R1)
∂U

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂Uwprop,1(x)

∣∣∣
x=FX(pVaR)

, if F−1
X (pVaR)< L∗

∂
∂Uwprop,2(x)

∣∣∣
x=FX(pVaR)

, if L∗ < F−1
X (pVaR)<U∗

∂
∂Uwprop,3(x)

∣∣∣
x=FX(pVaR)

, if F−1
X (pVaR)>U∗

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− ∂CI
∂U − FCC(1− α), if F−1

X (pVaR)< L∗
− ∂CI

∂U − FCC(1− α), if L∗ < F−1
X (pVaR)<U∗

− ∂CI
∂U − FCC(1− α)

−(1+ rCC)(1− α)+ (1+ re), if F−1
X (pVaR)>U∗

.

Substituting back into the FOC equation, we obtain

∂L

∂U
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
− ∂CI

∂U − FCC(1− α)
]

×
[∫ L

0 U
′(wprop,1(x))fX(x) dx+ ∫ U

L U
′(wprop,2(x))fX(x) dx+ λ1

]
+

[
− ∂CI

∂U − FCC(1− α)− (1+ rCC)(1− α)+ (1+ re)
]

× [∫ ∞
U U

′(wprop,3(x))fX(x) dx
]
, if F−1

X (pVaR)<U∗

[
− ∂CI

∂U − FCC(1− α)
]

×
[∫ L

0 U
′(wprop,1(x))fX(x) dx+ ∫ U

L U
′(wprop,2(x))fX(x) dx

]
+

[
− ∂CI

∂U − FCC(1− α)− (1+ rCC)(1− α)+ (1+ re)
]

× [∫ ∞
U U

′(wprop,3(x))fX(x) dx+ λ1
]
, if F−1

X (pVaR)>U∗

.

By treating ∂L
∂U as the “ ∂EU

∂U ” for constrained case, we have

∂L

∂U

∣∣∣∣
U=U∗

{
< ∂EU

∂U
∣∣
U=U∗ = 0 under unconstrained case, if F−1

X (pVaR)<U∗
> ∂EU

∂U
∣∣
U=U∗ = 0 under unconstrained case, if F−1

X (pVaR)>U∗ .

Thus, it follows that the optimal parameter U# is lower (higher) compared to U∗ when
F−1
X (pVaR)< (> ) U∗ (or equivalently pVaR < (> ) FX(U∗)).
To see this, consider F−1

X (pVaR)>U∗. When U increases, the weight on the negative term of
∂L
∂U increases while weight on the positive term of ∂L

∂U decreases, leading to a decrease in ∂L
∂U . To

ensure ∂L
∂U |U=U# = 0, if ∂L

∂U |U=U∗ < (> ) 0, thenU must decrease (increase). This is also consistent
with Lemma 1. As the exogeneous parameter λ1 increases, signifying a tighter VaR constraint,
U# decreases (increases) since increasing λ1 decreases (increases) ∂L

∂U .
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B. Appendix: Diagrams

(a) (b) (c)

(d) (e) (f)

Figure B.7. Similar plot to Fig. 3 but without constraint on U (i.e., kU → ∞).
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(a) (b) (c)

(d) (e) (f)

Figure B.8. Similar plot to Fig. 3 under CRRA utility. Due to numerical issues, we scale losses by 100 billion when performing
the simulation under CRRA utility. All other parameters remain identical.
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