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WARD’S SOLITONSII: EXACT SOLUTIONS

CHRISTOPHER KUMAR ANAND

ABSTRACT. |n aprevious paper, we gave a correspondence between certain exact
solutions to a (2 + 1)-dimensional integrable Chiral Model and holomorphic bundles
on acompact surface. In this paper, we use algebraic geometry to derive a closed-form
expression for those solutions and show by way of examples how the algebraic data
which parametrise the solution space dictates the behaviour of the solutions.

RESUME.  Dans un article précédent, nous avons demontré que les solutions d’ un
modéle chiral intégrable en dimension (2 + 1) correspondent aux fibrés vectoriels
holomorphes sur une surface compacte. Ici, nous employons la géométrie algébrique
dans une construction explicite des solutions. Nous donnons une formule matricielle
et illustrons avec trois exemples la signification des invariants algébriques pour le
comportement physique des solutions.

1. Introduction. Nonlinear equations admitting soliton solutions in 3-dimensional
space-time have been recently studied numerically and analytically. See[Su] and [Wa95]
for adiscussion of solitonsin planar models.

In this paper, we explicitly construct solutions to an integrable model introduced by
Ward whichisremarkableinthat it possessesinteracting soliton solutions of finite energy
[Su], [Wa95], [lo]. This SU(N) chiral model with torsiontermin (2 + 1) dimensions may
be obtained by dimensional reduction and gauge fixing from the (2 + 2) Yang-Mills
equations [Wa95] or more directly from the (2 + 1) Yang-Mills-Higgs equations. Static
solutions of the model correspond to harmonic maps R?> — U(N).

The basic equations of Ward are

d d d d d d d d
1 —= (Jfl—J) - — (J*l—J) - — (J*l—J) + {Jfl—J,Jfl—J} =0,
at ot X X ay ay ay ot

where J: R* — SU(N) is a function of two space variables and time. To this equation
Ward added the boundary condition:

()] J(r,B,t):ﬂ+%J1(9)+O(r—12) as r— oo;

(written in terms of polar space coordinates). We will assume J;(6) is continuous. Ward
showed that analytic solutionsto (1) correspond to doubly-framed holomorphic bundles
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on the open surface TP*. We showed (in [An97]) that anecessary and sufficient condition
for the bundle to extend trivially to the compactification TP?, the second Hirzebruch
surface, isthat J be analytic and that the operator

d 1 * —la 1q * -1 d d
3 du+2(1+C039)L (J aXJ)+zsm9L (J (ay+at)‘])

have null monodromy aroundu € RU {co}, where

4 t(u) o (ucosf + xg, using + yp, 0),

forall xo.yo € Rand9 € S, i.e,, for all linesin R?.

Construction of solutions. There are currently three methods of solving this system, to
which the author adds a fourth. The first method of Ward was to give a twistor corre-
spondence between solutions of (1) and holomorphic bundles on TP, the holomorphic
tangent space to the complex projective line. Thisled to the construction of noninteract-
ing soliton solutions. Thereafter, numerical simulations of these solutions by Sutcliffe
led to hisdiscovery of interacting soliton solutions. Exact solutions with two interacting
solitons were then constructed by Ward using a Zakharov-Shabat procedure. Using this
procedure, more general solutions were constructed by |oannidou concurrently with the
present work. In this paper, we present a closed-form expression for all solutions satis-
fying (1), (2) and having null (3) monodromy, which includes all known exact soliton
solutions.

In[An97], we showedthat such solutions correspondto abstract holomorphic bundles.
A concrete expression for the solutions requires a concrete representation for such
bundles, whichis provided by monads (explained in Section 3). In thefollowing theorem,
the equivalenceof thefirst two setswas proved in[An97]. The equivalence of the second
and third is explained in Section 3.

THEOREM 1. There are bhijections between
1. the set of analytic solutions J of (1) satisfying (2) and (3);
2. holomorphic, rank N bundlesV — TP! whicharereal in the sensethat they admit

alift
v v of the A=1/ I
(5) J antiholomorphic g _ e
TP —, TPt involution on= g

(where \ and 1 are standard base and fibre coordinates of TC  TPY and which
extend to bundles on the singular quadric cone TP! U {oo}, such that restricted to
the compactified tangent planes T,P* U {00} for |A| = 1, V istrivial, with a fixed,
real framing; and
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3. the union of a point set and, for all k > 0, the set of 4-tuples of matrices

a1, o2 € gl(K),

(monad data) spec(ap) C {z€ C | Rz> 0}

aE Mnk Db EMN

satisfying
{ o +W
(nondegeneracy) rank | aj + z) =rank(oz2+w a;+z b)=k VzweC
a
(monad equation) [a1, 0] +ha=0

guotiented by the action of g € GI(k)

a1 gag "t g gopg !
a—ag ! b— gb.

The eigenvalues of a, are restricted because the given monad data encode the
bundle abovethe equator, i.e., for || < 1. Reality reflectsthis structureacrossthe
equator.

This statement also improves the Theorem of [An97] in removing the condition that V
betrivial onreal sections, i.e., o-stable sections. In Section 5 we show that this condition
isimplicit in the other conditionsimposed on V . Theinteger k is obviously an invariant,
it corresponds to the normalised second Chern class of the bundle and the topological
charge defined in [An97] (see Conjecture 2.4 in that paper). The point set corresponds
to the constant solution and the trivial bundle.

Themain result of this paper isthe explicit construction of the solutions corresponding
to this matrix data:

THEOREM 2. The (multi-)soliton associated to the bundle represented by the monad
(01, a2, &, b), as above, hasthe form

o wmew () (F 5)(5)

where 1
Q= +2it+yN (I +7) +xag +iy, 7= E(az -1,

and ¢1, ¢ are determined by the linear equations

@) P10 + O(;gf)]_ +ia*a=0,
(8) —d)zaz — apdp +ibb* = 0.
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\erification. We can verify directly that these are (real) solutions. Nonsingularity is not
as easy to verify, but follows from the arguments of Section 5.
Ward's equation can be written as

9) 49y 13 oy + 9xJ 9 d = 0.

For convenience, we define the following block matrices

o2 2).

df [(—a;
o ®(7% ).

a £ (b a)
def (i
Q—(b).and

o2,

Thefollowing relations,

Q" = —wQuw,
a5 = —waw, and
a =ibw,

which are equivalent to the real structure of the monad and bundle, and may be verified
directly, are needed to compute the inverse of the solution:

J_l - J* - ﬂ+t_)*g*—1g§—l§*

(10) = 1+ (iaw)(—wQ ™ 'w)(—wa; 'w)(iwb)
=1-aQ 'a;'b.
We compute
ByaQ = 27(1+7) + lzu

i [ i
E((X%— |])+§|] = EO{%

Since this involves only even powers of s, it holds as well for the block form: 9y+Q =
$a3. Hence

i
dynd = —5a05 Q" a3Q .

With the help of the substitution ba = [«,, Q] derived from the monad equation, we find

i
I Hynd = =520 Q.
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and

@) a0 i = —5a( 5077 a0 - 5a0 e (5272

Ja
Using 9xQ = a,, we find,
9 = —a; Q1,0 b,
JtaJd = —aQ ?p,
(12) 9d o) = —a(—Q 'a,Q Qb - a0 H(—Q 'a,Q )b.

Putting (12) and (11) into (9), we see that these are in fact solutions.
To verify that J is real, we use the big monad equation
0=[a, 5] +ba=[Q, a,] +ba,
which follows from the (monad equation), (7) and (8):

JJ = (1+ a5 Q) (1 — aQ1a; 'b)

I +a([o; Q7" — a;'Q 'baQ ' )b
1+a(lez". Q7Y — 7' Q a,.Q1Q ' )b
= 1.

1.1. Structure of the paper. In Section 2, we recall notation and ideas from [An95],
[An97], [An98], in order to make this paper self-contained.

Theorem 1 strengthens the classification of [An97] by adding a monad description,
which is explained in Section 3 and by removing the condition that the holomorphic
bundles be trivial on real sections, which is done in Section 5. The proof in Section 5
takes as a starting point the result in the special case that the holomorphic bundle has a
fixed pair of conjugate fibres on which the holomorphic bundle may be nontrivial. This
was established in [An98] using monad methods.

Theorem 2 builds on the construction of the static solutions [An98]. To apply the
result in the static caseto the general case, we need to introduce, in Section 3, a suitably
normalised TP monad, and away of going back and forth between this monad and the
P? monad representation used in [An98]. This |leaves to Section 4 the computation of the
general closed-form expression.

In the final section, we show how to go about constructing examples and discuss how
the physical behaviour of the solutionsrelatesto the geometry of the bundlesas reflected
in the algebrai ¢ structure of the monad data, i.e., how energy, Chern class, nilpotency of
matrix data, position and degree of jJumping lines, number and interaction of solitons are
related.
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2. Review. Static solutions of Ward's equations are harmonic surfaces. The finite-
energy maps are called (multi-)unitons. The ellipticity of the harmonic map equations
gives static solutions strong regularity properties. A static, finite-energy solution to 1
alwaysextendsto the conformal compactificationS? asareal analytic function, whichin
turn implies that the boundary and monodromy conditions are satisfied. On the level of
bundles, thisimplies that “ uniton bundles’ on TP* automatically extend to the fibrewise
compactification TP & p(TP! @ O) = TP U (section at infinity).

We will use the results of the analysis of the harmonic maps, explained in [An95],
[An98], which culminates in the closed-form expression

J(x.y) = 1 +a; (o +xa, +iy) b

for static solutions. In the remainder of this section, we review the derivation of this
result in order to fix notation.

2.1. Three-dimensional geometry. We will always have in mind a fixed embedding

[A+X A= 1—AX>

13 - :
13) AT T T T

of {\ € C}in {(x.y.t) € R3} as the unit sphere, which identifies the directions in

R® with the points on the complex projective line P* o~ € U {00}, and which identifies

tangent planes of P! as subplanesof R3. Wewill call thet-axis vertical, and perpendicular

directions horizontal. With reference to the unit sphere, we will call A = 0, oo the poles

and {|\| = 1} = S* the equator, and name fibres T, P as polar or equatorial in this way.
We recall the (Euclidean) twistor fibration

R®x S>>~ Rp TP
(14) / N
2o R® TP,

which identifies TP with the oriented lines in R3, either directly, or by taking inverse
and direct images, giving correspondences

(15) oriented line ™™, point
(16) point M el section.

This picture can be complexified,
¢ xpt
(17) / N\
cd TP,
in which case the map on the right becomesthe “ sectionsmap”:

{holomorphic vector fields} x {base} — {holomorphic tangent bundle}.
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In terms of complexified variables (z t,Z) € €%, and 5, the coordinate associated to the
sectiond/d\ € I (TPY), the sections map is given by

(18) (zt.2).)) —z—2th — D2

In the complexification C3, R?*! isareal slice which intersects the standard real slicein
aspaceplane, {t = 0}.

2.2. Frames from dbar operators. Ward's equation is a reduction of the Yang-Mills-
Higgs system in 2 + 1 dimensions (i.e., in the indefinite, 3-dimensional signature). In
anal ogy with the Euclidean case (the monopol e case), thereisazero curvature (Lax) form
for these completely integrabl e equations, which leads naturally to atwistor construction:;
The zero curvature condition depends on a complex parameter, )\, and can be rewritten
asafamily of 9 operatorson thetrivial complex bundleCN x R? with respect to avarying
complex structure on R? parametrised by \. This defines the structure of a holomorphic
bundle on an open complex surface, and analytic arguments show that this structure
extends to the compactification TP?.

When |A| = 1, the Lax-form contains an ordinary differential operator with real,
horizontal characteristic direction. This operator corresponds to Hitchin's scattering
operator in the Euclidean monopole case. These operators can be integrated (from the
standard gauge at infinity) to obtain acircle of distinguished gauges, h,, of thetrivial CN
bundle, and Ward's equation is satisfied by the change of gaugeJ = h! - h_;.

To reconstruct J, we must identify h, intrinsically in the bundle data.

Since the family of gauges h, is parametrised holomorphically by A € P!, they lift
via (17) to define a gauge on a subset of C3 x P!, which in the analytic case is open.
We began with a trivial CN bundle, and consequently have a background trivialisation,
f, which pulls back to €3 x P! and can be pushed forward to real sections of TP*. (See
Table 1.) Assuming that these frames can be constructed intrinsically on TP!, we can

c? cd x P! TP!
f,+| Frame over | Frame over Frame over
(19) apoint (z ) [{(z 1)} x P*|{2y = z+ 2itA — 20?2}

h| Family of | Frameover | Frameover each
Frames open set equatorial fibre

TABLE 1: The framesf and h, which are most naturally defined over C* and C* x P* respectively,
induce (restricted) framings on the other spaces in the fibration.

now take the “inverse and direct images’ of the definition of J:

Izt & (hi'h_y)|pyee  ONCE
(20) = (20| @y 7 f2) H@p-n onC3x P

eC3xpt eC3xpt
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= (h71 : fZ.t)l 21/2272it72(h71 : fZ.t)71| 2p=z+2it—z  ON T[Fol
A=l =

We have defined the gauge h,, to agree with the gaugef “at infinity”, i.e., on the line
at spatial infinity which we add to compactify R® and on therational curve which we add
to compactify TP,

2.3. Intrinsic construction. On a compact variety, evaluation of a trivial bundle at a
point is an isomorphism. Sincethe bundleistrivial over the section at infinity, aframing
at a point induces aframing along the whole section. Similarly, triviality over equatorial
fibres and the framing at the infinite points induces a frame, h on their union. Restricted
to a real section, we have a frame over a circle of points (the points lying over the
equator) and since the bundleis trivial over real sections, we can use any trivialisation,
f,+ to compare these frames, asin (20).

We have not said anything about the real structure. The real structure arises from
the unitarity of the solutions, much as it does in other twistor constructions. Unlike
constructions adapted to a definite signature, however, our real structure, o: A — 1/,
n+— —X~2), on TP* hasfixed pointswhich occur on equatorial fibres. Thisis onereason
why equatorial fibreshaveaspecial role. Fixed points makeit harder to treat theftriviality
over real sections.

2.4. Anoteoncompactifications. We have said that solutions satisfying themonodromy
condition correspond to bundles on the compactification of TP, but have used both the
one-point compactification and the fibrewise compactification obtained by adding a
whole section at infinity, G,,. The second compactification is a smooth surface, and is
more convenient at present. We can use both compactifications because G, is arational
curve of negative self-intersection, hence bundleson TP! which aretrivial on G, arein
one-to-one correspondence with bundles on TP* U {oo} which is the surface with G,
contracted.

3. Ruled surfaces and holomorphic jumps. In this section, we prepare for the
construction of the solitons by giving monad representations of our bundles.

The surface TP! is arational ruled surface, meaning that it is birational to P and is a
fibration with rational curves as fibres. Since our bundles are framed and are trivial on
genericfibres, they are determined by neighbourhoodsof their jumping (holomorphically
nontrivial) fibres, plus a choice of framing along a transverse section [Hu]. The natural
section along which to frame is the section at infinity, and the bundle data includes a
unitary framing along this section.

The real structure implies that jumping fibres come in pairs, reflected across the
equator, with conjugate framings. This property implies that real bundles which are
trivial on equatorial fibres and the section at infinity are automatically trivial on real
sections (Section 5).

Birationality impliesthat by blowing up and down the surface, and taking inverse and
direct images of bundles, we can study our bundles on any rational surface. In [An98]
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we used the birational map p: TP — {(X.Y.W) € P?} whosegraphis
graph(p) & {X =AY, (X + V)W = Y2} € TP x P2,

and studied the bundles on P2. This equivalence results from blowing up (A = —1.
1 = 0) € TP, blowing down the proper transform of {\ = —1} and then blowing down
theimage of {n = oo}, the section at infinity.

On P? we have the representation:

THEOREM 3 ([Do], [0SS]). Framed holomorphic vector bundles, V', on P? with
c2(V) = K and rank N which are trivialised on {X + Y = 0} can be represented as
V =kerK /imJ, where

1) 01 - o=~ Ko@),

[ 0 o
J dé(o)wJu)(X—Y)Jg;) (X+Y). and
0 \o \a

KE0 1 O)W+(~1 0 0)(X=Y) +(~a, a b)X+Y).

arelinear mapsbuilt up fromk’ x k', k' x k', N x k', K" x N matrices, a;, a,, @, b. (This
representation is unique up to the natural action of Gl(k’) on these matrices.)

Because bundle maps are represented by monad maps, and the induced action of o on
P? is linear, monads representing real bundles have a real form [An98, Section 3]:

—I -2y
I+2y

ap =
@ w= (o)
(1)
a=(ib* a),

where ¢1 and ¢, are determined by linear equations (7) and (8), which are nondegenerate
precisely when the eigenvalues of a, have strictly positive real part, which can be
arranged iff the bundle has no jumping lines on the equator.

In this representation, it is easy to identify projective subspaces on which the bundle
is trivial, and to identify natural bases of global sections in terms of the monad data.
Sincetheframesf, h are determined by trivialisations aboverational curves, this property
facilitates the reconstruction of some of the frames. Unfortunately, not all rational curves
in P? are hyperplanes. The sections of TP?, for example, have self-intersection two, not
one, so generically they will be transformed into quadric curves. Thisiswhy the formula
we derive in [Ang8] is only valid on the hyperplane {y + t = 0} C R®.
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Since R? is foliated by the translates of {y +t = 0}, we can compute J globally by
computing J(x.y, t = —y + to), for any to, using the bundle V; = (p=1 0 &,)*V in place
of p~*V . Concretely, we need to compute the effect of 6¢, on the monad (21). Since
p~L o8 o p actsdiscontinuously on P2, we need to introduce monads on TP, which we
do via the equivalence between trivialised P? bundles and trivialised TP! bundles. We
thus avoid existence and uniqueness questions for such representations, at the expense
of not having amore general theory of such monads.

LEMMA 1. The equivalence of spaces of bundles on TP and P?, trivial on
{n = oo} U{X = =1} and {X+ Y = 0O} respectively, induced by p, is realised ex-
plicitly on the level of monad representatives by the map

) O(_GO + Poo)k .
O(—Go)¥ —— & — O(Po)
w2 Ok+N wa
(23) D l A l B C J

O(-1) N Q2N K 0L

where P, = {\ = oo} and Gy = {5 = 0},

w1 = () A+ (1)

_ (- —200 — 105 ) 2 0 —2a; + a1
(24) wz_(o)m( . )/\+ 2 a+ .

wg =1+ (e + Qo)A + (2 — apa)
wa=(ap+l b)A+(a,—1 b)

S

=0 8)

and

0 1
C=1
D=1(X+Y).

PrOOF. One verifiesthat thefirst row isamonad, i.e.,
e that the composition is zero, and
o that the first map isinjective and the second surjective at every point.
Since we assume that the second row is a monad, and we can verify that the diagram
commutes, we have an induced bundle map lifting p.
It is a bundle isomorphism over the smooth points of p since D. (A, B).C are full-
rank there. (The smooth points form the open subset on which p is a bijection, whichis
isomorphicto {X+Y # 0} C P2)
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By assumption, thebundleistrivial onthe exceptional curveinP2. It remainsto check
that the bundle defined by thefirst row istrivial onits exceptional curves, {\ = —1} and

{n=00} £ G
LetV bethe bundle represented by the first row of (23), and let
w1 = W+ Wi,
(25) w2 = W + wh + WA + wINZ,
w3 = win + w3 + Wik + W32,

wa = Wl + Wik,

Then
(26) Vg, istrivia iff HO(GOO.V(—l)) =0= Hl(GOO.V(—l)).
Restricting the monad to G, and twisting by O(—1) gives the monad

Ok
WO+wih 2
0— O(—1)k =% &) —-0—o.
ng O (_ 1)k+N w2+wi)\
To any monad, we can associate a diagram of short exact sequences of bundles called
the display:

0 0

J |

0 — O(=1)k @ ker(gi)t —— Vi]e.(-) —— 0

| l |

@y . O(—1) N Ok O(—1)N —— coker(ii) —— 0
|cy |y
Ok —_— Ok
J l
0 0

Because the rows and columns are exact, they induce long exact sequences in coho-
mology. From the first row and the fact H'(P*,O(—1)) = 0 for i = 0,1.2, we see
that

(28) H' (G V (-1)) & H (Goo, ker (w3)t) .

w4
fori = 1, 2. From the second column, it follows that the RHSs are zero iff

Ok o
HO [ o )= HO(0%)
\ O(_l)k+N w4
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is bijective, whichistrue sincew; = I.
Therestriction of V' to afibre {\ = —1} is given by the restricted monad:

WOl O(_l)k
k Y171 ws(=1) Ak
0—0-1)— ¢ ——3=0—=o.
w1 kN wf-w

We will show that the represented bundle has N nonvanishing sections.
Using the same long exact sequences as above and H*(O(—1)) = 0, we see that
t
these sections are isomorphic to sections of ker (33) , Which are naturally con-
4) Ia=—1
tained in the stections of O(=1)k & O%N, Since the first summand has no sections,
HO ( ker [ 3
wa

sections.

t
) ~ ker(w? — wi). Sincew? — Wi = (_OZI]) is surjective V has N
A=—1

t
None of these sectionsacquiresazero in the quotient ker ( 33 ) /im ( zl) , because
4 2

w? — wl = —20 implies

im(gl)m( {eg}>:{0}. -

2 \Ok+N

3.1. Monad automorphism. Monads on TP consist of more matrix data than the stan-
dard P? monads, and since they represent the same space, have a correspondingly larger
group of automorphisms. It is precisely the extra group action which we require to
calculate the effect of time translation.

A monad automorphism has the form

O-G+P¥x
0 —— O(-GK —— ® —= 0Pk —— 0
w2 Ok+N wa
g | l=
s O0(=G+PKr
0 —— O(-GK ——, ® —= L O(PK —— 0,
w Ok+N “

where A, E € Aut(O¥) >~ GI(Kk), since they are automorphisms of a sum of identical
line bundles. The middle bundle of the monad is not homogeneous, and the component
acting on it has the block form:

B O K KN O (_ k kN
(29) (Co+C1>\ D).O( G+P*a 0 O (=G +P)<@p OkN,

for B € Gl(k), Ci € M., D € GI(N). The group of monad automorphisms acts on the
monad data by

w1 — BwlA_l
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wd — DuWIA™?
wh — DwiA™t + CoufAT?
w3 +— DW3A™ + CowiA™t + CrufA™?
(30) w3 — DW3A 1 + CruiA™?
w3 — EuIB™!
wh — EwiB™ — EwiD1CoB !
w2 +— EwZB! — EwiD1CoB ! — ELID1C, B!
w3 — Ew3B ! — EwiDICB !
wa — Ew4D71.

4. Closed form. Under p, the sections G <! {n = z— 2itA — 212} are mapped to
quadrics on P?. Generically they are smooth, but if the section contains (A = —1, 5 = 0),
i.e., if t +y = 0, then the quadric decomposesinto two lines: (X + Y)(ZX — zY + 2W).
The bundle is aways trivial on the first line, because this is the exceptional divisor of
the birational map. The sections over the quadric are thus the same as the sections over
(ZX — zY + 2W). Knowing these sections sufficed to compute the adapted frames and,
using the relationship (20) between the adapted frames and J, to compute
(31) Iy t=—y) =1 +a0; (o +xa, +iy) b
Since unitons are static solutions of Ward's equations, this was sufficient for unitons. We
now extend thisformulato all values of t by computing its time-translates.

The group 6;: to — to + t acting on €2 = {sections of TP'}, induces an action on TP*
which extends (trivially) to a continuous action on TP, The action &;: 1 — 1 — 2itA
stabilisesfibres. The effect of pull-back by i+y: 7 +— 1 — 2i(t +y)A on the TP monad is
to introduce a A term into both w, and ws where there was none before.

To restore the normalization, we look for an action of the “extra’ parabolic subgroup

(see (30)): 0(=Go + Pt
. ® 2 O (Pa)
QkN w4
(32) (C0+DC1/\ I ) l J”
k
o O(—G%;' Pso) EM O(P )k
QKN Sty (wa) =
Assuming that the monad data has been put in the real form (22), we calculate the group
element to be
i(t+y)(1 — 372 — 273 0
Ci= ( 0 —i(t+y)~/(3+2“/)>
0 0
(i(t+y)V*(3+27*) 0
Co= \ 0 —it+y)1+7)10 - 32— 2“Y3))
0 0
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and the resulting action on the normalised data to be
biery (1) = an + 2it +y)Y(1 +7).

Putting this back into (31) we obtain the required closed form (6).

5. Real triviality. In [An98, Section 6], we used the P? monad representation to
show that soliton bundleswhose only jumping lines among thefibres of TP are {\ = 0}
and {\ = oo} are necessarily trivial on real sections:

LEMMA 2 ([AN98, 6.1]). Any real bundle (in the sense of this paper) which istrivial
on nonpolar fibresand the section at infinity isalso trivial on the zero section, and hence
on all real sections.

In general, soliton bundles can have a finite number of conjugate pairs of jumping
fibres. We first prove the intermediate case of one pair, not necessarily {\ = 0} and
{\ = 00} and from there go on to the general case.

LEmMMA 3. Any real bundle (in the sense of this paper) which istrivial on all but one
pair of (nonequatorial) conjugate fibres and the section at infinity is also trivial on real
sections.

Proor. Let V bean arbitrary real bundle with only one pair of conjugate jumping
fibres,at A = 1+2pand A = 1/(1+ 2p), i.e, p istheonly eigenvalueof 7. Let

1 A—1-2
1+2uf A+

(33) f(\)

amapP! — P!. Then(f,)*V , wheref, isthetangent map tof, isreal with polar jumping
lines, soitistrivial onreal sections by the previouslemma.

Since gfp o f = f o g, it follows from the chain rule that o1, o f, = f, 0 0|1, SO
themap f, is compatible with thereal structure ¢ = —o.., and sendsreal sectionsto reel
sections. It followsthat V istrivial on real sections, aswell. "

ProPOSITION 1. Any real bundle which istrivial on the section at infinity and equa-
torial fibresistrivial on real sections.

DEFINITION. Given ameromorphic section of avector bundle, s, let (s(s) be the “ net
zeros’ of son Z, i.e., only singular pointsin X contribute, ¢s,us, = s, +(s,, and (p2,1(5)
isthelargest i suchthat (A\ — \g)~'sis holomorphic at A = A.

Let P C G be a discrete set, and for each p € P let T, be a meromorphic matrix
function defined on a neighbourhood of p which is nonsingular away from p. Let V' be
abundle over G and V ’ another bundle which is isomorphic to V' on the complement
of P, and defined by transition functions, Ty, near P. Then s can also be interpreted as a
meromorphic section of V/, and as such ¢(s) = Ge\p(S) * Zpep (ipy (TpS)-
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ProoF. LetV besuchabundle. Let J;, J/ beits paired jumping fibres. Thebundie V
is determined by the restriction of V' to neighbourhoodsof J;, J/ together with aframing
along G, the section at infinity. We can think of this as constructing V' out of atrivia
bundle on the complement of | J{J;. J/} and transition functions near J;, J.

Consider a fixed real section, G. A bundle over G with vanishing first Chern class
is trivial iff it has no meromorphic sections with more zeros than poles (counted with
multiplicity).

Let {pi =JiNG, g =J NG}, andletV |g be defined by transition functions T; and
T/. Let s be a meromorphic section of V, expressed in terms of the trivialised bundle.
Then the number of zeros of sasasection of V |g is

|
(34) Co\utmai=1 18 + (G (TiS) + gy (T79)).

i=1

Since(s(s) < 0, theresult follows from the fact that, for each pair {p;, g},

(35) Cp(Ti9) + (g 1(T7S) < (ip g (9)-

Now fix i. The inequality (35) is satisfied for all choices of siff the bundle V; with
jumping fibres J;, J/, given by T;, T/, is trivial when restricted to G. This follows from
the previous lemma. ]

6. Generating solutions. To generate solutions, one must find complex matrices
satisfying the monad equation and the nondegeneracy condition. If solutions are sought
for aunitary group of arbitrarily large rank, then the nondegeneracy condition poses no
obstruction. By this we mean that for arbitrary matrices v, a; we can, in aroutine way,
find a, b to satisfy the monad equation [, 7] + ba = 0. If the nondegeneracy condition
is not satisfied, we canincrease N by 2k and construct new &', b’ in block form

{a
a = u). b=(b 0 1)
\o

whichwill satisfy the nondegeneracy conditions. For fixed rank, however, nondegeneracy
does pose an obstruction.

Since the matrix data is unique up to the action of Gl(k), it makes sense to assume
either o1 or o isin Jordan normal form. Since the eigenvalues of «, correspond to the
location of jumping lines, «; is the logical candidate. The simplest solutions are those
with «, diagonal with distinct eigenvalues. These solutions consist of k noninteracting
solitons whose velocities are determined by the real components of the eigenvalues of

7. For example
0 N = 005 O
0 "L 0 01

(
(36) a= (
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==

FIGURE 1. Evolution of noninteracting (1-uniton) solitons. The energy density is plotted on the
vertical axis and space directions on the horizontal. The scale is arbitrary, but fixed from one
picture to the next.

is a solution with two solitons, whose energy densities are plotted in Figure 1. Solutions
corresponding to «; diagonal with n < k distinct eigenvalues are observed to possessn
noninteracting multi-solitons.

For interacting solutions, one may as well assume to be nilpotent (with high nilpo-
tency degree). It is not hard to find solutions exhibiting k separated solitons (where k is
the second Chern class of the bundle which can be interpreted as a topological charge
[An97, 2.4]). For example

0 0O 0 01
alz(l 0 O) “/=(0 0 0)
010 0 0O
0
0

( 01 O / 2 0
37) a=|0 0 O ) b=10 1)
00 -2 \o 0 0
exhibitsthree solitonswhich interact pairwise by forming ring-shaped bound states. (See
Figure2.)

6.1. Static solutions. To construct static solutions, one must find monad data which
represent bundles admitting alift of the one-parameter group of deformations of TP?, &;,
induced by time translation in R?*1. If such allift exists, the generic triviality and bundle
framing ensure that it is unique. In terms of the monad data, the lift has a representative
g € gl(k) suchthat

(38) [g~ O(]_] =7, [g/ ’7] = 01 gb = 01 ag= 0.
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FIGURE 2: Withy maximally nilpotent, we observe three separated solitons. The energy densities
are plotted for timest = 0,0.25,0.5, 1, 2. The ‘interaction’ is symmetric about t = 0 with two
solitons approaching from the right and forming a ring which devolves into two solitons one
returning to the right and the other meeting a soliton from the left to formaring (at t = .5) which
itself devolves into two solitons scattering to the left as shown.
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In the static case, the topological chargek is also the energy level, and the energy seems
to be bounded below by the sgquare of the uniton number (the nilpotency degree of ).
An example of an energy four solution is

0 -1 0 0 0010
al:(o 0 00 7:(0001
0 0 01 0000
\o 0 0 o0 \o 0 0 o0
(1000 858
(39) a={0 0 0 2 =
oooo) 000
001

whose energy density is plotted in Figure 3.

REMARK. Theillustrations for this paper were all generated using Richard Palais's
3D-filmstrip program, available from
http://rsp.math.brandeis.edu/3D-Filmstrip_html/3D-FilmstripHomePage.html
Thesedataareall included in the program (although other data may be entered). Because
the calculation of the energy densities has been optimised, new exampleswith k < 4 can
be rendered on any Power Macintosh in seconds to minutes. Since these are dynamic
phenomena, the animations provide much better illustrations. Prepared animations of
these and other examples are available from the author’s web page:
http://gauss.univ-brest.fr/"anand

Readerswith accessto Maple may also download a Maple program to generate solutions
in the restricted casethat v is nilpotent.

ACKNOWLEDGMENTS. | am grateful to Richard Palais for creating the 3D-Filmstrip
mathematical visualisation software and helping me incorporate these solutions into it.
Research supported by an NSERC postdoctoral fellowship.

REFERENCES

[An95] C. K. Anand, Uniton Bundles. Comm. Anal. Geom. 3(1995), 371-419.

[An97] , Ward's Solitons. Geom. Topol. 1(1997), 9-20.
http://www.maths.warwick.ac.uk/gt/GTVoll/paper2.abs.html

, A closed formfor unitons. J. Math. Soc. Japan (to appear).
http://gauss.univ-brest.franand

[Do] S. K. Donadson, Instantons and Geometric Invariant Theory. Comm. Math. Phys. 93(1984), 453-460.

[Hi]  N.J. Hitchin, Monopoles and Geodesics. Comm. Math. Phys. 83(1982), 579-602.

[Hu] J. C. Hurtubise, Instantons and Jumping Lines. Comm. Math. Phys. 105(1986), 107-122.

[lo]  T. loannidou, Soliton Solutions and Nontrivial Scattering in an Integrable Chiral Model in (2 + 1)
Dimensions. J. Math. Phys. 37(1996), 3422—-3441.

[OSS] C. Okonek, M. Schneider and H. Spindler, Veector bundlies on complex projective spaces. Birkhauser,
Boston, 1980.

[Su] P M. Sutcliffe, Nontrivial soliton scattering in an integrable chiral model in (2+1)-dimensions. J. Math.
Phys. 33(1992), 2269-2278.

[Wa90] R. S. Ward, Classical Solutions of the Chiral Model, Unitons, and Holomorphic Vector Bundles.
Commun. Math. Phys. 123(1990), 319-332.

[Angs]

https://doi.org/10.4153/CJM-1998-054-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-054-3

WARD’S SOLITONSII: EXACT SOLUTIONS 1137

FIGURE 3: This static solution isabound state of ‘energy’ four. Asaharmonic map, itisa2-uniton
of minimal energy.
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