
Canad. Math. Bull. Vol. 37 (2), 1994 pp. 145-153 

PROJECTIVE ORTHOMODULAR LATTICES 

GUNTER BRUNS AND MICHAEL RODDY 

ABSTRACT. We introduce sectional projectivity, which appears to be the correct 
notion of projectivity when working with orthomodularlattices. We prove some positive 
results for varieties of OMLs satisfying various finiteness conditions, namely that every 
finite OML in such a variety is sectionally projective. In contrast, we prove that the 
eight element modular ortholattice, MO 3, is not projective in the variety of modular 
ortholattices. 

1. Introduction. An algebra P is said to be projective in some class k to which 
it belongs if for every homomorphism a:P i—> B G k and every onto homomorphism 
f3: C i—-> B, C G k, there exists a homomorphism 7: P —̂> C such that f3 o 7 = a. If 
k is a nondegenerate variety, more generally: if k has enough free algebras, then this 
is equivalent with the condition that P is a retract of every algebra of which it is a 
homomorphic image. Explicitly, if A G k and <j>:A H-> P is an onto homomorphism then 
there exists a homomorphism ip-.P \—*A such that </> o \p = id/>. Since we are only dealing 
with varieties we will take this last property as the definition of projectivity. 

In this paper we start investigating projectivity in varieties of orthomodular lattices. 
In the first section we show that the well known result that every at most countable 
Boolean algebra is projective in the class of all Boolean algebras extends to the class of 
all orthomodular lattices. We found it convenient to weaken the concept of projective to 
s-projective. In Section 2 we examine the relationship between these two concepts and 
study their behaviour under the formation of products and factors. In Section 3 we show 
that every finite orthomodular lattice is ^-projective in every variety satisfying certain 
finiteness conditions, in particular every finite orthomodular lattice is s-projective in the 
variety it generates. In the final section we prove that MO 3 is not ^-projective in the 
variety of all modular ortholattices. Here we make use of an example constructed in [4], 
and thus indirectly of an analogous result for modular lattices [5]. 

Throughout the paper we abbreviate ortholattice as OL, orthomodular lattice as OML 
and modular ortholattice as MOL. 

2. Projective Boolean algebras. For an element a of an OML L we define a0 = a 
and a1 = a1. 

LEMMA 2.1. Let L be an OML, B an at most countable Boolean algebra andcj): L\—> B 
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146 G. BRUNS AND M. RODDY 

a homomorphism onto B. Then there is a Boolean subalgebra C ofL such that (f>(C) = B. 

PROOF. Let &o, b\,... be the elements of B. For every n choose an G L such that 
<j>(an) = bn and define recursively elements cn by Co = <?o and cn = f\{an V \J"~0

l cfl) \ 
a: {0 , . . . , n - 1} h-> {0,1}} for n > 1. Since for m < w, either cm < an V V?^1 c?(° 
or <4 < an V Vïo1 cf(/), any two of the cn commute and hence the subalgebra C of 
L generated by the cn is Boolean, see [8] pages 38, 39. We show by induction on n 
that <t>(cn) - bn which obviously proves the claim. Clearly (/>(co) = ^o- For n > 1 
by inductive hypothesis: </>(cn) = A{bn V V ^ 1 bf° \ a: {0 , . . . , n - 1} i-> {0, 1}} = 
bn V A{ V S 1 ^ | a: {0 , . . . , n - 1} ̂  {0, 1}} = ftn V VSk*/ A fej) = ̂ , completing 
the proof. 

It is well known, see [6], that every at most countable Boolean algebra is projective 
in the variety of Boolean algebras. This with Lemma 2.1 gives, 

THEOREM 2.2. Every nondegenerate, at most countable Boolean algebra is projective 
in every nondegenerate variety ofOMLs. 

Lemma 2.1 and Theorem 2.2 were obtained in collaboration with R. Greechie. We 
are sure that these simple results were also known elsewhere. 

3. General results. We say that an OML L is sectionally projective, or s-projective, 
in a class k of OMLs to which it belongs iff for every M £k and every homomorphism 
<j>: M i—> L onto L, there exists u G M and a homomorphism X)J:L\—> [0, w], where [0, u] 
is equipped with the usual orthocomplementation inherited from L, such that (f> o xj; = id/,. 

Clearly every OMLL which is projective in some class k is s-projective in k, but the 
converse is not true. A trivial example of this is the one-element OML. A more relevant 
example is the smallest non-Boolean OML, MO 2, cf. Figure 1, as we will show. 

0 

FIGURE 1:M02 

PROPOSITION 3.1. An OML L is projective in a non-degenerate variety k of OMLs iff 
it is s-projective in k and contains a non-degenerate Boolean homomorphic image (or, 
equivalent^ it contains a prime ideal). 
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PROOF. If L is projective it is clearly ^-projective and there exists a homomorphism 
< ^ : L M 2 X L such that pr2 o0 = id/,. Then prj o0 is a homomorphism of L onto 2. 
Assume conversely that L is s-projective and contains a prime ideal P. Let <j>: M i—» L 
be an onto homomorphism. By assumption, there exist u G M and a homomorphism 
0: L i—>• [0, w] such that (/> o x/j = id/,. Define a map a: L i—> M by a(a) = -0(a) if a G F 
and «(a) = u' V 0(a) if a fi P. It is easily checked that a is a homomorphism and that 
0 o a = id/,. Thus L is projective in &. 

PROPOSITION 3.2. TfLi x L2 w s-projective in a variety k ofOMLs then L\ and L2 

are s-projective in k. 

PROOF. We show that L2 is s-projective. Let 0: M i—> L2 be a homomorphism onto 
L2. Define an onto homomorphism a:L\ x M i—> Li x L2 by a(x,y) = (JC, 0(y)), i.e. 

a = id/,, x0. Since L\ x L2 is ^-projective there exist u G L\ x M and a homomorphism 
/?: LxxL2^ [0, M] such that ao/3 = id^xz^ Since (0,1) = a(/?(0, l)),/3(0,1) = (0, v)for 
some v e M. Let 7 = /?| {O}XL2- Then 7 is a homomorphism of {0} x L2 into [(0,0), (0, v)]. 
Define 0:L2 •—> [0, v] by 0(y) = pr2(7(0,y)). Then 0 is obviously a homomorphism. 
Since 0 o pr2 = pr2 oa we obtain for every y G L2, 0(0(y)) = 0(pr2(/#(O?};))) = 
pr2(0, y) = y, i.e. </> o ijj = idL2, proving the claim. 

PROPOSITION 3.3. TfLi andL2 are s-projective in a variety k ofOMLs then L\ x L2 

is s-projective in k. 

PROOF. Let 0: M 1—+ L\ x L2 be an onto homomorphism. There exists an element 
c G M such that 0(c) = (1,0) and hence 0(c') = (0,1). Let <j>\ be the restriction of 0 
to [0,c] and let 02 be the restriction of 0 to [0,cf]. Then <j>\: [0, c] 1—>• L\ x {0} and 
02: [0, c'] H—> {0} x L2 are onto homomorphisms. By assumption there exist elements 
u < c and v < c' and homomorphisms %l)\:L\ x {0} \—-> [0, w] and ^2' {0} x L2 1—-» [0, v] 
such that 0i o 0! = idLiX{0| and 02 ° 02 = id{0}xL2. Define 0: L\ x L2 \—• [0, «Vv] 
by 0(x,y) = 0i (x, 0) V t/>2(0,y). Clearly i/; preserves V. To prove that it preserves 
orthocomplementation note first that -01 (A:, 0) < u < c < v' < 02(0, y)' and hence 
any two of -0I(JC, 0), w, v, 02(0, y) commute. Thus, 0((x,y)/) = \j)(x!,y') = 0i(.x/, 0) V 
02(O, y') = (u A 0i(JC, 0)') V (v A 02(O, y)') = (u V v) A (v V ^i(x, 0)') A (11 V 02(O, y)') A 

(0!(x, 0)' V 02(O, y)') = (u V v) A 0j(x, 0)' A ^2(0, y)' = (u V v) A (0i (*, 0) V 02(O, y))' = 
(vVv) A0(x, y)', which is the orthocomplement of ̂ (w, V) in [O.w V v]. Finally, 0(0(x, y)) = 
0(0i (*,0)V 02(O, y)) = 0i(^i(x,O)) V02(02(O,y)) = (x, 0) V (0, y) = (*, y), completing 
the proof. 

These basic results have some interesting consequences. 

COROLLARY 3.4. An OMLL is s-projective in a non-degenerate variety k ofOMLs 
iff! x L is projective in k. 
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PROOF. If L is ^-projective in k then 2 x L is s-projective by Proposition 3.3 and 
Theorem 2.2. Since it has a non-degenerate Boolean homomorphic image it is projec­
tive by Proposition 3.1. Conversely, if 2 x L is projective then L is ^-projective by 
Proposition 3.2. 

It is an easy exercise to show that MO 2 is ^-projective in the variety of all OMLs. It 
is not projective by Proposition 3.1. Thus, 

COROLLARY 3.5. MO 2 is s-projective in the variety of all OMLs but is not a projective 
OML. It even fails to be projective in the variety it generates. 

COROLLARY 3.6. IfB is a non-degenerate Boolean algebra, L an OML and ifB x L 
is s-projective in a variety k then B is projective in k. 

PROOF. This is a consequence of Propositions 3.1 and 3.2. 

It is not true that a non-Boolean factor of a projective OML is projective, 2 x MO 2 
is a counter-example by Corollaries 3.4 and 3.5. 

COROLLARY 3.7. lfL\ is projective and Li is s-projective in a variety k of OMLs then 
L\ x L2 is projective in k. 

PROOF. We may assume that k is non-degenerate. L\ x L2 is ^-projective by Propo­
sition 3.3. Since L\ has a non-degenerate Boolean homomorphic image, the same is true 
for L\ x L2 and the claim follows from Proposition 3.1. 

A generalized OML is an algebra (L; V, A, *, 0) of type (2, 2, 2,0) where, in particular, 
(L; V, A, 0) is a lattice with 0 and a * b computes an orthocomplement of a A b in the 
interval [0, b]. These algebras correspond exactly to ideals in OMLs and have been 
studied extensively in [1], and papers cited therein. In much the same way that some 
people study rings without unit so that ideals become subrings, the ideals of a generalized 
OML are still generalized OMLs. It is easy to see that there is an isomorphism between 
the lattice of varieties of generalized OMLs and the lattice of varieties of OMLs. It 
is perhaps worth observing also that s-projectivity in OMLs corresponds exactly to 
projectivity in generalized OMLs. 

4. Finiteness conditions. The following is a slight reformulation of Proposition 6 
of [2]. 

PROPOSITION 4.1. Let L be an irreducible OML having exactly n elements a\,..., an. 
Then there exists an OL polynomial q in n variables satisfying: 

l.Ifb\,...,bn are elements of any OML and b[ = bjfor any distinct indices ij then 
q(bu...,bn) = 0. 

2. Ifb\,.. .,bn are elements of any OML M and ifq(b\,..., bn) = 1 then at 1—> b( is 
an Oh-embedding ofL into M. 

3. Ifb\,...,bn G L and if at 1—> b[ is an automorphism of L then q(b\,..., bn) = 1 
and q(b\,..., bn) = 0 otherwise. 
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LEMMA 4.2. Let (Lk)keK be a family of OMLs of height at most m, let M be a 
subalgebra ofUk(EK Lk

 and let <j>:M \—> L be a homomorphism onto a finite, irreducible 
OMLL. Then there exists u G M and a homomorphism X/J:L\—• [0, u] such that <j> o 0 = 
idL. 

PROOF. Let a\,..., an be the elements of L and q the polynomial of Lemma 4.1. 
Let a: L \—+ M be a map (not necessarily a homomorphism) such that <j> o a = id/,. In 
the following it is crucial in which algebra the polynomial q is applied. We add this in 
parentheses where it is not obvious. Define recursively elements wo, wi, . . . of M by: 

u0 = q(a(ai),..., a(anj) (q applied in M) 

Ui+\ = q(ut A a (a i ) , . . . , U{ A oc(an)) (q applied in the interval [0, u{\ of M) 

Clearly ui+\ < ut holds for every /. We show by induction on / that </>(«;) = 1 holds for 
every /. 

</>(wo) = (t>\q(ct(ax),.. .,a(a„))J = q\^>(a(ai)),..., </>(a(anj)) = q(au .. ,,an) = 1. 

Assume now that, for some /, pr̂ (w/) = prk(ui+\). Then, 

pr̂ Oz+2) = prk(q(ui+i A a (a i ) , . . . , ui+\ A a(a„)) (<? applied in [0, ui+i]) 

= q[prk(ui+i) A pr^(a(ai)), . . . , prk(ui+i) A prk(a(an))j (in [0, prfc(ii,-+i)]) 

= q[prk(ui) A pr^(a(ai)), . . . , pr̂ i*,-) A prk(a(an))j (in [0, pr^w,-)]) 

= prk(q(ui A a(fli), . . . , ut A a(a„))J (in [0, i*/]) 

= prk(ui+i). 

Since every chain in any Lk has at most m + 1 elements it follows that wm+i = um. 

Define IJJ:L i—» [0, wm] by -0(0/) = um A a(a;). Then, in [0, ww], q(^){a\),..., -0(a„)) = 
<?(wm A a (a i ) , . . . , um A a(a„)) = wm+i = um ( the unit of [0, um]). It follows from 
Proposition 4.1 that x/; is an OL embedding of L into [0, um]. For every ay. (f>(^(aj)^ = 
</>(wm A a(tf/)) = </>(wm) A </>(a(o/)) = a/, thus (/> o 0 = idL, proving the lemma. 

THEOREM 4.3. //"A variety k ofOMLs is generated by OMLs of height at most m or 
if every finitely generated member ofk has finite height then every finite member ofk is 
s-projective in k. 

PROOF. By Proposition 3.3 it is enough to show that every finite irreducible member 
L of k is s-projective in k. Let </>: M \—* L be a homomorphism of M E k onto L. By 
Birkhoff's subdirect representation Theorem we may assume that M is a subalgebra of 
a product UkeK Lk of subdirectly irreducibles. If k is generated by OMLs of height less 
than or equal to m then, by Jonsson, every Lk has height less than or equal to m and 
the claim follows directly from our Lemma 4.2. If every finitely generated member of 
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k has finite height and if the &-free algebra generated by an /^-element set has height m 
then obviously every «-generated member of k has height at most m. Assume now that 
L has n elements. Choose a subset S of M the elements of which are, via (/>, in a one-one 
correspondence with the elements of L. Let N be the subalgebra of M generated by S and 
let L'k be the subalgebra of Lk generated by prk(S). Then every L'k has height at most ra, 
N is a subalgebra of UkeK L[ and the restriction of (/> to A maps N onto L. We thus again 
are in a position where our Lemma 4.2 applies, completing the proof of the theorem. 

As an obvious consequence of this we obtain 

COROLLARY 4.4. Every finite OML is s-projective in the variety it generates. 

5. MO 3 is not ^-projective. 

LEMMA 5.1. Assume thatx, y, z are elements of an MOL, L which generate MO 3 in 
the interval [0, u], that u < v and that v f\u' = p\l q - q\l r - q\l r, where p, q, r are 
atoms, no two of which commute. Define a-x\lp, b -y\l q and c — z^r. Then a, b, c 
generate MO 3 in [0, v]. 

PROOF. Since x, y, z < u < / / , qf, r1 each of x, y, z commutes with each of/?, q, r. Let# 

be theorthocomplementationin [0, v].ThenaAfr = (JCVp) A(yVq) < (JCVp) A(yVpVq) = 
pV(xA(yWpyq)) = pV(xAy)V(xA(pVq)) < pV(uA(p\/q)) = p. By symmetry, a A b < q 
andthusflAZ? = 0. Furthermore, a Ab# = (x\/p)Ay'Aq' = ((xAy')V(pAy'))Aqf =pAq' = 0. 
a n d a # A ^ = x / A / 7 / A y A ^ / A v = j c / A y A v A ( v / V w ) = i / A y A M = 0. The rest 
follows by symmetry. 

For elements a, b of a modular lattice we define a <n b to mean that a < b and every 
maximal chain in the interval [a, b] has exactly n+1 elements. We define a <n b to mean 
that a < b and that every chain in [a, b] has at most n + 1 elements. For intervals [a, b], 
[c, d] in a lattice we define, as usual, [«, b] /* [c, d], or equivalently, [c, d] \ [a, &] to 
mean thatbV c = dandb Ac = a. 

LEMMA 5.2. If in a modular lattice, x <k y, u </ v and y A v = 0 thenx\l u <£+/ y V v. 

PROOF. It is easily checked that [JC, y] / [x V w, y V w] and [w, v] y [y V w, y V v], 
which gives the claim. 

In a modular lattice L we define a congruence relation = by a = b iff the interval 
[a A Z?, a V Z?] has finite height. If L is complemented then this congruence relation 
corresponds to the p-ideal of all elements of finite height. For elements a, b, c, d, T of a 
lattice L define A(a, fr, c, J, 7) to mean that aVb = aVc = aVd = bVd = cVd=T, 
aAb = aAc = a Ad = bAc = b Ad = cAd = 0, and b Vc <i T. We define M(a, b, c, d, T) 
to mean the same except we replace the last condition with b\/ c = T. 

LEMMA 5.3. In a bounded modular lattice, A(<2, /?, c, J, T), M(a, /?, 7,6, r) , T <\ 1, 
T <i I, fl < b, a = a, b = f3, c = 1, d = 6 is impossible. 
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PROOF. Define &, l,m,n,p,qby: a Aa <k a,a Aa <t a, c Al <m c, c A 7 <n 7, 
d A ë <p d, d A 6 <q 6. The following transpositions are easily checked. 

(1) [aAa, a] / [ft V(aAa), T]\ [iV(aAa), ft Va] \ [(èAa)V(aAa), a] Ç [aAa, a] , 
(2) [cA7,c] / " [ftV(cA7),ftVc];[ftV(cA7),ftV7] \ [(ftA7)V(cA7),7] Ç [cA7,7], 
(3) [dA«,d]/ ,[^V(dA«),ri;[feV(dA«),feV«]\[(^A«)V(dA6),«] Ç [dA«,«]. 

Since, aAd=aA8=cAd=lA8=Owe obtain from Lemma 5.2: 
(4) (flAa)V (dAS) <k+p a V d; (a A a) V (d A 6) <i+q aV« , 
(5) (c A1)V (d Aè)<m+P cV d;(c A1)V (d Aè) <n+ql V è. 

Assume now first that ft £ T. Then T <i l ,f tV7 > /3V7 = T,ft V<S >/3V£ = r a n d 
hence ft V7 = ftV<5 = 1. From (2) and (3) we obtain m < «and/? < q, andm+p < n + q. 
From (5) we get m + p = n + q, again a contradiction. 

This with (5) gives m+p>n + q>m+p,a. contradiction. 
We next deal with the case b < T and T <i 1. Then ftV7 = ftV<5 = r and from (2) 

and (3) we obtain m <n and p <q. This with (5) gives n + q <m+p+ I <n + q+l, 
hence n = m+l and /? = q. From (2) we now obtain that r = b V 7 <i 1 and with (5) we 
gctm+p = n + q = m+p + l, again a contradiction. 

The third case we deal with is T = T = 1. Here (2), (3) and (5) yield m < n, p < q 
and n + q = m+p, which is also impossible. The only remaining case is b < T < 1 = T. 
In this case (2), (3) and (5) give m<n,p<q+\ and n + q-m+p — 1 <n + q. Thus, 
/? = g + 1 and m = n. With (3) this gives, b A8 <dA6 and hence ft A<S = 0. We thus have 
/3 < ft, ftA<5 = /3A<5 = OandftV<5 = /?V<5 = rand hence ft = /3. We apply (1) to obtain 
l-k—\. This with (4) gives l + q = k+p— 1 = / + l + g + l — 1, again a contradiction, 
proving the lemma. 

For elements JC, y of a modular lattice we define x Q y to mean JC = y, x A y <m x, 
x A y <n y and m < n. 

LEMMA 5.4. In a modularOL assume A(a, ft, c, d, 1), M(a, /?, 7, <5, T), r <i 1, ft = a', 

(3 = a' AT, a = a, b = (3, c EE 7, d = 8 and f3 £ b. Define, ax = ft, bx = a A (ft V c), 
ci = dA(ft Vc), di = c, T= ft V c. ThenA(aubucuduT), T <i 1, M(/3, a, <5,7, T), 
«i = /3, fti = a, ci = <5, di = 7 and a Ç fti. 

PROOF. It is easily checked that ai V b\ = a\ V ci = a\ V di = b\ V di = ci V d\ = T 
and a\ Ab\- a\ Ac\- a\ Ad\-b\ Ac\-b\ Ad\= c\ Ad\- 0. The transpositions 
[ftVc, 1] \ [JA(ftVc), J] / [aV(dA(ftVc)), l] \ [fti Vc b 7] showthatfti Mc\ <i 7\ 
proving A(#i, fti, <?i, <ii, T).T -b\l c <\ 1 is part of the definition of A(#, ft, c, J, 1) and 
M(/?, a, 6,7, T) is also obvious as are a\ EE /?, fti = a, ci = 8,d\ = 7. It remains to show 
that a Ç fti. 

If (3 A ft <„ ft and [3 Ab <k (3 then, by the assumption (3 % ft, rc < k. It follows that 
a = b' <nt3'V a, (3' <k (3

f\/ a,f3' Aa <n f3f and /?' A a <k a. Let /3' A T A a <p /?' A a. 
Assume now first that a Aa < ftVc. Then aAfti = aAaA(b\/c) = aAa = /3fATAa <p 

(3' A a <n f3
f >i f3' A T = a and a A fti <p (3' A a <k a >i a A (ft V c) = b\. Thus 

oc A fti <p+n oc and a A b\ <p+k-i fti. Since n <k— 1, this gives a Ç fti. 
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Assume next that a Aa £ b\/c. ThenaA&i = aAaA(bVc) <\ aAa - fi AT Aa <p 

fi A a <n fi >i fi A T = a and a A b\ <p+i fi A a <k a >x a A (b V c) = b{. Thus 
a Ab\ <\+p+n oc and a A b\ <p+k b\ and again a \Z b\, proving the lemma. 

We are now in a position to prove 

THEOREM 5.5. MO 3 is not s-projective in the variety of all MOLs. 

PROOF. In [4] we found closed subspaces a1 c, d of a separable real Hilbert space H 
with the following properties: 

If JC; is the orthogonal complement of x then a\l c- a^J c' - a\l d^ a\l d! -
a'Vc' = a'Vd = afVd' = c\/d = c\/df = cfVd = c,Vdf = Hand 
a' V c <\ H. If F is the p-ideal of all finite-dimensional subspaces of// and 
L the set of all closed subspaces of H which are congruent modulo F with 
one of 0, a, a', c, c', d, d', H then L is a subortholattice of the orthomodular 
lattice C(H) of all closed subspaces of //. For all x, y G L, x V y (taken in 
C(H)) is just the algebraic (or vector space) sum of x and y, in particular L 
is modular. 

It is clear from these properties that the quotient L/Fis MO 3. If MO 3 was s-projective 
there would exist a, 7, <5, T G L such that a = a,l = c,S = d, and T = 1 (= //, the unit 
of C(H)) and such that a, 77<5 generate MO 3 in the interval [0, T]. Using Lemma 5.1, 
perhaps repeatedly, we may assume that T <\ 1. With b - a! and (3 = af A T the 
assumptions of Lemma 5.4 are satisfied with the possible exception of f3 % b. If (3 % b 
we apply Lemma 5.4. 

Renaming the elements, if necessary, we obtain elements a = a, b = fi c = 7, 
d = 6, r <i 1, T <i 1 such that A(a, Z?, c, rf, 7), M(a, /3,7,5, T) and /3 E ^ Assume 
/3 A b <m (3 <n (3 V b, 0 A b <k b </ (3 V fc. Then m < it and m + w = Jk + /. Let 
{e\,..., em} be a basis of /3 A (^ A b)f. Extend this to a basis {e\,..., em, ^ m + i , . . . em+n} 
of (J3Vb)A(j3A by. Let {/i,... ,/^} be a basis of b A ((3 A b)'. Extend this to a basis 
{/i,... ,/*+/} of ((3\/ b) A{f3 A b)'. Clearly there is an automorphism <j> of the vector space 
H (not necessarily preserving orthogonality) which maps (3 A b and ((3 V Z?)7 identically 
and satisfies §{e[) -f[. In the lattice of (not necessarily closed ) subspaces of H we then 
have <j>(a) = a, </>(/3) = ^, <̂ (7) = 7, </>(̂ ) = 5, and </>(J3) < b. Thus, if we replace 
a, /?, 7, £, r by their images under </>, the assumptions of Lemma 5.3 are fulfilled, which, 
by Lemma 5.3, is impossible. This proves the theorem. 

6. Concluding remarks. We are painfully aware that our investigations provide 
little information regarding the basic question: 'Which OMLs are s-projective in the 
variety of all OMLs?' We have seen that MO 2 is ^-projective in the variety of all OMLs 
and that MO 3 is not even ^-projective in the variety of all MOLs. We suspect that MO 2 
and 2 are the only finite, irreducible, ^-projective OMLs but we see no way of proving 
it. We have in fact a stronger conjecture. It is well known, see [3], that the free OML 
generated by an «-element set is of the form B x N where B is the free Boolean algebra 
on n elements and iV is an OML without a non-trivial Boolean image. It follows from 
Proposition 3.1 that TV is ^-projective. Our conjecture is: The TV are the only finitely 
generated, irreducible, non-Boolean ^-projective OMLs. 
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