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ON FREE GROUPS OF THE VARIETY AN2 A N2A 
BY 

CHANDER KANTA GUPTAO 

Introduction. Let R be a commutative ring with unity and let M(R) be the multi­
plicative group of 4 x 4 triangular matrices (%) over R, where a1± is a unit element 
of R and ait= 1 for /=2, 3, 4. If V(=AN2 A N2A) denotes the variety of groups 
which are both abelian-by-class-2 and class-2-by-abelian, then it is routine to verify 
that M(R) e V. Here we prove the following, 

THEOREM. Let F(V) denote the free group of finite or countable infinite rank of 
the variety V. Then for a suitable choice of R, F(V) is embedded in M(R). 

Notation and preliminaries. Unless otherwise specified, we follow the notation 
of Hanna Neumann [2]. In particular, if x, j , z , . . . are elements of a group G, 
then we write [x, }>] = *~1.y~1*y; [x, y, z] = [[x, y], z]; [x, y; w, v] = [[x, y], [u, v]]. 
We write ym(G) for the m-th term of the lower central series of G and ymyjfi) for 
Ym(yn(G))- Let Fm be the free group of rank m freely generated by xl9..., xm; and 
let H=y2yz{Fm)• yQy2{Fm). If w e y2y2(Fm)> then w can be written as 

w = EI Mhj), [xi9 Xj]] mod H, 
l£i<j^m 

where u(i,j) e y2(Fm) and contains no factor [xi5 x^]*1. 
Let P={(i,j) | \<i<j<m) and define (i,j)<(k9 /) if either i<k or if i = fc and 

7 < /. Using P as an index set we can rewrite w e y2y2(Fm) as 

(m-l,m) 

(1) w = n luQJ), [xi9 Xj]] mod /f, 
(U) = (l,2) 

where 

(r,s)>(i,j) 

with S(r, 5) G Z and v(i,j) e yQ(Fm). 

Proof of the theorem. Let ZG denote the integral group ring of the free abelian 
group G freely generated by xl9 x2 , . . . ; and denote R to be the polynomial ring 
ZG[A], where A={A î

)_1 | i = 2, 3, 4; fc=l, 2,...} is the set of independent and 
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commuting indeterminates which also commute with every element of ZG. For 
each k=l9 2 , . . . ; let 

(2) <**> = 

Xfc 

m 
0 

0 

0 

1 

A$ 
0 

0 

0 

1 

AS 

0 

0 

0 

1 

Consider the multiplicative subgroup M*(R) of M(R) generated by <xfc>'s for 
k=l9 2, In what follows we shall show that M*(R) is isomorphic to 
F/y2y3(F)-y3y2(F). For this purpose we take xl9 x29... as a free set of generators 
for the free group F and define the natural homomorphism 9 of F onto M*(R) by 
Xk9 = (Xk)- We proceed to show that the kernel of 9 is y2y3(F)-y3y2(F). If 
w = xfl.. .xf/(ef G {1, — 1}) is a word in F9 then we define 

(3) <W> = < * ( l > ' l . . . <*.,>''• 

To facilitate calculations in M*(R), we introduce mappings a y ( 4 > / > y > l ) of F 
into i? be defining 

(4) 

Thus we have, 

cci3{w) = (/-entry of <w>. 

(5) a±1(w) = w, a„(w) = 1 for / = 2, 3, 4, a,, j - i f e ) = ##_!, 
% f e ) = 0 fori-j<£{0, 1}; 

and using matrix multiplication we compute 

<*2ll>i, W2] = ( - l + W 2 ) a 2 1 ( w 1 ) - ( - l + W 1 ) a 2 1 ( w 2 ) , 

«32l>i , W2] = 0 = aé3[wl9 W2]9 

«3i[Wi, W2] = ( - l + W 2 ) a 3 1 ( w 1 ) + ( l - W 1 ) a 3 1 ( w 2 ) + ( l ~ W 2 ) a 3 2 ( w 1 ) a 2 1 ( ^ 

+ (Wx - l ) a 3 2 (w 2 ) a 2 i (w 2 ) + W 1 a 3 2 (w 1 )a 2 1 (w 2 ) 

(6) -W 2 a 3 2 (w 2 ) a 2 i ( lV i ) , 

«42[Wi, W2] = a4 3(Wi)a32(W2)-a43(w2)a32(Wi), 

«4i [w, tf] = «42(w)a21(t;)-a42(^)oc21(w) for «, i? e y2(F). 

From (6), it follows in particular that aij(w) = 0 for all w e y2y3(F)-y3y2(F) and as 
remarked in the introduction y2y3(F)-y3y2(F) is contained in the kernel of <p. 
Moreover, using (6) we note that 

(7) 

and 

«4 iOi . . . wk) = 2 <*4i(Wi) for wl9..., wk e y±(F) ; 
i = l 

k 

c ^ O î 1 . . . wft) = 2 €i«42(w4) for iv1 ? . . . , wk e y2(F) ; 

i = l 

aê2lXr9 Xs] — ^4r3^3S2"~^4S3^3r2* 
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To complete the proof of the theorem we assume that w is a word in the kernel 
of <p (i.e. oy(w) = 0 for 4 > / >j > 1) and proceed to conclude that w e y273(F) • y 372(F)' 
Since w involves only finitely many symbols, we may assume that w e Fm9 where Fm 

is freely generated by xl9..., xm. Now a21(w)=0, together with the fact that the 

matrix * forms a part of the matrix <xfc> for k= 1, 2 , . . . ; it follows by a 

well known theorem of Wilhelm Magnus [1] that w e y2y2(Fm) and by (1), we may 
assume that w can be written as 

(m-~l,m) 

w= f i [u(hj),[Xi,x,]]w, 
(i,;) = (l,2) 

where 

u(Uj)= n [xnx8]«r-»v(iJ) 
(r,s)>(i,j) 

with S(r, J ) e Z, 0(1 J ) e y3(Fm) and w e ^/aC^m)-73720^). 
Now, we have 

(m-l .m) 

0 = a41(w) = 2 «41 ["&./)> [*i, */]] by (7) 
a,y) = (i,2) 

(m-l ,m) 

= 2 {«42MÛ*))«2ife) *y]-«42[*«, Xj]cc21(u(i,j))} by (6) 
(i,y) = d,2) 

(m-l ,m) ft \ 

2 1 2 s(r> s)a*z [*» * J a2i fo, *y] - «42 fe Xj]a21(u(i, j))} by (7) 
(i,/) = (l,2) L\(r,s)>(f,y) / 

(since ae2(v(i,j)) = 0 by (6)) 

(m-l,m) f/ \ 

= I "M 2 S(r,5)(A^A -̂A^A )̂ a21[xi}^] 
(*,/) = (1,2) ^\(r,s)>(i,;) / 

-(mm-mmchafKu)) by œ 
( m - l ,m) 

= 2 A^A(3^(/,7)-A^A^O;JX 
(i,;) = (l,2) 

where 
KU), " (U) e Z(?[Ag, * = 1, 2 , . . . ]. 

Since Af
(f s are independent, it follows that n(i,j) = 0=v(i,j) for all (i,j) e P . Let 

(i,j) be the least element of P for which u(i,j)$y2y2(Fm). Then since ^(i,j) = 
— K2i(u(U j)), we have a21(u(i, j)) = 0 which again by the theorem of Magnus implies 
that u(i,j)ey2y2(Fm), contrary to the choice of u(i,j). Thus, each u(i,j) in the 
representation of w lies in y2y2(Fm) and it follows that w e y2y3(F)-y3y2(F) as was 
required. 

REMARK. If w=xï*... xf[ is an arbitrary word in F, then we can effectively com­
pute a21{w). Since R has a solvable word problem we can decide whether or not 

3—C.M.B. 
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a21(w) determines 0. If a21(w) = 0, we effectively compute aél(w) and decide whether 
or not a4i(w)=0. If a21(w) ̂  0, then w is not in F", and hence not in y273(F) • y3y2(F). 
If «2 I (H ; )=0 and if a41(w)^0, then w is not in y2y3(F)'y3y2(F). Thus, as a conse­
quence to the proof of the theorem, we have 

COROLLARY. F/y2y3(F)-yQy2(F) has a solvable word problem. 
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