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On Subcartesian Spaces Leibniz’ Rule
Implies the Chain Rule

Richard Cushman and Jędrzej Śniatycki

Abstract. We show thatderivations of the diòerential structure of a subcartesian space satisfy the chain
rule and havemaximal integral curves.

1 Introduction

he structure of a smoothmanifold is usually described in terms of its complete atlas.
In 1967, Aronszajn [1] applied this description to Hausdorò spaces that are locally
diòeomorphic to arbitrary subsets ofRn ,which he called subcartesian spaces. In 1973,
Walczak [7] showed that that subcartesian spaces of Aronszajn are special cases of
the diòerential spaces introduced by Sikorski [3]. his implied that the geometric
structure of a subcartesian space S can be completely described by its ring of smooth
functions C∞(S).

In recent years, the notions of C∞-ring and C∞-ringed space appeared as part of
Spivak’s deûnition of derivedmanifolds [6]. Joyce [2] developed an alternative theory
of derived diòerential geometry going beyond Spivak’s derivedmanifolds.

he deûnition of derivations of C∞-rings requires them to satisfy chain rule,while
derivations of the diòerential structure C∞(S) of a diòerential space S are deûned
algebraically in terms of Leibniz’s rule. We show that if S is subcartesian, the deriva-
tions of C∞(S) also satisfy the chain rule. his ensures that subcartesian spaces do
not require the additional assumption that their diòerential structures are C∞-rings.
In particular, this justiûes integration of derivations of diòerential structures of sub-
cartesian spaces studied in [5].

2 Differential Spaces

A diòerential structure on a topological space S is a family C∞(S) of real valued func-
tions on S satisfying the following conditions.

(a) he family { f −1(I) ∣ f ∈ C∞(S), and I is an open interval in R} is a sub-basis
for the topology of S.

(b) If f1 , . . . , fn ∈ C∞(S) and F ∈ C∞(Rn), then F( f1 , . . . , fn) ∈ C∞(S).
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Chain Rule on Subcartesian Spaces 349

(c) If f ∶ S → R is a function such that for every x ∈ S there exists anopenneighbour-
hood U of x and a function fx ∈ C∞(S) satisfying fx ∣U = f ∣U , then f ∈ C∞(S).
Here the vertical bar ∣ denotes restriction.

Functions f ∈ C∞(S) are called smooth functions on S. It follows from condi-
tion (i) that smooth functions on S are continuous. Condition (ii) with F( f1 , f2) =
a f1 + b f2, where a, b ∈ R implies that C∞(S) is a vector space. Similarly, taking
F( f1 , f2) = f1 f2, we conclude that C∞(S) is closed under multiplication of functions.
A topological space S endowed with a diòerential structure is called a diòerential
space.

In his original deûnition, Sikorski [4] deûned C∞(S) to be a family of functions
satisfying condition (b). hen he used condition (a) to deûne topology on S. Finally,
he imposed condition (c) as a consistency condition.
Amap φ ∶ R → S is smooth if φ∗ f = f ○φ ∈ C∞(R) for every f ∈ C∞(S). A smooth

map φ between diòerential spaces is a diòeomorphism if it is invertible and its inverse
is smooth.

Proposition 2.1 A smooth map between diòerential spaces is continuous.

Proof See the proof of [5, proposition 2.1.5] ∎

A diòerential space S is subcartesian if its topology is Hausdorò and every point
x ∈ S has a neighbourhood U diòeomorphic to a subset V of Rn . It should be noted
that V in the deûnition above can be an arbitrary subset of Rn , and n can depend
on x ∈ S. As in the theory of manifolds, diòeomorphisms of open subsets of S onto
subsets ofRn are called charts on S. he family of all charts is the complete atlas on S.
Aronszajn [1] used the notion of a complete atlas on aHausdorò topological space in
his deûnition of subcartesian space.

3 Derivations at a Point

Let S be a subcartesian space with diòerential structure C∞(S). A derivation of
C∞(S) at a point x ∈ S is a linear map vx ∶ C∞(S)→ R such that

(3.1) vx( f1 f2) = vx( f1) f2(x) + f1(x)vx( f2)
for every f1 , f2 ∈ C∞(S).

If M is a manifold, then derivations of C∞(M) satisfy the chain rule. In other
words, for every v ∈ TM, f1 , . . . , fk ∈ C∞(M) and F ∈ C∞(Rk),

(3.2) vF( f1 , . . . , fk) = [∂1F( f1 , . . . , fk)(τ(v))]v f1+
⋅ ⋅ ⋅ + [∂kF( f1 , . . . , fk)(τ(v))]v fk ,

where τ ∶ TM → M is the tangent bundle projection map and ∂1 , . . . , ∂k are partial
derivatives in Rk . Our aim in this section is to show that the chain rule is also valid
for derivations of C∞(S), where S is a subcartesian space.

Lemma 3.1 Let v be a derivation of C∞(S) at x ∈ S. For every open neighbourhood
U of x and every f ∈ C∞(S), v f depends only on the restriction of f to U .
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Proof Let f1 , f2 ∈ C∞(S) agree on a neighbourhoodU of x ∈ S. By [5, lemma 2.2.1],
there exists a function h ∈ C∞(S) satisfying h∣V = 1 for some neighbourhood V of x
contained in U , and f∣W = 0 for some open set W in S such that U ∪W = S. hen
h( f1 − f2) = 0, so that v[h( f1 − f2)] = 0. Hence,

0 = v[h( f1 − f2)] = (vh)( f1 − f2)(x) + [v( f1 − f2)]h(x) = v f1 − v f2 ,

because f1(x) = f2(x) and h(x) = 1. his implies v f1 = v f2, as required. ∎

Let φ ∶ S → R be a smooth map between diòerential spaces with diòerential struc-
tures C∞(S) and C∞(R), respectively.

Lemma 3.2 he map φ ∶ S → R assigns to each derivation v of C∞(S) at x ∈ S a
derivation Tφ(v) of C∞(R) at φ(x) ∈ R such that, for every f ∈ C∞(R),
(3.3) Tφ(v) f = v(φ∗ f ).

Proof For every f ∈ C∞(R), φ∗ f = f ○ φ is in C∞(S), and we can evaluate the
derivation v on φ∗ f . Note that, for f1 , f2 ∈ C∞(R) and c1 , c2 ∈ R,

Tφ(v)(c1 f1 + c2 f2) = v(φ∗(c1 f1 + c2 f2) = v(c1φ∗ f1) + v(c2φ∗ f2)
= c1v(φ∗ f1) + c2v(φ∗ f2) = c1(Tφ(v)) f1 + c2(Tφ(v)) f2 .

Hence, f ↦ Tφ(v) f is a linear mapping of C∞(R) into itself. For f1 , f2 ∈ C∞(R),
equation (3.3) yields

Tφ(v)( f1 f2) = v((φ∗ f1)(φ∗ f2)) = v(φ∗ f1)φ∗ f2(x) + φ∗ f1(x)v(φ∗ f2)
= [Tφ(v) f1][ f2(φ(x))] + [ f1(φ(x))][Tφ(v) f2] .

Hence, Tφ(v) is a derivation of C∞(R) at φ(x). ∎

heorem 3.3 For each x in a subcartesian space S, every derivation v of C∞(S) at
x satisies the chain rule. In other words, for every k ∈ N, f1 , . . . , fk ∈ C∞(S) and
F ∈ C∞(Rk),

v[F( f1 , . . . , fk)] = [∂1F( f1 , . . . , fk)(x)]v f1 + ⋅ ⋅ ⋅ + [∂kF( f1 , . . . , fk)(x)]v fk ,

where ∂1 , . . . , ∂k are partial derivatives in Rk .

Proof Since S is subcartesian, there exists a diòeomorphism φ ∶ W → φ(W) ⊆ Rn ,
where W is an open neighbourhood of x in S. Let ιW ∶ W → S be the inclusion
map. For every f ∈ C∞(S), ι∗W f = f ∣W ∈ C∞(W). By Lemma 3.2, v f is completely
determined by f ∣W , and equation (3.3) yields

v f = T ιW(v)(ι∗W f ) = T ιW(v)( f ∣W).
Since φ ∶ W → φ(W) ⊆ Rn is a diòeomorphism, h = (φ−1)∗ f ∣W ∈ C∞(φ(W)) and

(3.4) (T ιW(v)) f∣W = [Tφ(TiW(v))]h.

Let ιφ(W) ∶ φ(W) → Rn be the inclusion map. Since Tφ(TiW(v)) is a derivation
of C∞(φ(W)) at φ(x), T ιφ(W)(Tφ(TiW(v))) is a derivation of C∞(Rn) at φ(x).
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Without loss of generality, we can assume that the function h in equation (3.4) is the
restriction to φ(W) of a function H ∈ C∞(Rn). herefore,

[Tφ(TiW(v))]h = [T ιφ(W)(Tφ(TiW(v)))]H.

Derivations of C∞(Rn) satisfy the chain rule. If H = F(H1 , . . . ,Hk), for some
k ∈ N, H1 , . . . ,Hk ∈ C∞(Rn) and F ∈ C∞(Rk), then equation (3.2) yields

[T ιφ(W)(Tφ(T ιW(v)))]F(H1 , . . . ,Hk) =
[∂1F(H1 , . . . ,Hk)(φ(x))][T ιφ(W)(Tφ(T ιW(v)))]H1+

⋅ ⋅ ⋅ + [∂kF(H1 , . . . ,Hk)(φ(x))][T ιφ(W)(Tφ(T ιW(v)))]Hk .

herefore,

vF( f1 , . . . , fk) = [T ιφ(W)(Tφ(T ιW(v)))]F(H1 , . . . ,Hk)
= [∂1F(H1 , . . . ,Hk)(φ(x))][T ιφ(W)(Tφ(T ιW(v)))]H1+

⋅ ⋅ ⋅ + [∂kF(H1 , . . . ,Hk)(φ(x))][T ιφ(W)(Tφ(T ιW(v)))]Hk ,

where H i ∣φ(W) = (φ−1)∗ f i ∣W for i = 1, . . . , k. ∎

4 The Tangent Bundle

Let TxS be the set of all derivations of C∞(S) at x ∈ S. he set TxS is a real vector
space, which is interpreted to be the tangent space to S at x. Let TS be the union of
tangent spaces to S at each point x of S. In other words,

TS = ⋃
x∈S

TxS

he tangent bundle projection is themap τ ∶ TS → S ∶ v = (x , vx) → x, which assigns
to each derivation vx ∈ TS at x the point x ∈ S. he tangent bundle projection en-
ables us to omit the subscript x in the deûnition of derivation at a point, and rewrite
equation (3.1) in the form

v( f1 f2) = v( f1) f2 + f1v( f2).

Each function f ∈ C∞(S) gives rise to two functions on TS, namely,

τ∗ f ∶ TS Ð→ R ∶ v z→ f (τ(v))

and

d f ∶ TS Ð→ R ∶ v z→ d f (v) = v( f ).

he tangent bundle of a diòerential space S is TS with diòerential structure
C∞(TS) generated by the family of functions {τ∗ f , d f ∣ f ∈ C∞(S)}. his deû-
nition of C∞(TS) ensures that the tangent bundle projection τ ∶ TS → S is smooth.
he derived map of a smooth map φ ∶ S → R is Tφ ∶ TS → TR ∶ v ↦ Tφ(v), where
for every f ∈ C∞(R), [Tφ(v)] f = v(φ∗ f ); see Lemma 3.2. If τS ∶ TS → S and
τR ∶ TR → R are tangent bundle projections, then τR ○ Tφ = φ ○ τR .
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5 Global Derivations

A derivation of C∞(S) is a linear map X ∶ C∞(S) → C∞(S) ∶ f ↦ X( f ) satisfying
Leibniz’s rule

X( f1 f2) = X( f1) f2 + f1X( f2)
for every f1 , f2 ∈ C∞(S). LetDerC∞(S) be the space of derivations of C∞(S). It has
the structure of a Lie algebra with the Lie bracket [X1 , X2] deûned by

[X1 , X2]( f ) = X1(X2( f )) − X2(X1( f ))
for every X1 , X2 ∈ DerC∞(S) and f ∈ C∞(S). Moreover, DerC∞(S) is a module
over the ring C∞(S) and

[ f1X1 , f2X2] = f1 f2[X1 , X2] + f1X1( f2)X2 − f2X2( f1)X1

for every X1 , X2 ∈ DerC∞(S) and f1 , f2 ∈ C∞(S). If X is a derivation of C∞(S), then
for every x ∈ S, we have a derivation X(x) of C∞(S) at x given by

(5.1) X(x) ∶ C∞(S)Ð→ R ∶ f z→ X(x) f = (X f )(x).
he derivation X(x) (5.1) is called the value of X at x. Clearly, the derivation X is
uniquely determined by the collection {X(x) ∣ x ∈ S} of its values at all points of
S. In order to avoid confusion between a derivation of C∞(S) and a derivation of
C∞(S) at a point in S, we o�en refer to the former as a global derivation of C∞(S).

heorem 5.1 Let S be a diòerential subspace ofRn and let X be a derivation of C∞(S).
For each x ∈ S ⊆ Rn , there exists a neighbourhood U of x in Rn and a vector ûeld Y on
Rn such that

X(F∣S)∣U∩S = (Y(F))∣U∩S

for every F ∈ C∞(Rn).

Proof Let Z be a derivation of C∞(S) at x ∈ S ⊆ Rn . For each F ∈ C∞(Rn), the
restriction F∣S of F to S is in C∞(S). It is easy to see that themap C∞(Rn)→ R ∶ F ↦
Z(F∣S) is a derivation at x of C∞(Rn).

We denote the natural coordinate functions on Rn by x 1 , . . . , xn ∶ Rn → R. Every
derivation Y of C∞(Rn) is of the form∑n

i=1 F i ∂
∂x i , where F i = Y(x i) for i = 1, . . . , n.

Let X be a derivation of C∞(S) and F ∈ C∞(Rn). For each x ∈ S, the derivation
X(x) of C∞(S) at x gives a derivation of C∞(Rn) at x. Hence,

X(F∣S)(x) = X(x)(F∣S) =
n

∑
i=1

∂F
∂x i (x)(X(x)(x i ∣S))

=
n

∑
i=1

∂F
∂x i (x)(X(x i ∣S))(x) = (

n

∑
i=1

X(x i ∣S)
∂F
∂x i )(x)

for every x ∈ S. For i = 1, . . . , n, the coeõcients X(x i ∣S) are in C∞(S). Since S is
a diòerential subspace of Rn , for each x ∈ S, there exists a neighbourhood U of x
in Rn and functions F 1 , . . . , Fn ∈ C∞(Rn) such that X(x i ∣S)∣U∩S = F i ∣U∩S for each
i = 1, . . . , n. Hence,

X(F∣S)∣U∩S = (
n

∑
i=1
F i ∂F

∂x i ) ∣U∩S
.
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Since F 1 , . . . , Fn are smooth functions onRn , it follows that Y = ∑n
i=1 F i ∂

∂x i is a vector
ûeld on Rn . ∎

We can rephraseheorem 5.1 by saying that every derivation on a diòerential sub-
space S ofRn can be locally extended to a vector ûeld onRn . Suppose that S is closed.
In this case,we can use a partition of unity onRn to extend every derivation ofC∞(S)
to a global vector ûeld onRn . A section of the tangent bundle projection τ ∶ TS → S is
a smoothmap ξ ∶ S → TS such that τ○ ξ = idS . Let S∞(TS) be the space of sections of
the tangent bundle projection τ ∶ TS → S. Since the diòerential structure C∞(TS) is
generated by the collection of functions {τ∗ f , d f ∣ f ∈ C∞(S)}, it follows that a sec-
tion ξ ∶ S → TS has to satisfy the conditions that ξ∗(τ∗ f ) and ξ∗(d f ) are in C∞(S)
for every f ∈ C∞(S). he ûrst condition holds automatically, because

ξ∗(τ∗ f ) = (τ∗ f ) ○ ξ = f ○ τ ○ ξ = f ○ ○ idS = f .
On the other hand, for x ∈ S,

(5.2) (ξ∗(d f ))(x) = ((d f ) ○ ξ)(x) = ⟨d f ∣ ξ(x)⟩ = ξ(x) f .

Proposition 5.2 Every global derivation X of C∞(S) deûnes a section

(5.3) X ∶ S Ð→ TS ∶ x z→ X(x),
where X(x) f = (X f )(x) for every f ∈ C∞(S) and every x ∈ S.

Proof he section X ∶ S → TS, deûned by equation (5.3), satisûes equation (5.2), be-
cause X∗(d f ) = X( f ) ∈ DerC∞(S) by deûnition of a global derivation. Conversely,
if ξ ∶ S → TS is a section, then equation (5.2) implies that ξ( f ) = ξ∗(d f ) ∈ DerC∞(S)
for every f ∈ C∞(S). Hence, ξ ∶ f ↦ ξ( f ) is a global derivation of C∞(S). ∎

Equation (5.3) gives a bijection between the space S∞(TS) of sections of the tan-
gent bundle projection and the space DerC∞(S). Hence, Proposition 5.2 leads to
identiûcation of global derivations of C∞(S) with the corresponding sections of the
tangent bundle.

Let c ∶ I → S be a smooth map of an interval I in R containing 0 to a diòerential
space S. We say that c is an integral curve of a derivation X of C∞(S) starting at x0 ∈ S
if x0 = c(0) and

(5.4)
d
dt
f (c(t)) = X( f )(c(t))

for every f ∈ C∞(S) and every t ∈ I. In other words, c ∶ I → S is an integral curve of
X if Tc(t) = X ○ c(t) for every t ∈ I.

Integral curves of a given derivation X of C∞(S) can be ordered by inclusion of
their domains. In other words, if c1 ∶ I1 → S and c2 ∶ I2 → S are two integral curves
of X and I1 ⊆ I2, then c1 ⪯ c2. An integral curve c1 ∶ I → S of X is maximal if c1 ⪯ c2
implies that c1 = c2.

Example Let Q be the set of rational numbers in R. hen C∞(Q) consists of re-
strictions to Q of smooth functions on R. SinceQ is dense in R, it follows that every
function f ∈ C∞(Q) extends to a unique smooth function on R and every deriva-
tion of C∞(R) induces a derivation of C∞(Q). Let X be the derivation of C∞(Q)
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induced by the derivative d
dx on C∞(R). In other words, for every f ∈ C∞(Q) and

every x0 ∈ Q,

(X f )(x0) = lim
x→x0

f (x) − f (x0)
x − x0

,

where the limit is taken over x ∈ Q. On the other hand, no two distinct points in Q
can be connected by a continuous curve.

Deûnition Let τ ∶ TS → S be the tangent bundle projection. Let X be a derivation
of the diòerential structure C∞(S) of a subcartesian space S. Let x0 be a point in S
and let I be an interval in R containing 0 ∈ R or I = {0}. A li�ed integral curve of X
starting at x0 is amap γ ∶ I → TS such that γ(0) = X(x0) and

d
dt
f (τ(γ(t))) = X( f )(τ(γ(t)))

for every f ∈ C∞(S) and t ∈ I, if I ≠ {0}.
If I ≠ {0}, then setting c = τ ○ γ, we recover the deûnition for an integral curve of

a derivation given in equation (5.4). If I = {0}, then γ is a li�ed integral curve of X
starting at x0, because γ(0) = X(c(0)) = X(x0). Our extension of this deûnition to
subcartesian spaces requires li�ing the curve c ∶ I → S to the tangent bundle leading
to γ ∶ I → TS, in order to make sense of the condition γ(0) = X(c(0)).

heorem 5.3 Let S be a subcartesian space and let X be a derivation of C∞(S). For
every x ∈ S, there exists a uniquemaximal li�ed integral curve γx of X starting at x.

Proof
(i) Local existence. For x ∈ S, let φ be a diòeomorphism of a neighbourhood V of x
in S onto a diòerential subspace R of Rn . Let Z = φ∗X∣V be a derivation of C∞(R)
obtained by pushing forward the restriction of X to V by φ. In other words,

Z( f ) ○ φ = X∣V( f ○ φ)

for all f ∈ C∞(R). Without loss of generality,we can assume that there is an extension
of Z to a vector ûeld Y on Rn .

Let z = φ(x) and let c0 be a standard integral curve in Rn of the vector ûeld Y
such that c0(0) = z. Let Ix be the connected component of c−1

0 (R) containing 0
and let c ∶ Ix → R be the curve in R obtained by the restriction of c0 to Ix . Clearly,
c(0) = z.
First, we consider the case when Ix = {0}, which means that there exists an open

neighbourhood U0 of z such that c0 intersects R ∩ U only at z. In this case, we can
consider another extension of Z to a vector ûeld onRn . If Ix = {0} for every extension
Y of Z to a vector ûeld on Rn , then the map γ ∶ {0} → TR ∶ 0 ↦ Z(z) is a maximal
li�ed integral curve of the vector ûeld Z on R that starts at z. Since V is an open
neighboyrhood of x in S and φ ∶ V → R ⊆ Rn is a diòeomorphism, Z = φ∗X and
z = φ(x), it follows that the map T(ιV ○ φ−1) ○ γ ∶ {0} → TS ∶ 0 ↦ TS is a maximal
li�ed integral curve of X starting at x. Here, ιV ∶ V → S is the inclusion map.
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Suppose now that Ix ≠ {0}. For each t0 ∈ Ix and each f ∈ C∞(R), there exists a
neighbourhood U of c(t0) in R and a function F ∈ C∞(Rn) such that f ∣U = F∣U and

d
dt t=t0

f (c(t)) = d
dt t=t0

F(c(t)) = Y(F)(c(t0))Y(F)∣U(c(t0)) = Z( f )(c(t0)) .

Since Ix ≠ {0} is a connected subset of R containing 0, it is an interval. So cx = φ−1 ○
c ∶ Ix → V ⊆ S satisûes cx(0) = φ−1(c(0)) = φ−1(z) = x. Moreover, for every t ∈ Ix
and h ∈ C∞(S), we get f = h ○ φ−1 ∈ C∞(R) and

d
dt

h(cx(t)) = d
dt

h(φ−1(c(t))) = d
dt

(h ○ φ−1)(c(t)) = d
dt
f (c(t))

= Z( f )(c(t)) = Z(h ○ φ−1)(φ ○ cx(t)) = X(h)(cx(t)) .
his implies that the map γx ∶ Ix → TS ∶ t ↦ X(cx(t)) is a li�ed integral curve of X
starting at x if Ix ≠ {0}. It is also an integral curve of X starting at x when Ix = {0},
because γx(0) = X(x).
(ii) Smoothness. From the theory of diòerential equations it follows that the integral
curve c0 inRn of a smooth vector ûeld Y is smooth. Hence, c = c0∣Ix is smooth. Since
φ is a diòeomorphism of a neighbourhood of x in S to R, its inverse φ−1 is smooth
and the composition cx = φ−1 ○ c is smooth. Since X is a derivation, it gives rise to a
smooth section X ∶ S → TS of the tangent bundle projection τ ∶ TS → S. Moreover,
the composition γx = X ○ cx is smooth.
(iii) Local uniqueness.his follows from the local uniqueness of solutions of ûrst order
diòerential equations in Rn .
(iv) Maximality. Suppose that p ≤ 0 ≤ q are the ends of the domain Ix of the integral
curve cx of X starting at x obtained in section (i). If p = q = 0 and γx = X○cx cannot be
extended to a larger interval, then γx is maximal. If q > 0 and q =∞ or limt↗q cx(t)
does not exist, then the curve cx does not extend beyond q. If x1 = limt↗q cx(t)
exists, then x1 is unique, since the topology of S is Hausdorò. We can repeat the
construction of section (i) by starting at the point x1. In thisway,we obtain an integral
curve c1x1 ∶ I1 → S of X starting at x1. Let Ĩ1 = I ∪ {t = q + s ∈ R ∣ s ∈ I1 ∩ [0,∞)} and
let c̃1 ∶ Ĩ1 → S be given by c̃1(t) = cx(t) if t ∈ I and c̃1(t) = c1x1(t − q) if t ∈ {q + s ∈ R ∣
s ∈ I1∩[0,∞)}. Clearly, the curve c̃1 is continuous. Since x1 = limt↗q cx(t), it follows
that the le� end p1 of I1 is strictly less than zero. Hence, the restriction of the curve
cx to the interval (max(p, p1)+ q, q) diòers from the restriction of c1x1 to the interval
(max(p, p1), 0) by the reparametrization t ↦ t − q. Since the curves cx and c1x1 are
smooth, it follows that the curve c̃1 is smooth. Let q1 be the right end of the interval
I1. If q1 ∈ I and either q1 =∞ or limt↗q1 c

1
x(t) does not exist, then the curve curve c̃1

does not extend beyond q1. Otherwise, we can extend c̃1 by an integral curve c2 of X
through x2 = limt↗q1 c̃1(t). Continuing this process, we obtain amaximal extension
for t ≥ 0. In a similar way we can construct amaximal extension for t ≤ 0.
(v) Global uniqueness. Let c ∶ I → S and c′ ∶ I′ → S be maximal integral curves of X
starting at x. Let T+ = {t ∈ I ∩ I′ ∣ t > 0 and c(t) ≠ c′(t)}. Suppose that T+ ≠ ∅.
Since T+ is bounded from below by 0, there is a greatest lower bound ℓ of T+. his
implies that c(t) = c′(t) for every 0 ≤ t ≤ ℓ and for every ε > 0 there is a tε with
ℓ < tε < ℓ + ε such that c(tε) ≠ c′(t). Let xℓ = c(ℓ) = c′(ℓ) and let cℓ ∶ Iℓ → S be an
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integral curve of X starting at xℓ as constructed in i). Let qℓ be the right end of Iℓ . If
qℓ > 0, the local uniqueness of integral curves implies that c(t) = c′(t) = cℓ(t − ℓ)
for all ℓ ≤ t ≤ ℓ+ qℓ . his contradicts the fact that ℓ is the greatest lower bound of T+.
If qℓ = 0, then there is no extension of cℓ . Let q and q′ be the right end of I and I′,
respectively. Since c and c′ aremaximal integral curves of X, it follows that q = q′ = ℓ.
Hence, the set T+ is empty, which is a contradiction. A similar argument shows that
T− = {t ∈ I ∩ I′ ∣ t < 0 and c(t) ≠ c′(t)} = ∅. herefore, c(t) = c′(t) for all t ∈ I ∩ I′.
If I ≠ I′, then this contradicts the fact that c and c′ are maximal. Hence, I = I′ and
c = c′. ∎

6 Vector Fields

Vector ûelds on amanifoldM are not only derivations of C∞(M), but they also gen-
erate local one-parameter groups of local diòeomorphisms of M . On a subcartesian
space S, not all derivations of C∞(S) generate local one-parameter groups of local
diòeomorphisms of S; see [5, example 3.2.7, p. 37]. We reserve the term vector ûeld
for derivations of C∞(S) that generate local one-parameter groups of local diòeo-
morphisms of S. More formally, we adopt the following deûnition. A vector ûeld on a
subcartesian space S is a derivation X ofC∞(S) such that for every x0 ∈ S , there exists
a neighbourhood Ux0 of x0 ∈ S and εx0 > 0 such that, for every x ∈ Ux0 , the interval
(−εx0 , εx0) is contained in the domain Ix of the li�ed integral curve γx ∶ Ix → TS of
X and themap

etX ∶ Ux0 Ð→ S ∶ x z→ etX(x) = τ ○ γx(t)
is deûned for every t ∈ (−εx0 , εx0) and is a diòeomorphismofUx0 onto an open subset
etX(Ux0) of S.

Note that if X is a vector ûeld on S, for every x ∈ S, the map cx ∶ Ix → S ∶ t →
etX(x) is an integral curve of S satisfying equation (5.4).1 herefore, if we were only
interested in vector ûelds on S, we could use the deûnition of integral curves given
by equation (5.4). We have introduced the notion of li�ed integral curves to obtain
heorem 5.3, which ensures the existence and uniquenness ofmaximal li�ed integral
curves of derivations of C∞(S). heorem 5.3 replaces [5, theorem 3.2.1], which is
incorrect. Our discussion shows that proofs of all results in [5] regarding vector ûelds
on subcartesian spaces are not aòected by errors in theorem 3.2.1. In particular, all
results in [5, section 3.4 and chapter 4] are valid.

Acknowledgements he authors would like to thank Larry Bates and Eugene
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