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Introduction

A saturated fusion system F over a p-group S is a category whose objects are the sub-
groups of S, where each morphism in F is a monomorphism of groups, and which satisfies
certain axioms listed in Definition 1.1. As one of the main motivating examples, let G

be a finite group, fix S ∈ Sylp(G), and let FS(G) be the category whose objects are
the subgroups of S and where HomFS(G)(P, Q) is the set of homomorphisms induced by
conjugation in G. Then FS(G) is a saturated fusion system over S. A saturated fusion
system F which is not isomorphic to FS(G) for any finite group G is called exotic.

In an ongoing project with Kasper Andersen and Joana Ventura, we are attempting,
with the help of computer computations, to list all saturated fusion systems over 2-groups
of small order, where we try to make ‘small’ be as large as possible. Since it is clearly
impossible to do this explicitly, we want to restrict our attention to some appropriate
smaller class of fusion systems. Define a saturated fusion system to be reduced if it has no
proper normal subsystems of p-power index or of index prime to p (Definition 1.6) and
no non-trivial normal p-subgroups (Definition 1.2), and to be indecomposable if it is not
isomorphic to a product of fusion systems over strictly smaller p-groups (Definition 4.1).
In [1, Theorems A and C], we showed that exotic fusion systems can be ‘detected’ in
an explicit way on reduced, indecomposable fusion systems. This means, for example,
that if we list all reduced indecomposable fusion systems over 2-groups of order at most
2n for some fixed n, and show they are all realized by finite groups satisfying a certain
‘tameness’ condition on their automorphism groups [1, Definition 2.10], then there are
no exotic fusion systems over 2-groups of order 2n or less.
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In earlier work with Ventura [10], and in the ongoing work with her and with Andersen,
we derive some fairly strong conditions on a 2-group S which must be satisfied if there are
any reduced fusion systems over S. When we use a computer to eliminate those groups
of given order which do not satisfy these conditions, we are left with the groups which
are known to be Sylow 2-subgroups of simple groups, a few other indecomposable groups
and a long list of groups which split into products of smaller groups also satisfying the
conditions. This is what motivated us to study reduced fusion systems over products of
(non-trivial) 2-groups and look for conditions that guarantee that any such fusion system
factors as a product.

Our main results are the following two theorems. As usual, for a p-group Q, Ω1(Q) is
the subgroup generated by all elements of order p.

Theorem A. Fix 2-groups S1 and S2, and set S = S1 ×S2. Assume, for i = 1, 2, that

(a) Si is non-trivial and indecomposable, and Ω1(Z(Si)) � [Si, Si] and

(b) S3−i contains no subgroup isomorphic to Si × Si.

Then, for every saturated fusion system F over S which has no proper normal subsystems
of 2-power index or of index prime to 2, F ∼= F1 × F2 for some pair of saturated fusion
systems Fi over Si.

The isomorphism F ∼= F1 × F2 in the above theorem is induced by an isomorphism
S ∼= S1×S2, but that isomorphism need not send Si to itself. Condition (a) in Theorem A
holds whenever Si is non-abelian and Z(Si) is cyclic. But it also holds for many 2-groups
whose centre is not cyclic; for example, for the groups UT3(F2n) (strictly upper triangular
matrices) when n � 2.

The second theorem puts stronger conditions on S1, while weakening those on S2. Let
D2n and SD2n denote the dihedral and semi-dihedral groups, respectively, of order 2n.

Theorem B. Fix 2-groups S1 and S2, and set S = S1 × S2. Assume

(a) S1 ∼= D2n (n � 3), SD2n (n � 4), or C2n � C2 (n � 2) and

(b) S2 contains no proper subgroup isomorphic to S1 × S1.

Then, for every saturated fusion system F over S which has no proper normal subsystems
of 2-power index or of index prime to 2, F ∼= F1 × F2 for some pair of saturated fusion
systems Fi over Si.

Theorems A and B are shown as Corollary 5.3 and Theorem 6.2, respectively. They
are both consequences of Proposition 4.4, which is a more general (and more technical)
splitting result. Theorem B also holds (with only minor modifications to the proof) when
S1 is a quaternion 2-group. However, in that case, it is very easy to see directly that Z(S1)
is normal in any fusion system satisfying the hypotheses of the theorem, and hence that
no such fusion system can be reduced.
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Examples are given in § 7 to show why certain conditions in the above theorems are
needed. For example, set p = 2, let G be the subgroup of index 2 in Σ6 ×PGL2(9) which
contains neither factor, and let F be the fusion system of G (over the Sylow subgroup
isomorphic to D8 × D16). Then F satisfies all of the hypotheses in Theorems A and B
except the condition that the F have no normal subsystems of 2-power index, but does
not factor as a product of smaller fusion systems.

The example of the fusion system of A14 over the 2-group D8 ×(D8 � C2) helps to show
why the condition S2 � S1 ×S1 is needed in Theorems A and B (and more examples are
given in § 7). However, the following theorem (proven as Theorem 6.3) shows some cases
where we can avoid this problem. Note that the factors in the following statement can
be, but do not have to be, isomorphic to each other.

Theorem C. Assume S = S1 × S2 × · · · × Sm, where each factor Si is isomorphic to
one of the groups D2n (n � 3), SD2n (n � 4) or C2n � C2 (n � 2). Let F be a saturated
fusion system over S which has no proper normal subsystems of 2-power index or of index
prime to 2. Then F is isomorphic to a product of saturated fusion systems over the Si.

Section 1 contains the background material which is needed on fusion systems. Sec-
tions 2 and 3 contain technical results about actions and representations of groups, and
automorphisms of p-groups, respectively. A general proposition about splitting fusion
systems is stated and proven in § 4, Theorems A, B, and C are proved in §§ 5 and 6, and
some examples are given in § 7.

1. Background results about fusion systems

A fusion system over a finite p-group S is a category F , where Ob(F) is the set of all
subgroups of S, and where, for all P, Q � S,

HomS(P, Q) ⊆ HomF (P, Q) ⊆ Inj(P, Q),

and each ϕ ∈ HomF (P, Q) is the composite of an F-isomorphism followed by an inclusion.
Here, Inj(P, Q) denotes the set of injective homomorphisms from P to Q.

If F is a fusion system over S, we say two subgroups P, Q � S are F-conjugate if they
are isomorphic as objects of the category F . Two elements g, h ∈ S are F-conjugate if
there is ϕ ∈ IsoF (〈g〉, 〈h〉) such that ϕ(g) = h. For P � S and g ∈ S, we write

PF = {Q � S | Q is F-conjugate to P} and gF = {h ∈ S | h is F-conjugate to g}.

Definition 1.1 (Puig [11]; Broto et al . [6, Definition 1.2]). Let F be a fusion
system over a finite p-group S.

(i) A subgroup P � S is fully centralized in F if |CS(P )| � |CS(Q)| for each Q ∈ PF .

(ii) A subgroup P � S is fully normalized in F if |NS(P )| � |NS(Q)| for each Q ∈ PF .
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(iii) F is a saturated fusion system if the following two conditions hold.

(I) (The Sylow axiom.) If P � S is fully normalized in F , then P is fully central-
ized in F , and AutS(P ) ∈ Sylp(AutF (P )).

(II) (The extension axiom.) For each P, Q � S such that Q is fully centralized in
F , and each ϕ ∈ IsoF (P, Q), if we set

Nϕ = {g ∈ NS(P ) | ϕcgϕ
−1 ∈ AutS(Q)},

then there exists ϕ̄ ∈ HomF (Nϕ, S) such that ϕ̄|P = ϕ.

The above definition of a saturated fusion system is equivalent to Puig’s original def-
inition [11, Definition 2.9] of a ‘Frobenius category’ (see [3, § I.9] for a proof of the
equivalence). If G is a finite group, S ∈ Sylp(G), and FS(G) is the fusion system defined
in the introduction, then a subgroup P � S is fully normalized (fully centralized) in
FS(G) exactly when NS(P ) ∈ Sylp(NG(P )) (CS(P ) ∈ Sylp(CG(P ))). For a proof that
FS(G) is a saturated fusion system, see, for example, [6, Proposition 1.3].

We next recall some of the other definitions associated with a fusion system.

Definition 1.2. Fix a prime p, a p-group S, and a fusion system F over S. Let P � S

be any subgroup.

(i) P is F-centric if CS(Q) = Z(Q) for all Q ∈ PF .

(ii) P is strongly closed in F if for each g ∈ P , gF ⊆ P . Equivalently, for each Q � P

and each ϕ ∈ HomF (Q, S), ϕ(Q) � P .

(iii) P is normal in F (P � F) if every morphism ϕ ∈ HomF (Q, R) in F extends to a
morphism ϕ̄ ∈ HomF (PQ, PR) such that ϕ̄(P ) = P .

(iv) foc(F) = 〈x−1y | x, y ∈ S, y ∈ xF 〉.

(v) hyp(F) = 〈x−1α(x) | x ∈ P � S, α ∈ AutF (P ) has order prime to p〉.

(vi) Let H be a set of subgroups of S closed under F-conjugacy. The fusion system F
is H-saturated if all subgroups in H satisfy axioms (I) and (II) in Definition 1.1.
Also, F is H-generated if each morphism in F is a composite of restrictions of
F-morphisms between subgroups in H.

The following theorem will be needed several times in the later sections, when showing
that certain fusion systems are saturated.

Theorem 1.3 (see [4, Theorem A]). Fix a fusion system F over a p-group S, and
a set H of subgroups of S closed under F-conjugacy such that F is H-saturated and
H-generated. Assume, for each P � S which is F-centric and not in H, that there is
some Q ∈ PF such that OutS(Q) ∩ Op(OutF (Q)) �= 1. Then F is a saturated fusion
system.
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We also need to work with fusion subsystems, and weakly normal fusion subsystems,
of a saturated fusion system. When F is a fusion system over S and S0 � S, F|S0 denotes
the full subcategory whose objects are the subgroups of S0 (a fusion system over S0).

Definition 1.4. Fix a prime p, and a fusion system F over a p-group S.

(i) A (saturated) fusion subsystem of F is a subcategory F0 ⊆ F which is itself a
(saturated) fusion system over a subgroup S0 � S.

(ii) For any α ∈ Aut(S), αF denotes the fusion system over S defined by

HomαF (P, Q) = {αϕα−1 | ϕ ∈ HomF (α−1(P ), α−1(Q))}

for all P, Q � S.

(iii) If E is another fusion system over S, then E ∼= F if E = αF for some α ∈ Aut(S).

(iv) If S0 � S, and X1, . . . , Xm are subcategories and/or sets of morphisms in F|S0 ,
then 〈X1, . . . , Xm〉 denotes the smallest fusion subsystem over S0 in F (not nec-
essarily saturated) which contains the Xi. Thus, 〈X1, . . . , Xm〉 is a subcategory of
F whose objects are the subgroups of S0, and which contains those morphisms
which are composites of restrictions of inner automorphisms of S0, and restrictions
of morphisms in the Xi and their inverses.

(v) A fusion subsystem F0 ⊆ F over S0 � S is F-invariant if S0 is strongly closed in
F , αF0 = F0 for each α ∈ AutF (S0), and F|S0 = 〈AutF (S0),F0〉.

(vi) A fusion subsystem F0 ⊆ F over S0 � S is weakly normal in F (F0 � F) if F0 and
F are both saturated and F0 is F-invariant.

Thus, an ‘F-invariant’ fusion subsystem is one which satisfies all conditions for being
weakly normal in F except for being saturated. This is equivalent to what some authors
define as a ‘normal’ fusion subsystem, but for the sake of consistency with the terminology
in [3], we limit ‘(weakly) normal’ fusion systems to those which are saturated. (See
[3, § I.6] for a definition of normal fusion subsystems.) Our main reason for defining
F-invariant subsystems here is so that we can apply the following lemma in situations
where we do not (yet) know that the fusion subsystem is saturated.

Lemma 1.5. Let F be a saturated fusion system over the finite p-group S, and let
F0 ⊆ F be an F-invariant fusion subsystem over S. Then, for any P � S, P is fully
normalized in F0 (fully centralized in F0, F0-centric) if and only if P is fully normalized
in F (fully centralized in F , F-centric).

Proof. Assume P, Q � S0 are F-conjugate. Since F|S0 = 〈F0, AutF (S0)〉, any ϕ ∈
IsoF (P, Q) is a composite of morphisms in F0 and restrictions of F-automorphisms of
S0. Since ψF0 = F0 for all ψ ∈ AutF (S0), these morphisms can be rearranged so that
the morphisms in F0 all come first, followed by a composite of restrictions of morphisms
in AutF (S0). Thus, there exists α ∈ AutF (S0) such that α(Q) ∈ PF0 .
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Since PF ⊇ PF0 , P is fully normalized in F0 if it is fully normalized in F . Conversely,
assume P is fully normalized in F0, let Q ∈ PF be such that Q is fully normalized in F
and choose α ∈ AutF (S) such that α(Q) ∈ PF0 . Then

|NS(Q)| � |NS(P )| � |NS(α(Q))| = |α(NS(Q))|,

so these are all equal and P is also fully normalized in F .
The argument for fully centralized subgroups is similar. The centric case follows since

P is F-centric if and only if it is fully centralized in F and contains CS(P ). �

The next definitions and results are taken from [5]. As usual, when G is a finite group,
Op(G) and Op′

(G) denote the smallest normal subgroups of p-power index and of index
prime to p, respectively.

Definition 1.6. Let F0 ⊆ F be saturated fusion systems over p-groups S0 � S.

(a) F0 is of p-power index in F if S0 � hyp(F), and AutF0(P ) � Op(AutF (P )) for all
P � S0.

(b) F0 is of index prime to p in F if S0 = S, and AutF0(P ) � Op′
(AutF (P )) for all

subgroups P � S.

Note that, despite the terminology, a fusion subsystem of p-power index (index prime
to p) is analogous to a subgroup of a finite group G which contains a normal subgroup
of p-power index (index prime to p); i.e. a subgroup which contains Op(G) (Op′

(G)).
However, there are many examples of groups G with S ∈ Sylp(G), where Op′

(G) = G

but FS(G) does have proper subsystems of index prime to p (for example, take p = 2
and G = A5).

Theorem 1.7. Let F be a saturated fusion system over a finite p-group S.

(a) There is a unique saturated fusion subsystem Op(F) over hyp(F) of p-power index
in F , Op(F) is contained in all other saturated fusions subsystems of p-power index
in F , and Op(F) � F . Also, Op(F) = F if and only if foc(F) = S.

(b) There is a unique minimal saturated fusion subsystem Op′
(F) over S of index

prime to p in F , and Op′
(F) � F . If F0 � F is any weakly normal saturated fusion

subsystem over S, then F0 ⊇ Op′
(F).

Proof. The first statement in (a) is shown in [5, Theorem 4.3], except the weak
normality of Op(F), which is shown in [1, Proposition 1.16(a)]. From this, it follows
immediately that Op(F) = F if and only if hyp(F) = S. To see that this is equivalent to
the condition foc(F) = S, see, for example, [1, Theorem 1.13(a)].

The first statement in (b) is shown in [5, Theorem 5.4], the weak normality of Op′
(F)

in [1, Proposition 1.16(b)], and the last statement is shown in [1, Lemma 1.17]. �

We now look at essential subgroups of a fusion system, beginning with the following
definition.
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Definition 1.8. Fix a prime p.

(a) A subgroup H of a finite group G is strongly p-embedded if H < G, p||H|, and for
all g ∈ G�H, p�|H ∩ gHg−1|.

(b) If F is a fusion system over a p-group S, then a subgroup P � S is F-essential
if P is F-centric and fully normalized in F , and OutF (P ) contains a strongly
p-embedded subgroup.

The following lemma lists some of the well-known properties of strongly p-embedded
subgroups.

Lemma 1.9. Fix a finite group G and a prime p. For each p-subgroup P � G, set
ΓP,1(G) = 〈NG(Q) | 1 �= Q � P 〉 � H. Then the following hold.

(a) Each strongly p-embedded subgroup H < G contains at least one Sylow p-subgroup
of G.

(b) For each S ∈ Sylp(G), either

• ΓS,1(G) = G and G contains no strongly p-embedded subgroups, or

• ΓS,1(G) < G, ΓS,1(G) is strongly p-embedded, and each strongly p-embedded
subgroup of G that contains S also contains ΓS,1(G).

(c) If G contains a strongly p-embedded subgroup, then Op(G) = 1.

Proof. For any H < G with p||H|, H is strongly p-embedded in G if and only if
ΓP,1(G) � H for some (all) P ∈ Sylp(H). This is shown, for example, in [2, (46.4)]
or [9, Proposition 17.11]. In particular, if H is strongly p-embedded and P ∈ Sylp(H),
then NG(P ) � H, so p�[NG(P ) : P ], which implies P ∈ Sylp(G). This proves (a) and (b).
Finally, if Op(G) �= 1, then ΓS,1(G) � NG(Op(G)) = G for each S ∈ Sylp(G), so G has
no strongly p-embedded subgroup by (b). �

The properties of essential subgroups which we will need are listed in the following
proposition.

Proposition 1.10. The following hold for any saturated fusion system F over a p-
group S.

(a) F = 〈AutF (P ) | P = S or P is F-essential〉.

(b) Let H be any set of F-essential subgroups with the property that if P, Q are
F-essential, P ∈ H, and P is F-conjugate to a subgroup of Q, then Q ∈ H.
Then

〈AutF (S), AutF (P ) | P ∈ H〉 = 〈AutF (S), Op′
(AutF (P )) | P ∈ H〉.
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(c) Assume P < S is F-centric and fully normalized in F . Let H � AutF (P ) be
the subgroup generated by those automorphisms which extend to morphisms in F
between strictly larger subgroups of S. Then either H < AutF (P ), H/ Inn(P ) is
strongly p-embedded in OutF (P ), and P is F-essential; or H = AutF (P ) and P is
not F-essential.

(d) If P � S is such that [NS(P ), P ] � Fr(P ), then P is not F-essential.

Proof. Point (a) is shown, for example, in [10, Corollary 2.6] and point (d) in [10,
Proposition 3.2 and Lemma 3.4].

Point (c) is mostly shown in [10, Proposition 2.5]. Fix P < S which is F-centric
and fully normalized in F , and let H � AutF (P ) be defined as in (c). By (a) and
the extension axiom for a saturated fusion system, H is generated by the subgroups
NAutF (P )(AutQ(P )) for all P < Q � NS(P ). Thus,

H/ Inn(P ) = 〈NOutF (P )(OutQ(P )) | P < Q � NS(P )〉
= 〈NOutF (P )(R) | 1 �= R � OutS(P )〉.

Since P is fully centralized, OutS(P ) ∈ Sylp(OutF (P )). Thus, by Lemma 1.9(b), either
H/ Inn(P ) < OutF (P ) is strongly p-embedded and P is F-essential, or H = AutF (P )
and P is not F-essential. This proves (c).

It remains to prove (b). For each P ∈ H and α ∈ AutF (P ), AutS(P ) and
α AutS(P )α−1 are both Sylow p-subgroups of Op′

(AutF (P )), and hence there is β ∈
Op′

(AutF (P )) such that βα ∈ NAutF (P )(AutS(P )). In other words,

AutF (P ) = Op′
(AutF (P )) · NAutF (P )(AutS(P ))

by a Frattini argument. By the extension axiom, each automorphism in the normalizer
extends to an element of AutF (NS(P )), and by (a), this is a composite of restrictions of
F-automorphisms of S and of strictly larger F-essential subgroups, all of which are in
H by the hypotheses. So, by downwards induction on |P |, we see that each AutF (P ) for
P ∈ H is in the fusion subsystem generated by AutF (S) and the groups Op′

(AutF (Q))
for Q ∈ H. �

We will also need the following lemma about essential subgroups for a fusion system
over a product of p-groups.

Lemma 1.11. Let S1, S2 be a pair of p-groups, and set S = S1×S2. Then the following
hold for each P � S.

(a) If P < P1P2, where Pi � Si is the image of P under projection, then there exists
g ∈ NS(P )�P such that cg ∈ Op(Aut(P )). In particular, P cannot be F-essential
for any saturated fusion system F over S.

(b) If p = 2, and P is F-essential for some saturated fusion system F over S, then
P � S1 or P � S2.
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Proof. The first statement in (a) is shown in [1, Lemma 3.1]. Hence, if P is F-centric
and P < P1P2, then Op(OutF (P )) �= 1. Thus, OutF (P ) does not contain a strongly p-
embedded subgroup by Lemma 1.9(c). So no such P can be F-essential, and this finishes
the proof of (a).

Now assume p = 2, and P = P1P2 is F-essential (Pi � Si). Then O2(OutF (P )) = 1,
and P is F-centric. Assume also that P1 < S1 and P2 < S2. Choose elements xi ∈
NSi

(Pi)�Pi such that cxi
has order 2 in OutSi

(Pi) ∼= NSi
(Pi)/Pi. Then

rank([x1x2, P/ Fr(P )]) = rank([x1, P/ Fr(P )]) + rank([x2, P/ Fr(P )]).

Since O2(OutF (P )) = 1, OutF (P ) acts faithfully on P/ Fr(P ) by Lemma 2.1, and hence
rank([xi, P/ Fr(P )]) > 0 for i = 1, 2. So [cx1x2 ] ∈ OutS(P ) is not OutF (P )-conjugate to
[cx1 ] or [cx2 ]. If OutF (P ) did contain a strongly 2-embedded subgroup, then all of its
involutions would be conjugate (see, for example, [13, (6.4.4 (i))]), and this is not the
case. Thus, P is not F-essential, and this proves (b). �

The following transfer homomorphism for abstract fusion systems will be needed.

Proposition 1.12. Fix a p-group S and a saturated fusion system F over S. Then
there is an injective homomorphism

trfF : S/foc(S) → Sab := S/[S, S]

which has the following form. There are proper subgroups P1, . . . , Pm < S, and mor-
phisms ϕi ∈ HomF (Pi, S) (i = 1, . . . , m), such that, for g ∈ S,

trfF ([g]) =
∏

[α]∈OutF (S)

[α(g)] ·
m∏

i=1

ϕi∗(trfS
Pi

([g])).

Here, [g] denotes the class of g in S/foc(F) or in Sab = S/[S, S], trfS
Pi

is the transfer
homomorphism in (·)ab = H1(·), and the terms on the right are regarded as lying in the
abelianization of S. If g ∈ Ω1(Z(S)), then

trfF ([g]) =
∏

[α]∈OutF (S)

[α(g)].

If, in addition, g is OutF (S)-invariant, then trfF ([g]) = [g]k, where k = |OutF (S)| is
prime to p.

Proof. See [3, § I.8]. �

2. Lemmas on groups and groups acting on groups

We collect here the results on finite groups and their actions on other finite groups that
will be needed later. Throughout the section, I(G) denotes the set of involutions in a
group G. Note that our commutators are always of the form [a, b] = aba−1b−1.

The first four results are well known and listed for future reference.
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Lemma 2.1. Fix a prime p, a p-group P , a subgroup P0 � Fr(P ) and a sequence of
subgroups

P0 < P1 < · · · < Pk = P,

all normal in P . Set

A = {α ∈ Aut(P ) | α(x)x−1 ∈ Pi−1, for all x ∈ Pi, for all i = 1, . . . , k} � Aut(P ),

the group of automorphisms that leave each Pi invariant and that induce the identity on
each quotient group Pi/Pi−1. Then A is a p-group. If the Pi are all characteristic in P ,
then A � Aut(P ), and hence A � Op(Aut(P )).

Proof. See, for example, [8, Theorems 5.1.4 and 5.3.2]. �

Lemma 2.2. If G is a finite group of order 2n, where n is odd, then G contains a
normal subgroup of order n and index 2.

Proof. This is a special case of Burnside’s normal p-complement theorem (see, for
example, [8, Theorem 7.4.3]). The following, more elementary, proof was shown to us
by Dave Benson. Consider the action of G on itself by left translation. Elements of even
order act via odd permutations, and elements of odd order via even permutations. Hence,
the elements of odd order form a subgroup of index 2. �

Proposition 2.3. Fix an abelian 2-group A, and a subgroup G � Aut(A) of order 2n

for n odd. Assume, for some x ∈ I(G), that [x, G] �= 1, and that [x, A] ∼= C2m for some
m � 1. Set G1 = 〈I(G)〉 and G2 = CG(G1). Then G1 ∼= Σ3, |G2| is odd and G = G1×G2.
Also, there is a unique decomposition A = A1 × A2 such that the G-action on A splits
as a product of Gi-actions on Ai, and such that A1 ∼= C2m × C2m .

Proof. If there is any decomposition of A as described above, then A1 = [G1, A] and
A0 = CA(G1). So there is at most one such decomposition.

Set H1 = O2(G1), so |H1| is odd and [G1 : H1] = 2 by Lemma 2.2. Also, H1 �= 1 by the
assumption that [x, G] �= 1. Set A0 = CA(H1) and A1 = [H1, A], so that A = A0 × A1

(see, for example, [2, (24.6)]). Since H1 � G, the action of G sends each Ai to itself.
Hence, [x, A] = [x, A0] × [x, A1], and one of the two factors must vanish since [x, A] is
cyclic. If [x, Ai] = 1, then the normal closure G1 of 〈x〉 in G acts trivially on Ai. Since
H1 �= 1 acts non-trivially on A1, it follows that G1 acts trivially on A0.

Let {x1, . . . , xk} ⊆ I(G) be a minimal subset which generates G1 = 〈I(G)〉. Then

rank([G1, A]) �
k∑

i=1

rank([xi, A]) = k.

In particular, if k = 2, then G1 ∼= GL2(2) ∼= Σ3. If k � 3, then set K1 = 〈x1, x2, x3〉,
so that rank([K1, A]) � 3 and K1 is isomorphic to a subgroup of GL3(2). Then |K1||42
(since |GL3(2)| = 168 and 4�|K|). If |K1| �= 6, then it contains a normal subgroup of
order 7 by Lemma 2.2; and this is impossible since the normalizer of a Sylow 7-subgroup
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in GL3(2) has order 21. Thus, K1 ∼= Σ3, contradicting the assumption that {xi} was a
minimal generating set. We conclude that k = 2, G1 ∼= Σ3 and rank([G1, A]) = 2.

Now, G0 = CG(G1) has index at most 6 (since G permutes the three elements in I(G)),
G0 ∩ G1 = 1 and thus G = G0 × G1. We have already seen that rank(A1) = 2. Since
H1 ∼= C3 acts non-trivially on A1, A1 must be homocyclic, and thus A1 ∼= C2m × C2m .
Also, Aut(A1)/O2(Aut(A1)) ∼= Σ3 (Lemma 2.1), |G0| is odd and [G0, G1] = 1, so G0 acts
trivially on A1. �

Lemma 2.4. Fix a prime p, a p-group T and a finite group H upon which T acts.
Assume p�|H|. Then

(a) H = [T, H] · CH(T ) and [T, H] = [T, [T, H]] and

(b) if T is abelian and U = {U � T | T/U is cyclic}, then H = 〈CH(U) | U ∈ U〉.

Proof. Let q1, . . . , qk be the distinct primes which divide |H|. For each 1 � i � k,
|Sylqi

(H)| divides |H| and hence is prime to p. Since the p-group T acts on the set
Sylqi

(H), it must fix at least one element. Thus, there is some Si ∈ Sylqi
(H) such that

T � NH(Si); i.e. T acts on each Si.

(a) By [2, (24.4)], Si = [T, Si]·CSi
(T ) for each i, and hence H = 〈Si〉 = 〈[T, H], CH(T )〉.

Since [T, H] � H by the relation g[t, h] = [t, g]−1[t, gh] (where we write [t, h] = t(h)h−1),
this implies that H = [T, H] · CH(T ).

In particular, [T, H] is generated by elements [t, ab] for a ∈ [T, H], b ∈ CH(T ) and
t ∈ T , and [t, ab] = [t, a] since t(b) = b. Thus, [T, H] = [T, [T, H]].

(b) Let Fr(Si) � Si be the Frattini subgroup of Si: the intersection of all maximal
proper subgroups. Then Si/ Fr(Si) is an elementary abelian qi-group (see, for example, [2,
(23.2)]), and hence can be regarded as an Fqi [T ]-module. Since T is a p-group and p �= qi,
Si/ Fr(Si) splits as a product of irreducible modules. For U � T , T/U has a faithful
irreducible Fqi [T ]-module only if T/U is cyclic (see, for example, [8, Theorem 3.2.2]).
Thus, each irreducible factor in Si/ Fr(Si) is pointwise fixed by some U ∈ U , and so
Si/ Fr(Si) is generated by its subgroups CSi/ Fr(Si)(U) for U ∈ U .

If g Fr(Si) ∈ CSi/ Fr(Si)(U) for some U � T , then U acts on the coset g Fr(Si), and
this action fixes at least one element since the coset has order prime to p. Hence, every
element of CSi/ Fr(Si)(U) lifts to an element of CSi

(U), and so Si = 〈Fr(Si), CSi
(U) |

U ∈ U〉. Since Fr(Si) is contained in each maximal proper subgroup of Si, it follows that
Si = 〈CSi(U) | U ∈ U〉. Since H is generated by the Si, this proves (b). �

The following lemma, which appears as [2, Exercise 8.9], was suggested to us by the
referee as a means of simplifying the statement and proof of Lemma 2.6.

Lemma 2.5. Fix a prime p, an abelian p-group T , and a finite group H upon which
T acts. Assume H is solvable and p�|H|. Set U = {U � T | T/U is cyclic}. Then, for
each t ∈ T ,

[t, H] = 〈[t, CH(U)] | t /∈ U ∈ U〉.
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Proof. By Lemma 2.4(a), [t, [t, H]] = [t, H]. So upon replacing H by [t, H] (which is
T -invariant since T is abelian), we can assume H = [t, H].

Set X = 〈[t, CH(U)] | t /∈ U ∈ U〉. We must show X = [t, H] = H. By Lemma 2.4 (b),
H = [t, H] is generated by elements [t, g], where g = g1 · · · gk, and for each i, g ∈ CH(Ui)
for some Ui ∈ U . From the relation [t, ab] = t(ab)b−1a−1 = [t, a] · a[t, b], we now get

[t, g] = [t, g1] ·g1 [t, g2] · · · g1···gk−1[t, gk].

Since [t, gi] ∈ X for each i, this proves that H is the normal closure of X in H.
Since H is solvable, there is a non-trivial characteristic abelian subgroup N � H

(e.g. the penultimate term in the derived series). We can assume inductively that the
lemma holds for H/N ; i.e. that H/N = X∗ := 〈[t, CH/N (U)] | t /∈ U ∈ U〉. For each U

and gN ∈ CH/N (U), U acts on gN with CgN (U) �= ∅ since p�|gN |. The projection of H

onto H/N thus sends CH(U) onto CH/N (U) for each U , and hence X∗ = XN/N . Thus,
H = XN .

Since N = 〈CN (U) | U ∈ U〉 by Lemma 2.4 (b),

[t, N ] = 〈[t, CN (U)] | U ∈ U〉 = 〈[t, CN (U)] | t /∈ U ∈ U〉 � X

as N is abelian. Let N0 � H be the normal closure of [t, N ] in H. Then N0 � 〈H, t〉,

N0 = 〈g[t, N ] | g ∈ H〉 = 〈g[t, N ] | g ∈ X〉 � X

since H = XN and N is abelian. If N0 = N , then X = XN0 = XN = H, and we are
done. Otherwise, upon replacing H by H/N0, we can assume that [t, N ] = 1.

Since [t, [H, N ]] � [t, N ] = 1, the 3-subgroup lemma implies that [H, N ] = [[t, H], N ] =
1 (see, for example, [2, (8.7)]). Thus, H = XN where [X, N ] = 1, so X � H. We have
already seen that H is the normal closure of X in H, and it now follows that H = X. �

Lemma 2.5 will now be used to prove the following.

Lemma 2.6. Fix an elementary abelian 2-group V and a subgroup G = HT �
Aut(V ), where H � G, |H| is odd and T = 〈t1, t2〉 ∼= C2

2. Assume [t1, V ] ∩ [t2, V ] = 1.
Set Hi = [ti, H] and Gi = 〈Hi, ti〉 (i = 1, 2). Then [G1, G2] = 1.

Proof. By construction, Gi = 〈I(Gi)〉 (it is generated by the H-conjugacy class of
ti). Since ti ∈ NG(Hi), [Gi : Hi] = 2.

Set t3 = t1t2, and fix h ∈ CH(t3). Set g = [t1, h] = [t3t2, h] = [t2, h]. Thus, g is
fixed by t3 and inverted by t1 and t2. If g �= 1, then [g, V ] = [g−1, V ] is T -invariant; set
W = C[g,V ](t3). Then [g, V ] �= 1 since g acts faithfully, and so W �= 1 since [g, V ] and 〈t3〉
are both 2-groups. Also, W is invariant under the action of the dihedral group 〈g, t1〉. If
t1 fixes W pointwise, then so does each element in 〈g, t1〉 and, in particular, [g, W ] = 1.
This is impossible, since W � [g, V ] (and g has odd order). Hence, there exists w ∈ W

such that t1(w) �= w, 1 �= [t1, w] = [t2, w], and this contradicts the assumption that
[t1, V ] ∩ [t2, V ] = 1. We conclude that g = [t1, h] = 1. Since this holds for all h ∈ CH(t3),
CH(t3) = CH(T ).
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By Lemma 2.5, and since CH(t3) � CH(t2),

[t1, H] = 〈[t1, CH(t2)], [t1, CH(t3)]〉 = [t1, CH(t2)] � CH(t2).

So t2 commutes with [t1, H], and hence with every element H-conjugate to t1. Thus,
each involution H-conjugate to t2 commutes with each involution H-conjugate to t1. In
particular, [G1, G2] = [〈I(G1)〉, 〈I(G2)〉] = 1. �

The next proposition is our main tool for showing that two subgroups of a larger group
commute.

Proposition 2.7. Fix an elementary abelian 2-group V , and a subgroup G � Aut(V ).
Let G1, G2 � G be such that [G1, V ] ∩ [G2, V ] = 1. Fix Si ∈ Syl2(Gi). Assume the
following hold for i = 1, 2.

(a) Gi has a strongly 2-embedded subgroup Hi � Si, and [Hi, G3−i] = 1.

(b) S1S2 ∈ Syl2(G), and Si is strongly closed in S1S2 with respect to G.

Then [G1, G2] = 1.

Proof. Let Ĝi be the normal closure of Si in G, and set N = Ĝ1 ∩ Ĝ2 � [Ĝ1, Ĝ2]. By
assumption, S1S2 ∈ Syl2(G), S1 and S2 are strongly closed in S1S2 with respect to G,
and [S1, S2] = 1. Hence, N has odd order by a theorem of Goldschmidt [7, Corollary A2].

For each i = 1, 2, fix some xi ∈ I(Si), and set Gi = {g ∈ Gi||g| odd,xig = g−1}. For
each g1 ∈ G1 and g2 ∈ G2, 〈xi, gi〉 is dihedral and its involutions are Gi-conjugate to
xi (i = 1, 2), so [〈x1, g1〉, 〈x2, g2〉] � [Ĝ1, Ĝ2] � N . Hence, 〈g1, g2〉 has odd order, since
N � G has odd order. So [g1, g2] = 1 by Lemma 2.6, applied with H = 〈g1, g2〉 and
T = 〈x1, x2〉. (Since [xi, g3−i] ∈ [Hi, G3−i] = 1 by assumption, T normalizes H.) Thus,
[〈G1〉, 〈G2〉] = 1, and hence [〈H1,G1〉, 〈H2,G2〉] = 1 since [Hi, G3−i] = 1.

We will be done upon showing that Gi = 〈Hi,Gi〉. Fix gi ∈ Gi�Hi, and set yi =
gixig

−1
i . Then yi /∈ Hi, and |xiyi| is odd since otherwise the involution in 〈xiyi〉 would

commute with both xi and yi (impossible since Hi is strongly 2-embedded). Thus, yi =
hixih

−1
i for some hi ∈ 〈xiyi〉, hi ∈ Gi, and g−1

i hi ∈ CGi(xi) � Hi since Hi is strongly
2-embedded. Hence, gi ∈ 〈Hi,Gi〉, and thus Gi = 〈Hi,Gi〉. �

Proposition 2.7 will be used to show that certain subgroups of Out(P ) commute. The
following is needed to lift this to a result about commuting subgroups of Aut(P ).

Proposition 2.8. Fix a prime p, a finite group G and a pair of subgroups G1, G2 � G.
Choose Si ∈ Sylp(Gi), and choose normal p-subgroups Pi � Gi. Assume [G1, S2] = 1 =
[G2, S1] and [G1, G2] � P1P2. Then [G1, G2] = 1.

Proof. We must show, for each pair of elements gi ∈ Gi of order prime to p, that
[g1, g2] = 1. Upon replacing Gi by 〈Pi, gi〉, we are reduced to the case where Gi/Pi has
order prime to p.

Consider the conjugation action cg1 ∈ Aut(P1G2). By assumption, cg1(P1) = P1, and
cg1 induces the identity on P2 and on P1G2/P1P2. The subgroups P1P2/P2 and G2/P2
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generate P1G2/P2; the first is a p-group and the second has order prime to p, and they
commute since [P1, G2] = 1 by assumption. Thus, P1G2/P2 = (P1P2/P2) × (G2/P2),
P1P2 ∩ G2 = P2 and the induced action of cg1 on P1G2/P2 leaves G2/P2 invariant.
Hence, [g1, G2] � P1P2 ∩ G2 = P2.

Thus, cg1 ∈ Aut(G2) induces the identity on P2 and on G2/P2. By the Schur–
Zassenhaus theorem (see, for example, [2, Theorem 18.1]), cg1 is conjugation by some
element of P2, and hence is the identity since P2 is a p-group and g1 has order prime to
p. Thus, [g1, G2] = 1. �

It remains to combine Propositions 2.7 and 2.8.

Corollary 2.9. Fix a 2-group P and a subgroup G � Aut(P ). Let G1, G2 � G be
such that [G1, P ] ∩ [G2, P ] = 1 and [O2(Gi), P ] � Fr(P ). Fix Si ∈ Syl2(Gi), and set
Qi = O2(Gi). Assume the following hold for i = 1, 2:

(a) Gi/Qi has a strongly 2-embedded subgroup Hi/Qi � Si/Qi, and [Hi, G3−i] = 1;

(b) S1S2 ∈ Syl2(G), and Si is strongly closed in S1S2 with respect to G.

Then [G1, G2] = 1.

Proof. Set Q = {g ∈ G | [g, P ] � Fr(P )}: the kernel of the induced action of G on
P/ Fr(P ). Then Q1Q2 � Q, and Q is a normal 2-subgroup of G by Lemma 2.1. Hence,
Q � S1S2 since S1S2 ∈ Syl2(G), and Gi ∩ Q = Qi (i = 1, 2) since it is a normal 2-
subgroup of Gi. If g = g1g2 ∈ Q, where gi ∈ Si, then [Gi, g] = [Gi, gi] � Q ∩ Gi = Qi, so
〈Qi, gi〉 � Gi, and gi ∈ Qi since Qi = O2(Gi). Thus, Q = Q1Q2.

Set G∗ = G/Q, and set G∗
i = GiQ/Q ∼= Gi/Qi for i = 1, 2. By definition of Q, G∗ and

the G∗
i all act faithfully on P ∗ := P/ Fr(P ). The hypotheses of Proposition 2.7 all hold

(with V = P ∗), and hence [G∗
1, G

∗
2] = 1. Thus, [G1, G2] � Q1Q2 = Q, and so [G1, G2] = 1

by Proposition 2.8. �

We finish the section with the following easy result, which describes one consequence
of two groups of automorphisms commuting.

Lemma 2.10. Fix a finite group K and subgroups G1, G2 � Aut(K) such that
[G1, G2] = 1 and [G1, K] ∩ [G2, K] = 1. Then [G1, K] � CK(G2) and [G2, K] � CK(G1).

Proof. The action of each g ∈ G1 sends [G2, K] to itself, by the relation g([h, x]) =
g(h(x)x−1) = [gh, g(x)] and since [G1, G2] = 1. Hence, [G1, [G2, K]] � [G1, K]∩[G2, K] =
1; [G2, [G1, K]] = 1 by a similar argument. �

3. Automorphisms of products of non-abelian p-groups

Throughout this section, p is an arbitrary prime. To simplify notation, for any finite
p-group P , we write

Out(P ) = Aut(P )/Op(Aut(P )) ∼= Out(P )/Op(Out(P )).
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We want to compare the group of automorphisms of a product of p-groups with the
groups of automorphisms of its factors. For example, Proposition 3.2 implies as a special
case that if S = S1 ×S2, where S1 is indecomposable, S2 has no direct factor isomorphic
to S1 and Ω1(Z(S1)) � [S1, S1], then Out(S) ∼= Out(S1) × Out(S2).

We begin with the following easy consequence of the Krull–Schmidt Theorem.∗ As
usual, we call a finite group indecomposable if it is not a direct product of proper sub-
groups.

Proposition 3.1. Fix a finite group G = G1 × · · · × Gm × H, where, for each i =
1, . . . , m, Gi is indecomposable and is not isomorphic to any direct factor of H. Then,
for each α ∈ Aut(G), there is a permutation σ ∈ Σm such that, for each i, α(GiZ(G)) =
Gσ(i)Z(G) and α([Gi, Gi]) = [Gσ(i), Gσ(i)].

Proof. We use here the terminology of Suzuki in [12, Definition 1.6.17]: an endo-
morphism of a group G is normal if it commutes with all inner automorphisms of G.
By [12, 1.6.18 (ii)], for any normal automorphism ν of G, there exists ζ ∈ Hom(G, Z(G))
such that ν(g) = ζ(g)−1g for each g ∈ G. In particular, ν(g) ∈ gZ(G) for each g ∈ G.

For each α ∈ Aut(G), the Krull–Schmidt Theorem, in the form stated in [12, 2.4.8]
and applied to the decompositions G = G1×· · ·×Gm×H = α(G1)×· · ·×α(Gm)×α(H),
says that there are a normal automorphism ν of G, and a permutation σ ∈ Σm, such
that ν(α(Gi)) = Gσ(i) for each i and ν(α(H)) = H. Then α permutes the subgroups
GiZ(G) since ν ≡ Id (mod Z(G)), and thus also permutes the subgroups [Gi, Gi] =
[GiZ(G), GiZ(G)]. �

We next look at automorphisms of a product of p-groups that partly fix one factor.

Proposition 3.2. Fix a pair of p-groups S1 and S2, set S = S1 × S2 and let pri ∈
Hom(S, Si) be the projection. Set

Aut0(S) = {α ∈ Aut(S) | α(Ω1(Z(S1))) = Ω1(Z(S1))}.

Then the following hold.

(a) For each α ∈ Aut0(S), pri(α(Si)) = Si and α(SiZ(S3−i)) = SiZ(S3−i) for i = 1, 2.

(b) There is an isomorphism

Aut0(S)/Op(Aut0(S))
∼=−→ Out(S1) × Out(S2),

which sends the class of α ∈ Aut0(S) to the class of (pr1 ◦α|S1 , pr2 ◦α|S2).

(c) Assume S1 �= 1, S1 is indecomposable and Ω1(Z(S1)) � [S1, S1]. Let n � 1 be the
largest integer such that S2 contains a direct factor isomorphic to (S1)n−1. Then
[Aut(S) : Aut0(S)] = n.

∗ We thank the referee for pointing out to us the strong version of this theorem stated in [12], and its
relevance for the results in this section.
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Proof. (a) Set Zi = Z(Si) for short. Fix α ∈ Aut0(S). If pr1 ◦α|S1 were not injective,
then some 1 �= x ∈ Ω1(Z1) would be in the kernel, which contradicts the assumption
α(Ω1(Z1)) = Ω1(Z1). If pr2 ◦α|S2 were not injective, then some 1 �= y ∈ Ω1(Z2) would be
in the kernel, so α(y) ∈ S1 ∩ Ω1(Z(S)) = Ω1(Z1), which is impossible since α(Ω1(Z1)) =
Ω1(Z1). Thus, pr1 ◦α|S1 and pr2 ◦α|S2 are both automorphisms. Furthermore, for i = 1, 2,

α(SiZ3−i) = α(CS(S3−i)) = CS(α(S3−i)) � CSi
(pri(α(S3−i))) · CS3−i

(S3−i) � Si · Z3−i,

and hence α(SiZ3−i) = SiZ3−i.

(b) Define Aut1(S) � Aut0(S) by setting

Aut1(S) = {α ∈ Aut0(S) | α induces the identity on Ω1(Z1),
on Ω1(Z(S))/Ω1(Z1) and on S/Z(S)}.

Since each element of Aut0(S) leaves the subgroups Ω1(Z1), Ω1(Z(S)) and Z(S) invari-
ant, Aut1(S) � Aut0(S). For each α ∈ Aut1(S), α|Ω1(Z(S)) has p-power order by
Lemma 2.1, so α|Z(S) has p-power order by [8, Theorem 5.2.4] and α has p-power order
by Lemma 2.1 again. Thus, Aut1(S) is a p-group, and hence is contained in Op(Aut0(S)).

Consider the following maps:

Aut0(S)
χ−→ Aut(S1) × Aut(S2)

ψ−→ Aut0(S)
ρ−→ Aut0(S)/Op(Aut0(S)),

where χ(α) = (pr1 ◦α|S1 , pr2 ◦α|S2) (as a map of sets), ψ(α1, α2) = α1 × α2 and ρ is the
projection. Here, for αi ∈ Aut(Si), α1 × α2 is the automorphism that sends (s1, s2) to
(α1(s1), α2(s2)), and thus χ◦ψ is the identity on Aut(S1)×Aut(S2). Fix α ∈ Aut0(S), and
set α̂ = α ◦ ((ψ ◦ χ)(α))−1. Then α̂|Ω1(Z1) = Id, since α(Ω1(Z1)) = Ω1(Z1). Also, α̂ ≡ Id
(mod Z(S)), since, for g ∈ Si, α(g) ∈ SiZ3−i and hence pri(α(g)) ≡ α(g) (mod Z3−i).
By a similar argument, α̂|Ω1(Z(S)) ≡ Id (mod Ω1(Z1)). This proves that α ≡ ψ(χ(α))
(mod Aut1(S)) for each α ∈ Aut0(S), and hence (since Aut1(S) � Op(Aut0(S))) that
ρ ◦ ψ ◦ χ = ρ.

Thus, ρ ◦ ψ is surjective, and Ker(ρ ◦ ψ) is a p-group, since ψ is injective. So ψ induces
an isomorphism ψ̂ from Out(S1) × Out(S2) onto Aut0(S)/Op(Aut0(S)), and ψ̂−1 sends
the class of each α ∈ Aut0(S) to the class of χ(α).

(c) Write S2 = T2 × · · · × Tn × U , where Ti
∼= S1 for each i and U contains no

direct factors isomorphic to S1. Set T1 = S1, so that S = T1 × T2 × · · · × Tn × U . Fix
α ∈ Aut(S). By Proposition 3.1, there exists σ ∈ Σn such that α([Ti, Ti]) = [Tσ(i), Tσ(i)]
for each i. Since α(Ω1(Z(S))) = Ω1(Z(S)), and since Ω1(Z(S))∩ [Ti, Ti] = Ω1(Z(Ti)) by
assumption, α(Ω1(Z(Ti))) = Ω1(Z(Tσ(i))) for each i = 1, . . . , n.

Since Aut0(S) is the subgroup of automorphisms that send Ω1(Z(T1)) to itself, each of
its (left) cosets is the set of automorphisms that send Ω1(Z(T1)) to Ω1(Z(Ti)) for some
fixed 1 � i � n. Thus, [Aut(S) : Aut0(S)] = n, and this proves (a). �

With a little more work, one can show that in the situation of Proposition 3.2 (c), for
any fixed choice of isomorphism S ∼= (S1)n × T , the composite

Aut(S1) � Σn × Aut(T ) incl−−→ Aut(S) � Out(S) (3.1)
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of the natural inclusion followed by the projection is surjective and its kernel is a p-group.
Thus, Out(S) ∼= Out(S1) � Σn × Out(T ) if Aut(S1) is not a p-group.

The following is a more technical consequence of Proposition 3.2. It will be needed
in § 6 when identifying potential essential subgroups.

Lemma 3.3. Fix a finite p-group S and a subgroup P � S. Assume that Z(P ) = Z(S)
or, more generally, that AutS(P ) acts trivially on Z(P ). Assume also, for some p-group
T and some saturated fusion system F over S ×T , that PT is F-essential. Then there is
a subgroup Γ � Out(P ) such that OutS(P ) ∈ Sylp(Γ ) and Γ has a strongly p-embedded
subgroup.

Proof. Let pr1 : S × T → S and pr2 : S × T → T be the projections. Set

Γ ∗ = Op′
(OutF (PT )) and Γ̃ ∗ = Op′

(AutF (PT )),

so that Γ̃ ∗/ Inn(PT ) = Γ ∗. Since PT is F-essential, there is a strongly p-embedded sub-
group H < OutF (PT ) that contains OutST (PT ) (Lemma 1.9 (a)). Also, PT is fully
normalized in F , and hence OutST (PT ) ∈ Sylp(OutF (PT )).

Set H∗ = H ∩ Γ ∗. Then H∗ < Γ ∗ (H does not contain all Sylow p-subgroups of
OutF (PT ), while Γ ∗ does) and H∗ � OutST (PT ) �= 1. If g ∈ Γ ∗�H∗, then g /∈ H

implies H∗∩gH∗g−1 � H∩gHg−1 has order prime to p. Thus, H∗ is strongly p-embedded
in Γ ∗.

Since OutST (PT ) acts trivially on Z(PT ) (and PT is fully normalized in F since it
is F-essential), each Sylow p-subgroup of Γ ∗ acts trivially. Thus, Γ ∗ acts trivially on
Z(PT ), since it is generated by its Sylow p-subgroups. In particular, Γ̃ ∗ is contained in
the group Aut0(PT ) of automorphisms that send Ω1(Z(P )) to itself. Define

χ1 : Aut0(PT ) → Out(P ) and χ2 : Aut0(PT ) → Out(T )

by setting χ1(α) = [pr1 ◦α|P ] and χ2(α) = [pr2 ◦α|T ]. Set

χ = (χ1, χ2) : Aut0(PT ) → Out(P ) × Out(T ).

By Proposition 3.2 (b), χ is a surjective homomorphism and Ker(χ) is a p-group.
The Sylow subgroup AutST (PT ) is contained in Ker(χ2), and hence Γ̃ ∗ � Ker(χ2),

since Γ̃ ∗ is generated by the Sylow p-subgroups of Aut0(PT ). Since Γ ∗ has a strongly
p-embedded subgroup, Op(Γ ∗) = 1 (Lemma 1.9 (c)), and hence χ1 induces an injection
of Γ ∗ into Out(P ).

By Proposition 3.2 (a), each element of Γ̃ ∗ sends PZ(T ) to itself. We have already
seen that each element of Γ̃ ∗ acts trivially on Z(PT ), and in particular on Z(T ). Hence,
there is a homomorphism ψ from Γ ∗ � Out(PT ) to Out(P ) that sends the class of
α ∈ Γ̃ ∗ to the class of the automorphism of PZ(T )/Z(T ) induced by α|PZ(T ). This is
equal (mod Op(Aut(P ))) to χ1, and hence ψ is injective. Set Γ = ψ(Γ ∗) � Out(P ).
Then Γ contains a strongly p-embedded subgroup, since Γ ∗ does (and Γ ∼= Γ ∗), and
ψ(OutST (PT )) = OutS(P ) ∈ Sylp(Γ ). �
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4. A general splitting proposition

We want to prove, under certain hypotheses, that a saturated fusion system over a
product of 2-groups splits as a product of fusion systems. Before doing this, we first
recall the definition of the product of two fusion systems.

Definition 4.1. Let F1 and F2 be fusion systems over p-groups S1 and S2, respectively,
and set S = S1 × S2. Then F1 × F2 is the fusion system over S where, for P, Q � S, if
Pi, Qi � Si denote the images of P and Q under projection, then

HomF1×F2(P, Q) = {(ϕ1, ϕ2)|P | ϕi ∈ HomFi(Pi, Qi), (ϕ1, ϕ2)(P ) � Q}.

It is not hard to see in the above situation that F1 × F2 is the smallest fusion system
over S1 × S2 that contains each morphism set HomF1(P1, Q1) × HomF2(P2, Q2) (for
Pi, Qi � Si) when regarded as a set of homomorphisms from P1×P2 to Q1×Q2. If F1 and
F2 are both saturated, then F1 ×F2 is also saturated (see, for example, [6, Lemma 1.5]).

The main result of this section is Proposition 4.4, which gives some very general con-
ditions for splitting fusion systems. Theorems A, B and C will be shown in later sections
as special cases of this result.

Throughout this section, whenever F is a fusion system over a p-group S, we write

Fc = {P � S | P is F-centric}.

By [1, Proposition 3.3], if F is a saturated fusion system over a p-group S = S1 × S2,
where S1 and S2 are strongly closed in F and Op′

(F) = F , then F = F1 × F2 for some
pair of saturated fusion systems Fi over Si. This played an important role when studying
automorphisms of products of fusion systems in [1, § 3], but, unfortunately, it does not
seem to be very helpful for our purposes here.

Proposition 4.4 can be regarded as a stronger version of [1, Proposition 3.3], in that
we only assume S1 and S2 are strongly closed in certain fusion subsystems of F but not
in F itself. However, this is shown at the expense of adding the additional hypotheses
that p = 2 and O2(F) = F .

The following definition, which will be used only within this section, will be needed
when handling ‘fusion subsystems’ that satisfy all of the conditions in the definition
except the one which says that they contain the fusion system of the underlying p-group.
The term ‘restrictive (sub)category’ is taken from [5], although it is used slightly differ-
ently here.

Definition 4.2. Let F be a fusion system over a p-group S. A restrictive subcategory
of F is a subcategory E ⊆ F with the same objects, and with the property that, for
each P0 � P � S and Q0 � Q � S, and each ϕ ∈ HomE(P, Q) such that ϕ(P0) � Q0,
ϕ|P0 ∈ HomE(P0, Q0), and ϕ−1|Q0 ∈ HomE(Q0, P0) if ϕ(P0) = Q0.

Thus, when F is a fusion system over S, a restrictive subcategory E ⊆ F is a fusion
subsystem if and only if AutE(S) � Inn(S). Just as for fusion systems, when E is a
restrictive subcategory over S and T � S, E|T denotes the full subcategory whose objects
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are the subgroups of T . Also, when H is a set of subgroups of S, we say that E is H-
generated if each morphism in E is a composite of restrictions of morphisms between
subgroups in H.

Lemma 4.3. Fix a pair of p-groups S1 and S2, and set S = S1 × S2. Let F be a
saturated fusion system over S. Set

F•
1 = 〈AutF (P ) | S2 � P � S, P is F-essential or P = S〉,

and assume S1 is strongly closed in F•
1 . Set

T = {P � S | P � S2} and T c = T ∩ Fc.

Whenever P ∈ T , we set P1 = P ∩ S1 (so P = P1S2). Then the following hold.

(a) If P, Q � S are such that P ∈ T , then HomF•
1
(P, Q) = HomF (P, Q). If P ∈ T c

and Q ∈ PF , then Q ∈ T c.

(b) There is a T c-generated, restrictive subcategory E•
1 of F•

1 such that, for P, Q ∈ T c,

HomE•
1
(P, Q) = {ϕ ∈ HomF (P, Q) | ϕ(g) ∈ gS1 for all g ∈ P}.

(c) Set F•
1 = F1|S1 and E1 = E•

1 |S1 . Then F1 and E1 are both saturated fusion systems
over S1, and E1 is a weakly normal fusion subsystem of index prime to p in F1.
Also, F•

1 = 〈E•
1 , AutF (S)〉.

(d) For all P ∈ T c,

(i) α ∈ AutE•
1
(P ) and α|P1 = IdP1 imply α = IdP

(ii) [AutE•
1
(P ), P ] = [AutE1(P1), P1], and

(iii) restriction to P1 induces a bijection HomE•
1
(P, S) R−→∼= HomE1(P1, S1).

(e) For all P ∈ T ,

P1 fully norm. in F1 ⇐⇒ P1 fully norm. in F =⇒ P fully norm. in F ,

P1 fully centr. in F1 ⇐⇒ P1 fully centr. in F =⇒ P fully centr. in F ,

P1 is F1-centric ⇐⇒ P is F-centric.

Proof. (a) Let pr2 ∈ Hom(S, S2) be the projection. By Proposition 1.10 (a), for all
P ∈ T and all ϕ ∈ HomF (P, S), we can write ϕ = ψm ◦ · · · ◦ ψ1, where each ψi is the
restriction of an automorphism of some Qi � S that is F-essential or equal to S. Let
j � m be such that Qi � S2 for all i = 1, . . . , j (hence Qi ∈ T c), and either j = m or
Qj+1 � S2. Set ϕ∗ = ψj ◦· · ·◦ψ1. Then ϕ∗ ∈ Mor(F•

1 ), and ϕ∗(P ∩S1) = ϕ∗(P )∩S1 since
S1 is strongly closed. It follows that ϕ∗(S2)∩S1 = ϕ∗(S2)∩ϕ∗(P ∩S1) = 1, so pr2 ◦ϕ∗|S2

is injective, and hence pr2(ϕ∗(S2)) = S2. If j < m, then pr2(Qj+1) � pr2(ϕ∗(S2)) = S2,
Qj+1 = R1R2 for some Ri � Si by Lemma 1.11 (a), and hence R2 = S2 and Qj+1 � S2.
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This contradicts our assumption on j, and we conclude that j = m and ϕ∗ = ϕ. In
particular, ϕ ∈ HomF•

1
(P, S).

Now assume P ∈ T c and ϕ ∈ HomF (P, S). We must show ϕ(P ) � S2, i.e. ϕ(P ) ∈ T c.
Since ϕ is in F•

1 , it suffices to show this when ϕ = α|P for some α ∈ AutF (Q), where
Q is F-essential or Q = S. Set Q1 = Q ∩ S1, so Q = Q1S2. Then α(Q1) = Q1, since S1

is strongly closed in F•
1 , and α(Z(Q1)S2) = Z(Q1)S2, since Z(Q1)S2 = CQ(Q1). Since

P � Q is F-centric and contains S2, P � Z(Q1)S2, and so α(P ) � Z(Q1)S2 � S2.

(b) The formula for HomE•
1
(P, Q) clearly defines a category with objects in T c, which

is contained in F•
1 by (a). Since Q � P ∈ T c implies Q ∈ T c, restriction to arbitrary

subgroups of S now defines a restrictive subcategory of F•
1 , with morphisms between

subgroups in T c as given.

(d) Fix P = P1S2 ∈ T c. By definition,

AutE•
1
(P ) = Ker[f : AutF (P ) → Aut(P/P1)] � AutF (P ). (4.1)

(Recall that α(P1) = P1 for all α ∈ AutF (P ) by (a).)
Choose ϕ ∈ IsoF (P, R), where R is fully normalized in F . Then ϕ ∈ Mor(F•

1 ), R � S2

and ϕ(P1) = R1 := R ∩ S1 by (a). Let

cϕ : AutF (P )
∼=−→ AutF (R)

be conjugation by ϕ (cϕ(α) = ϕαϕ−1). Then cϕ(AutE•
1
(P )) = AutE•

1
(R) by (4.1), and so

(i) and (ii) hold for P if they hold for R. It thus suffices to prove them when P is fully
normalized in F .

Set
Γ = {α ∈ AutF (P ) | α induces the identity on P1 and on P/P1}.

We must show Γ = 1. By (a), α(P1) = P1 for all α ∈ AutF (P ), and hence Γ � AutF (P ).
Also, Γ is a p-subgroup by Lemma 2.1, and thus Γ � AutS(P ) ∈ Syl2(AutF (P )). But
each element of AutS(P ) sends S2 to itself, so Γ contains only the identity. This proves (i).

We next prove (ii). Since AutS(P ) ∈ Sylp(AutF (P )), and AutE•
1
(P ) � AutF (P )

by (4.1), AutS1(P ) = AutS(P ) ∩ AutE•
1
(P ) is a Sylow p-subgroup of AutE•

1
(P ). Also,

[AutS1(P ), P ] = [AutS1(P1), P1] � [AutE1(P1), P1], so it remains to check that [H, P ] �
[AutE1(P1), P1] for each H � AutE•

1
(P ) of order prime to p. For each such H, [H, P ] � P1

by definition of E•
1 , [H, P ] = [H, [H, P ]] by [8, Theorem 5.3.6] or [2, 24.5], and so

[H, P ] � [H, P1] � [AutE1(P1), P1].
The restriction map R in (iii) is well defined, since S1 is strongly closed in F•

1 ⊇ E•
1 .

If χ1, χ2 ∈ HomE•
1
(P, S) are such that R(χ1) = R(χ2) = ϕ, then Im(χ1) = ϕ(P1)S2 =

Im(χ2), and χ−1
2 ◦ χ1 ∈ AutE•

1
(P ) is the identity on P1, and hence the identity on P

by (i). Thus, χ1 = χ2, and so R is injective.
To see that R is surjective, fix ψ ∈ HomE1(P1, S1). By definition of E•

1 (or by (b)),
we can write ψ = ψk ◦ · · · ◦ ψ1, where each ψi is the restriction of a E•

1 -morphism
between subgroups in T c. If ψ1 = ψ̂1|P1 , where ψ̂1 ∈ HomE•

1
(R, T ) for R, T ∈ T c, then

R � P1S2 = P , Q := ψ̂1(P ) ∈ T c by (a), and ψ1(P1) = Q1 since S1 is strongly closed in
F•

1 . Thus, ψ1 extends to a morphism on P with image in T c, and by induction on k the
same holds for ψ.
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(e) Fix P1 � S1. Assume Q ∈ P1
F is fully centralized in F , and fix ϕ ∈ IsoF (P1, Q).

Since Q is fully centralized, ϕ extends to some ϕ̄ ∈ HomF (P1S2, S) by the extension
axiom. By (a), ϕ̄ ∈ HomF•

1
(P1S2, S). Thus, Q = ϕ̄(P1) � S1 since S1 is strongly closed in

F•
1 , and Q is F1-conjugate to P1. Since CS1(P1) = CS1(Q) if and only if CS(P1) = CS(Q)

(and similarly for normalizers), P1 is fully centralized (fully normalized) in F1 if and only
if it is fully centralized (fully normalized) in F .

Now fix P ∈ T , and set P1 = P ∩ S1 as usual. Assume P1 is fully normalized in F .
Fix Q ∈ PF which is fully normalized in F , and choose ϕ ∈ IsoF (P, Q). Then Q1 :=
Q ∩ S1 = ϕ(P1) since ϕ ∈ Mor(F•

1 ) by (a) (and since S1 is strongly closed in F•
1 ). So

|NS(P )| = |NS(P1)| � |NS(Q1)| � |NS(Q)|, and thus P is also fully normalized in F .
To prove the corresponding result for fully centralized subgroups, first note that any

R � S is fully centralized in F if and only if |CS(R) · R| is maximal in the F-conjugacy
class of R. So assume P1 � S1 is fully centralized in F , and choose Q � S and ϕ ∈
IsoF (P, Q) as in the last paragraph. Thus, Q1 = ϕ(P1) by (a). Also, Q � CS(Q1) · Q1

since P � CS(P1) · P1, so CS(Q) · Q � CS(Q1) · Q1. Hence,

|CS(P ) · P | = |CS(P1) · P1| � |CS(Q1) · Q1| � |CS(Q) · Q|

(the equality since P � S2 and the first inequality since P1 is fully centralized), and so
P is fully centralized in F since Q is.

A subgroup R � S is F-centric if and only if R is fully centralized in F and R �
CS(R), and similarly for F1-centric subgroups. Thus, P1 ∈ Fc

1 implies P ∈ Fc by the
corresponding result for fully centralized subgroups. It remains to prove the converse.

Assume P ∈ Fc; equivalently, P ∈ T c. Choose a Q1 � S1 which is F1-conjugate to
P1 and fully centralized in F1 (hence also in F). Then any ϕ ∈ IsoF1(P1, Q1) extends
to some ϕ̄ ∈ HomF (P, S) by the extension axiom. Since P ∈ T c, ϕ̄(P ) � S2 by (a),
so ϕ̄(P ) = Q1S2, and CS(Q1S2) = CS1(Q1)Z(S2) � Q1S2 since P is F-centric. Hence,
CS1(Q1) � Q1, and so Q1, P1 ∈ Fc

1 since Q1 is fully centralized.

(c) If P � S1 is fully normalized in F1, then it is fully normalized in F by (e), hence
is fully centralized in F and fully centralized in F1 by (e). Also, AutS1(P ) = AutS(P ) is
a Sylow p-subgroup of AutF1(P ) = AutF (P ), and this proves the Sylow axiom for F1.

Assume ϕ ∈ IsoF1(P, Q), where Q is fully centralized in F1 and hence in F . Let
Nϕ � NS1(P ) be the subgroup of those g such that ϕcgϕ

−1 ∈ AutS1(Q). Then ϕ extends
to some ϕ̂ ∈ HomF (NϕS2, S) by the extension axiom for F , ϕ̂ ∈ HomF•

1
(NϕS2, S) by (a),

and so ϕ̂(Nϕ) � S1, since S1 is strongly closed in F•
1 . Then ϕ̄ = ϕ̂|Nϕ ∈ HomF1(Nϕ, S1),

and this proves the extension axiom for F1. Thus, F1 is saturated.
Recall that E1 = E•

1 |S1 , where E•
1 is as described in (b). Hence, E•

1 is invariant under
conjugation by elements in AutF (S), and E1 is invariant under conjugation by elements
in AutF1(S1).

We next show that
F•

1 = 〈E•
1 , AutF (S)〉. (4.2)

Assume that P � S2 and that P is F-essential. By (4.1), AutE•
1
(P ) � AutF (P ). So

AutE•
1
(P ) · Inn(P ) is normal in AutF (P ) and contains the Sylow 2-subgroup AutS(P )
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(since AutP∩S1(P ) � AutE•
1
(P )). It follows that AutE•

1
(P ) · Inn(P ) � O2′

(AutF (P )).
Since

F•
1 = 〈AutF (S), O2′

(AutF (P )) | P � S2 is F-essential〉

by Proposition 1.10 (b), this finishes the proof of (4.2).
Upon restricting to S1, (4.2) implies that F1 = 〈E1, AutF1(S1)〉. We have already seen

that E1 is invariant under conjugation by elements of AutF1(S1), so E1 is F1-invariant.
Since P1 � S1 is E1-centric if and only if P = P1S2 ∈ T c by (e) (and Lemma 1.5), and

since E•
1 is T c-generated by construction, E1 is Ec

1-generated. Hence, by Theorem 1.3, to
show E1 is saturated, it suffices to check the axioms on E1-centric subgroups (equivalently,
F1-centric by Lemma 1.5). Also by Lemma 1.5, a subgroup of S1 is fully normalized (fully
centralized) in E1 if and only if it is in F1. In particular, if P is fully normalized in E1, then
it is fully centralized, and AutS1(P ) ∈ Sylp(AutE1(P )) since AutS1(P ) ∈ Sylp(AutF1(P ))
and AutE1(P ) � AutF1(P ). The Sylow axiom thus holds.

Fix ϕ ∈ IsoE1(P1, Q1), where P1 and Q1 are F1-centric, and set P = P1S2 and Q =
Q1S2. Thus, P, Q ∈ T c by (e). By (iii) and (b), there exists ψ ∈ IsoF (P, Q) such that
ψ|P1 = ϕ and ψ(g) ∈ gS1 for all g ∈ P . Let Nϕ be the group of all g ∈ NS1(P1) such
that ϕcgϕ

−1 ∈ AutS1(Q1). Fix g ∈ Nϕ and choose h ∈ NS1(Q1) such that ϕ ◦ cg =
ch ◦ ϕ ∈ Iso(P1, Q1). Then ψ ◦ cg and ch ◦ ψ are two morphisms in HomF (P, Q) that
are equal after restriction to P1, and that both induce the identity from P/P1 to Q/Q1.
So, by (i), applied to (ch ◦ ψ)−1 ◦ (ψ ◦ cg) ∈ AutF (P ), ψ ◦ cg = ch ◦ ψ, and thus g ∈ Nψ.
By the extension axiom applied to F , ψ extends to a morphism ψ̄ ∈ HomF (NϕS2, S),
ψ̄ ∈ Mor(E•

1 ), since NϕS2 ∈ T c, and hence ψ̄|Nϕ
∈ HomE1(Nϕ, S1) extends ϕ.

We have now shown that E1 is Ec
1-saturated. Since E•

1 is T c-generated by definition,
E1 is Ec

1-generated by (e). So E1 is saturated by Theorem 1.3. We have already shown
that it is F1-invariant, and hence it is weakly normal. By Theorem 1.7 (b), E1 has index
prime to p in F1. �

The following is our main general proposition for decomposing a fusion system. Theo-
rems 5.2 and 6.2 will follow as consequences of this.

Proposition 4.4. Fix a pair of 2-groups S1 and S2 and set S = S1 × S2. Let F be a
saturated fusion system over S. For i = 1, 2, define

F•
i = 〈AutF (P ) | S3−i � P � S, P is F-essential or P = S〉

as a fusion subsystem of F over S. Assume that

(a) O2(F) = O2′
(F) = F , and

(b) Si is strongly closed in F•
i for i = 1, 2.

Then F = F1 × F2 for some pair of saturated fusion systems Fi over Si.
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Proof. For i = 1, 2, let pri ∈ Hom(S, Si) be the projection, and set

Ti = {P � S | P � S3−i},

T c
i = Ti ∩ Fc,

U = {P = P1P2 | Pi � Si, P1S2, S1P2 ∈ Fc} = {P ∩ Q | P ∈ T c
1 , Q ∈ T c

2 }.

In general, for any P ∈ U or P ∈ Ti, we set Pi = pri(P ) � Si (so P = P1P2).
Since AutF•

1
(S) = AutF•

2
(S) = AutF (S) by definition of F•

i , (b) implies that

α ∈ AutF (S) =⇒ α(S1) = S1 and α(S2) = S2. (4.3)

Define restrictive subcategories E•
i as in Lemma 4.3: E•

i is the T c
i -generated restrictive

subcategory of F•
i where, for each P, Q ∈ T c

i ,

HomE•
i
(P, Q) = {ϕ ∈ HomF (P, Q) | ϕ(g) ∈ gSi for all g ∈ P}.

Set Fi = F•
i |Si

and Ei = E•
i |Si . By Lemma 4.3 (c), Ei and Fi are both saturated fusion

systems over Si.

Step 1. We first show, for each i = 1 or i = 2, that

P ∈ U , ψ ∈ HomE•
i
(P, S) =⇒ ψ(P ) = ψ(Pi)P3−i, ψ(g) ∈ gSi ∀g ∈ P. (4.4)

To simplify the notation, we prove this for i = 1. Fix ψ ∈ HomE•
1
(P, S). Since E•

1 is T c
1 -

generated, ψ = ψm◦· · ·◦ψ1, where each ψj is the restriction of some χj ∈ HomE•
1
(Qj , Rj)

for Qj , Rj ∈ T c
1 . Then P = P1P2 � Q1 ∈ T c

1 , so P1S2 � Q1, P1S2 ∈ T c
1 , and χ1(P1S2) ∈

T c
1 by Lemma 4.3(a). Thus, χ1(P1S2) � χ1(P1)S2, with equality since they have the

same order. Also, χ1(g) ∈ gS1 for each g ∈ P1S2 by definition of E•
1 , so ψ1(P ) = χ1(P ) =

χ1(P1)P2 = ψ1(P1)P2 ∈ U . Upon continuing this argument with the other ψj , we see
that ψ(P ) = ψ(P1)P2, that ψ(g) ∈ gS1 for all g ∈ P , and also that ψ extends to
ψ̂ ∈ IsoE•

1
(P1S2, ψ(P1)S2). Since S1P2 and ψ(P1)S2 are both F-centric, ψ(P ) ∈ U . This

proves (4.4).
We next show, for i = 1 or i = 2, that for all P, Q ∈ U with P3−i = Q3−i, restriction

induces bijections

HomE•
i
(PiS3−i, QiS3−i)

R1−−→∼= HomE•
i
(P, Q) R2−−→∼= HomEi(Pi, Qi). (4.5)

The map R1 is defined by (4.4), and R2 is defined since Si is strongly closed in F•
i (hence

in E•
i ). We just showed that R1 is surjective, R2R1 is bijective by Lemma 4.3 (iii), and

this proves (4.5).
Fix i = 1, 2, P ∈ T c

i and ϕ ∈ HomE•
i
(P, S). Then ϕ|Pi ∈ Mor(Ei), so by Proposi-

tion 1.10 (a) (applied to the saturated fusion system Ei), ϕ|Pi = ψk ◦ · · · ◦ ψ1, where each
ψi is the restriction of an Ei-automorphism of a subgroup of Si that contains its source
and target. Hence, by (4.5), ϕ = ψ̂k ◦ · · · ◦ ψ̂1, where each ψ̂i is the restriction of an
E•

i -automorphism of a subgroup in T c
i . Thus, for i = 1, 2,

E•
i = 〈AutE•

i
(P ) | P ∈ T c

i 〉. (4.6)
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In particular,

foc(E•
i ) = 〈[AutE•

i
(P ), P ] | P ∈ T c

i 〉 = 〈[AutEi
(Pi), Pi] | P ∈ T c

i 〉 = foc(Ei), (4.7)

where the second equality holds by Lemma 4.3(ii), and the third since by definition,

〈[AutEi(Pi), Pi] | P ∈ T c
i 〉 � foc(Ei) � foc(E•

i ).

Notation.

For P ∈ U , i = 1, 2, Qi � Si and ϕ ∈ HomEi(Pi, Qi), let

ϕ ↑P ∈ HomE•
i
(P, QiP3−i)

be the morphism whose restriction to Pi is equal to ϕ. This exists and is unique by (4.5).

Step 2. By Lemma 4.3 (c), F•
i = 〈E•

i , AutF (S)〉. Hence,

F = 〈AutF (P ) | P = S or P is F-essential〉 = 〈F•
1 ,F•

2 〉 = 〈E•
1 , E•

2 , AutF (S)〉, (4.8)

where the first equality follows from Proposition 1.10 (a) and the second from Lemma
1.11 (b) and the definition of F•

i . We claim that

P ∈ U , ϕ ∈ HomF (P, S), Q = ϕ(P )

=⇒ Q ∈ U , ϕ(P1Z(P2)) = Q1Z(Q2), ϕ(P2Z(P1)) = Q2Z(Q1). (4.9)

By (4.8), it suffices to prove this when ϕ = ψ|P for some ψ ∈ AutF (S), or when ϕ ∈
HomE•

i
(P, S) for i = 1, 2. In the first case, ψ(Si) = Si for i = 1, 2 by (4.3). Hence,

ϕ(P ) = Q = Q1Q2, where Qi = ϕ(Pi) � Si, and all of the claims in (4.9) follow
immediately.

Now assume ϕ ∈ HomE•
1
(P, S) (the argument for E•

2 is similar). By (4.4), Q = Q1Q2 ∈
U (Qi � Si), where Q2 = P2 and Q1 = ϕ(P1), and ϕ(g) ∈ gQ1 for each g ∈ P . In
particular, ϕ(P1Z(P2)) = Q1Z(Q2). Also, ϕ sends CP (P1) = Z(P1)P2 onto CQ(Q1) =
Z(Q1)Q2, and this finishes the proof of (4.9).

Again fix P = P1P2 ∈ U , and consider α ∈ AutF (P ). If g ∈ NS1(P ) is such that
αcgα

−1 ∈ AutS(P ), then, by the extension axiom, α extends to β ∈ HomF (〈P, g〉, S),
where β(g) = h = h1h2 for hi ∈ NSi(P ). Set Q = Im(β) = 〈P, h〉. By (4.9), β(〈P1, g〉) �
〈P1, h1〉Z(P2), since Z(Q2) � Z(P2), so h2 ∈ Z(P2) and αcgα

−1 = ch = ch1 ∈ AutS1(P ).
After applying a similar argument to AutS2(P ), we have shown

P ∈ U =⇒ AutS1(P ), AutS2(P ) strongly closed in AutS(P ) with respect to AutF (P ).
(4.10)

Step 3. We next claim that

P ∈ U , Q1 � S1, Q2 � S2, α ∈ IsoE1(P1, Q1), β ∈ IsoE2(P2, Q2)

=⇒ (β ↑Q1P2) ◦ (α ↑P ) = (α ↑P1Q2) ◦ (β ↑P ). (4.11)
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Assume first that P2 = S2, so that Q2 = S2 and P ∈ T c
1 . Set β̂ = β ↑S∈ AutE•

2
(S). Then

β̂(S1) = S1 by (4.3), and hence β̂|S1 = IdS1 by (4.4). Thus, the composite

ψ := ((β̂|Q1P2) ◦ (α ↑P ))−1 ◦ ((α ↑P1Q2) ◦ (β̂|P )) ∈ AutF (P )

induces the identity on P1 and on P/P1. Hence, ψ ∈ AutE•
1
(P ) by definition of E•

1 , and
so ψ = IdP by the injectivity in (4.5). This proves (4.11) when P2 = S2, and a similar
argument proves it when P1 = S1.

Now assume Pi < Si for i = 1, 2. We can assume inductively that (4.11) holds for
subgroups of order strictly larger than |P |. Thus, in the situation of (4.11), if α is a
composite of restrictions of isomorphisms α̂i between strictly larger subgroups of S1,
then (4.11) holds for the α̂i, and hence holds for α. Similarly, if β is a composite of
restrictions of isomorphisms between strictly larger subgroups of S2, then (4.11) again
holds. So, by Proposition 1.10 (a), we are now reduced to proving this when P1 = Q1 is
E1-essential and P2 = Q2 is E2-essential.

Set Gi = AutE•
i
(P ) and G = AutF (P ). Then [Gi, P ] = [AutEi(Pi), Pi] � Si by

Lemma 4.3 (ii), so [G1, P ] ∩ [G2, P ] = 1. Let Hi � Gi be the subgroup generated by
automorphisms which extend (in E•

i ) to larger subgroups. We showed in the last para-
graph that [Hi, G3−i] = 1 for i = 1, 2. Also,

OutEi(Pi) = AutEi(Pi)/ Inn(Pi) ∼= AutE•
i
(P )/AutPi(P ) = Gi/AutPi(P ),

where the isomorphism follows by (4.5). So, by Proposition 1.10 (c) applied to OutEi
(Pi),

Hi/AutPi(P ) is strongly 2-embedded in Gi/AutPi(P ). By (4.10), both AutS1(P ) and
AutS2(P ) are strongly closed in AutS(P ) with respect to AutF (P ). So [G1, G2] = 1 by
Corollary 2.9, applied to the actions of G1, G2 � G on P , and this finishes the proof
of (4.11).

Step 4. Set E = 〈E•
1 , E•

2 〉 ⊆ F as a fusion system over S. Thus, F = 〈E , AutF (S)〉
by (4.8). For each α ∈ AutF (S) and each i = 1, 2, αE•

i = E•
i , since α(Si) = Si by (4.3),

and hence αE = E . This proves that E is F-invariant. Throughout the remainder of this
step, we prove that E is saturated and hence a weakly normal subsystem of F .

By (4.4), for i = 1, 2, P ∈ QE•
i if and only if Pi ∈ Qi

Ei and P3−i = Q3−i. Also,
E-conjugacy is the equivalence relation generated by E•

1 - and E•
2 -conjugacy. Hence, for

all P, Q ∈ U ,
P ∈ QE ⇐⇒ Pi ∈ Qi

Ei for i = 1, 2. (4.12)

This in turn implies that

P ∈ U and fully normalized in E =⇒ Pi is fully normalized in Ei for i = 1, 2. (4.13)

All elements of U contain their centralizer by definition. Hence, U ⊆ Fc and U ⊆ Ec

since U is a union of F-conjugacy classes by (4.9). Together with (4.12), this shows

P ∈ U =⇒ P ∈ Ec, P ∈ Fc and Pi is Ei-centric for i = 1, 2. (4.14)
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We next claim that

P, Q ∈ U , ϕ ∈ IsoE(P, Q) =⇒ ∃! ϕ1 ∈ IsoE•
1
(P, Q1P2), ϕ2 ∈ IsoE•

2
(Q1P2, Q)

such that ϕ = ϕ2 ◦ ϕ1. (4.15)

To see this, write ϕ = ψm ◦ · · · ◦ ψ1, where each ψi is an isomorphism in E•
1 or in E•

2
(recall E = 〈E•

1 , E•
2 〉). By (4.11), if, for some i, ψi+1 ∈ Mor(E•

1 ) and ψi ∈ Mor(E•
2 ), then

ψi+1 ◦ ψi = ψ′
i+1 ◦ ψ′

i for some pair of isomorphisms ψ′
i+1 in E•

2 and ψ′
i in E•

1 . We can
thus arrange that the morphisms in E•

1 all come before morphisms in E•
2 . Hence, there

exist isomorphisms ϕi in E•
i such that ϕ = ϕ2 ◦ ϕ1. If ϕ′

1 and ϕ′
2 are another such pair of

isomorphisms, then ψ := (ϕ′
2)

−1 ◦ϕ2 = ϕ′
1 ◦ϕ−1

1 is an automorphism of Q1P2 in both E•
1

and E•
2 . Hence, by (4.4), ψ sends Q1 and P2 to themselves and induces the identity on

Q1P2/Q1 and on Q1P2/P2; so ψ = Id. Thus, ϕ′
i = ϕi for i = 1, 2, and the decomposition

in (4.15) is unique.
We are now ready to prove that E is saturated. For each i = 1, 2, E•

i is T c
i -generated

by definition, and hence is U-generated, since U ⊇ T c
i . So E = 〈E•

1 , E•
2 〉 is U-generated.

Each P ∈ U is E-centric by (4.14), and hence is fully centralized in E . If P = P1P2 ∈ U
is fully normalized in E , then each Pi is fully normalized in Ei by (4.13), AutS(Pi) ∈
Syl2(AutEi(Pi)) for i = 1, 2 and so AutS(P ) ∈ Syl2(AutE(P )), since by (4.15) and (4.5)
|AutE(P )| = |AutE1(P1)| · |AutE2(P2)|. The Sylow axiom thus holds for subgroups in U .

Next fix P, Q ∈ U and ϕ ∈ IsoE(P, Q). Let ϕ = ϕ2 ◦ ϕ1 be the decomposition of
(4.15) (ϕi ∈ Mor(E•

i )), and set χi = ϕi|Pi ∈ HomEi(Pi, Qi). As usual, let Nϕ � NS(P )
be the subgroup of all g ∈ NS(P ) such that ϕcgϕ

−1 � AutS(Q), and similarly for
Nχi

� NSi
(Pi). Set Ni = Nχi

for short, and N = N1N2.
Fix g ∈ Nϕ, and choose h ∈ NS(Q) such that ϕcgϕ

−1 = ch. Write g = g1g2 and
h = h1h2, where gi, hi ∈ Si. Thus, ch ◦ ϕ = ϕ ◦ cg, and hence

(ch2 ◦ ϕ2) ◦ (ch1 ◦ ϕ1) = ch2 ◦ ch1 ◦ ϕ2 ◦ ϕ1 = ϕ2 ◦ ϕ1 ◦ cg2 ◦ cg1 = (ϕ2 ◦ cg2) ◦ (ϕ1 ◦ cg1),

where the first and third equalities follow from (4.11). By the uniqueness in (4.15),
chi

◦ ϕi = ϕi ◦ cgi for i = 1, 2, so gi ∈ Ni and g ∈ N . Thus, Nϕ � N . Since Ei

is saturated and Qi is Ei-centric by (4.14) (hence fully centralized), χi extends to a
morphism χ̄i ∈ HomEi(Ni, Si). Thus, by (4.5), ϕ extends to

χ̄2 ↑S1N2 ◦χ̄1 ↑N∈ HomE(N, S).

Since Nϕ � N , this proves the extension axiom for E on subgroups in U .
We have now shown that E is U-saturated and U-generated. Assume P � S is E-centric

but not in U , and set Pi = pri(P ). Then P is F-centric by Lemma 1.5 and since E is
F-invariant, so P1S2 and S1P2 are F-centric, and thus P1P2 ∈ U . Since P /∈ U , this
implies P < P1P2, and hence OutS(P ) ∩ O2(Out(P )) �= 1 by Lemma 1.11. Thus, E is
saturated by Theorem 1.3.

Step 5. Now, E is weakly normal in F , since it is saturated and F-invariant by step 4.
Also, E and F are both fusion systems over S, so E has odd index in F by Theorem 1.7 (b).
Thus, E = F , since O2′

(F) = F .
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Since E = 〈E•
1 , E•

2 〉, foc(E) = 〈foc(E•
1 ), foc(E•

2 )〉. By (4.7), foc(E•
i ) = foc(Ei) � Si. Since

O2(F) = F , foc(E) = S by Theorem 1.7 (a), and thus foc(E•
i ) = Si for i = 1, 2.

Fix P ∈ T c
1 and Q ∈ T c

2 , and set R = P∩Q = P1Q2 ∈ U . Then [AutE•
1
(R), AutE•

2
(R)] =

1 by (4.11) and (4.5), and [AutE•
i
(R), R] � R∩foc(E•

i ) = Ri (i = 1, 2). So, by Lemma 2.10
(applied with K = R and Gi = AutE•

i
(R)), AutE•

1
(R) acts trivially on [AutE•

2
(R), R],

and in particular on [AutE2(Q2), Q2]. For fixed P , the groups [AutE2(Q2), Q2] (for all
Q ∈ T c

2 ) generate foc(E•
2 ) = foc(E2) = S2 by (4.7), and hence [AutE•

1
(P ), S2] = 1. Since

by (4.6) E•
1 is generated by such automorphisms, this proves that S2 is strongly closed

in E•
1 . A similar argument proves that S1 is strongly closed in E•

2 .
Since each Si is strongly closed in E•

i ⊆ F•
i by assumption, this proves that S1 and S2

are strongly closed in F = E = 〈E•
1 , E•

2 〉. Each morphism in E•
i extends to a morphism

that is the identity on S3−i. So, by definition of the product of fusion systems (and since
E•

i = Ei|Si), F = 〈E•
1 , E•

2 〉 = E1 × E2. �

5. A first application of Proposition 4.4

Recall that, when G is a group and H � G is a subgroup, K is a normal complement to
H in G if K � G, K ∩ H = 1 and KH = G. Equivalently, K is a normal complement
exactly when the inclusions of H and K into G induce an isomorphism K � H

∼=−→ G.

Lemma 5.1. Fix a pair of p-groups S1 and S2, and set S = S1 × S2. Let F be a
saturated fusion system over S. Set

F•
1 = 〈AutF (P ) | S2 � P � S, P is F-essential or P = S〉,

and assume Ω1(Z(S2)) is strongly closed in F•
1 . Then there is a normal complement S0

1
to Z(S2) in S1Z(S2) that is strongly closed in F•

1 .

Proof. For i = 1, 2, set Zi = Z(Si) and Ŝi = SiZ3−i. If P = S or P � S2 is
F-essential, then AutF (P ) sends Ω1(Z2) to itself, and hence P ∩ Ŝ1 is AutF (P )-invariant
by Proposition 3.2 (a). Since F•

1 is generated by such automorphisms, Ŝ1 is strongly
closed in F•

1 .
Let pr2 ∈ Hom(S, S2) be the projection. We claim that

ϕ ∈ HomF (S2, S) =⇒ ϕ(Ω1(Z2)) = Ω1(Z2) and pr2(ϕ(S2)) = S2. (5.1)

By Proposition 1.10 (a), each such ϕ decomposes as a composite ϕ = ψm ◦ · · · ◦ψ1, where
each ψi is the restriction of an F-automorphism of Qi, and Qi = S or Qi is F-essential.
Let j � m be such that Qi � S2 for all i = 1, . . . , j, and either j = m or Qj+1 � S2.
Set ϕ∗ = ψj ◦ · · · ◦ ψ1. For each i � j, ψi(Ω1(Z2)) = Ω1(Z2) by assumption. Hence,
ϕ∗(Ω1(Z2)) = Ω1(Z2), and pr2 ◦ϕ∗ is injective, since the kernel must contain a central
element of order p. Thus, pr2(ϕ∗(S2)) = S2. If j < m, then pr2(Qj+1) � pr2(ϕ∗(S2)) =
S2, and since Qj+1 = R1R2 for some Ri � Si by Lemma 1.11 (a) this implies Qj+1 � S2.
That contradicts the original choice of j, and thus j = m and ϕ∗ = ϕ. This proves (5.1).

Set F̂1 = F|Ŝ1
. In other words, HomF̂1

(P, Q) = HomF (P, Q) for P, Q � Ŝ1. We will
show in step 1 that F̂1 is saturated. Then, in step 2, we construct S0

1 as the kernel of a
certain homomorphism defined using the transfer for CF̂1

(Ω1(Z2)).
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Step 1. We first claim that

P � S is fully centralized in F and F-conjugate to Q � Ŝ1 =⇒ P � Ŝ1. (5.2)

To see this, fix such P and Q, and choose ϕ ∈ IsoF (Q, P ). Since S2 � CS(Q), ϕ extends
to some ϕ̄ ∈ HomF (QS2, S), and P = ϕ(Q) � CS(ϕ̄(S2)). By (5.1), pr2(ϕ̄(S2)) = S2,
and hence CS(ϕ̄(S2)) � Ŝ1. Thus, P � Ŝ1.

Fix P � Ŝ1, and choose Q ∈ PF which is fully normalized in F . Then Q � Ŝ1 (hence
Q ∈ P F̂1) by (5.2). For each R � Ŝ1, |NS(R)| = |NŜ1

(R)| · [S2 : Z2] and |CS(R)| =
|CŜ1

(R)| · [S2 : Z2]. Thus, Q is fully normalized and fully centralized in F̂1 since it is
fully normalized and fully centralized in F . Hence,

P � Ŝ1 is fully normalized in F̂1 ⇐⇒ |NŜ1
(P )| = |NŜ1

(Q)|
⇐⇒ |NS(P )| = |NS(Q)|
⇐⇒ P is fully normalized in F .

By a similar argument, P is fully centralized in F̂1 if and only if it is fully centralized in
F . So if P is fully normalized in F̂1, then it is fully centralized in F̂1 by the Sylow axiom
for F . Also, AutŜ1

(P ) = AutS(P ) is a Sylow p-subgroup of AutF̂1
(P ) = AutF (P ), and

this proves the Sylow axiom for F̂1.
Assume ϕ ∈ IsoF̂1

(P, Q), where Q is fully centralized in F̂1 and hence in F . Let
Nϕ � NŜ1

(P ) be the subgroup of those g such that ϕcgϕ
−1 ∈ AutŜ1

(Q). Then ϕ extends
to some ϕ̂ ∈ HomF (NϕS2, S) by the extension axiom for F , pr2(ϕ̂(S2)) = S2 by (5.1),
and so ϕ̂(Nϕ) � CS(ϕ̂(S2)) � Ŝ1. Hence, ϕ̂|Nϕ

∈ HomF̂1
(Nϕ, Ŝ1) since F̂1 = F|Ŝ1

, and
this proves the extension axiom for F̂1. Thus, F̂1 is saturated.

Step 2. Fix P, Q � Ŝ1 and ϕ ∈ IsoF̂1
(P, Q). Choose an R ∈ QF , which is fully

centralized in F , and fix ψ ∈ IsoF (Q, R). By the extension axiom for F , there are
morphisms ψ̄ ∈ HomF (QS2, S) and ϕ̄ ∈ HomF (PS2, S) such that ψ̄|Q = ψ and ϕ̄|P =
ψ ◦ ϕ. Then ψ̄(Ω1(Z2)) = Ω1(Z2) and ϕ̄(Ω1(Z2)) = Ω1(Z2) by (5.1), and so ψ̄−1 ◦
ϕ̄|PΩ1(Z2) ∈ HomF̂1

(PΩ1(Z2), QΩ1(Z2)) is an extension of ϕ that sends Ω1(Z2) to itself.
This proves that Ω1(Z2) � F̂1.

Consider the centralizer fusion subsystem Ê1 = CF̂1
(Ω1(Z2)). This is the fusion system

over Ŝ1 = CŜ1
(Ω1(Z2)) where, for each P, Q � Ŝ1,

HomÊ1
(P, Q)

= {ϕ ∈ HomF̂1
(P, Q) | ϕ = ϕ̄|P for some

ϕ̄ ∈ HomF̂1
(PΩ1(Z2), QΩ1(Z2)) with ϕ̄|Ω1(Z2) = Id}.

By [6, Proposition A.6], this is a saturated fusion system, and by [1, Proposition 1.16(c)]
(and since Ω1(Z2) � F̂1) it is weakly normal in F̂1. It has index prime to p in F̂1, since
it is a weakly normal fusion subsystem over the same p-group (Theorem 1.7 (b)).

Consider the composite homomorphism

f : Ŝ1
proj
� Ŝ1/foc(Ê1)

trf−−→ Ŝ1/[Ŝ1, Ŝ1]
pr2−−→ Z2,
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where trf is the transfer homomorphism of Proposition 1.12, and the first map is the
canonical projection. By that proposition, f(z) = z for z ∈ Ω1(Z2). The actions of
AutF̂1

(Ŝ1) on Ŝ1/[Ŝ1, Ŝ1], Ŝ1/foc(Ê1) and Z2 all factor through the group Γ := OutF̂1
(Ŝ1)

of order prime to p. Define f̂ ∈ Hom(Ŝ1, Z2) by taking the product over the elements of
this group:

f̂(g) =
∏

[α]∈Γ

α(f(α−1(g))).

This is well defined since f(g) depends only on [g] ∈ Ŝ1/[Ŝ1, Ŝ1]. Then f̂ is AutF̂1
(Ŝ1)-

linear, and f̂(z) = z|Γ | for z ∈ Ω1(Z2). Hence, f̂ |Z2 is an isomorphism (recall p�|Γ |).
Set S0

1 = Ker(f̂). Then S0
1 is a normal complement to Z2 in Ŝ1 since f̂ |Z2 is an

isomorphism, S0
1 is AutF̂1

(Ŝ1)-invariant since f̂ is AutF̂1
(Ŝ1)-linear and it is strongly

closed in Ê1 since it contains its focal subgroup. Also, S0
1 is strongly closed in F̂1 since

F̂1 = 〈Ê1, AutF̂1
(Ŝ1)〉 (recall Ê1 is weakly normal in F̂1.) We have already seen that Ŝ1

is strongly closed in F•
1 , and thus S0

1 is strongly closed in F•
1 . �

The following theorem gives a more explicit set of conditions that imply a splitting of
a fusion system.

Theorem 5.2. Fix a pair of 2-groups S1 and S2 such that Ω1(Z(S1)) � [S1, S1],
and set S = S1 × S2. Let F be a saturated fusion system over S such that
O2(F) = F = O2′

(F). Assume, for i = 1, 2, that, whenever P = S or P is an F-essential
subgroup which contains Si, Ω1(Z(Si)) is AutF (P )-invariant. Then there are saturated
fusion systems Fi over Si and α ∈ Aut(S) such that αF = F1 × F2.

Proof. Set Zi = Z(Si) for short. As in Lemmas 4.3 and 5.1, set

F•
i = 〈AutF (P ) | S3−i � P � S, P is F-essential or P = S〉.

By assumption, Ω1(Zi) is strongly closed in F•
3−i.

Set Ŝi = SiZ3−i. By Lemma 5.1, for each i = 1, 2 there is a normal complement
S0

i to Z3−i in Ŝi that is strongly closed in F•
i . Also, [S0

1 , S0
1 ] = [Ŝ1, Ŝ1] = [S1, S1], so

Ω1(Z1) � [S1, S1] � S0
1 by assumption.

Now, S0
1 ∩S0

2 � Ŝ1∩ Ŝ2 = Z(S). Hence, if S0
1 ∩S0

2 �= 1, there is some 1 �= z1z2 ∈ S0
1 ∩S0

2
where zi ∈ Ω1(Zi). Since z1 ∈ Ω1(Z1) � S0

1 , this implies z2 ∈ S0
1 , which is impossible

since S0
1 is a normal complement to Z2 in Ŝ1. Thus, S0

1 ∩ S0
2 = 1. Hence, there is an

automorphism α ∈ Aut(S) that is the identity modulo Z(S) such that α(S0
i ) = Si.

Since α is the identity modulo Z(S), it sends each F-essential subgroup to itself. Hence,
αF•

1 and αF•
2 are defined in terms of αF in the same way as the F•

i are defined in terms
of F . Also, Si is strongly closed in αF•

i for i = 1, 2. So, by Proposition 4.4, αF splits as
a product of saturated fusion systems over S1 and S2. �

The following corollary gives explicit conditions in terms of the 2-groups S1 and S2

which imply the existence of a splitting.

Corollary 5.3. Fix a pair of non-trivial 2-groups S1 and S2, and set S = S1 × S2.
Assume the following conditions hold for each i = 1, 2:
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(i) Si is indecomposable and Ω1(Z(Si)) � [Si, Si]; and

(ii) S3−i contains no subgroup isomorphic to Si × Si.

Then, for every saturated fusion system F over S such that O2(F) = F = O2′
(F), there

are saturated fusion systems Fi over Si and α ∈ Aut(S) such that αF = F1 × F2.

Proof. Fix a saturated fusion system F over S. For i = 1 or 2, fix P � S containing
Si such that P = S or P is F-essential. Thus, P = SiP0 for some P0 � S3−i, and we must
show that Ω1(Z(Si)) is AutF (P )-invariant. Let Aut0F (P ) � AutF (P ) be the subgroup
of elements that send Ω1(Z(Si)) to itself. Since S3−i contains no subgroup isomorphic
to Si × Si by (ii), Aut0F (P ) has index at most two in AutF (P ) by Proposition 3.2 (c).
Since Aut0F (P ) contains the Sylow 2-subgroup AutS(P ) (P is fully normalized since it is
F-essential), it is equal to AutF (P ). The hypotheses of Theorem 5.2 thus hold, and the
result follows. �

6. Dihedral, semi-dihedral and wreathed 2-groups

We now look at a different set of conditions that imply a splitting of a fusion system.
Theorem 5.2 puts some fairly strict conditions on both factors S1 and S2. When one of
the factors is dihedral, semi-dihedral or a wreath product C2n � C2, the conditions on the
other factor can be greatly relaxed.

Lemma 6.1. Assume S ∼= D2n (n � 3), SD2n (n � 4) or C2n � C2 (n � 2). Then

(a) Aut(S) is a 2-group, and [S, S] is cyclic.

Define a set H of subgroups of S as follows:

• if S = 〈a, b〉 ∼= D2n (n � 3), where |a| = 2n−1, then H = {Ti | i ∈ Z}, where
Ti = 〈a2n−2

, aib〉 ∼= C2
2;

• if S = 〈a, b〉 ∼= SD2n (n � 4), where |a| = 2n−1 and |b| = 2, then H = {T2i, Q2i+1 |
i ∈ Z}, where T2i = 〈a2n−2

, a2ib〉 ∼= C2
2 and Q2i+1 = 〈a2n−3

, a2i+1b〉 ∼= Q8;

• if S = 〈a, b, t〉 ∼= C2n � C2 (n � 2), where 〈a, b〉 ∼= C2n × C2n , |t| = 2 and tat−1 =
b, then H = {A, U2i | i ∈ Z}, where A = 〈a, b〉 and U2i = 〈ab, a2n−1

, a2it〉 ∼=
C2n ×C2Q8.

Then the following hold.

(b) The set H is the union of exactly two S-conjugacy classes.

(c) For P ∈ H,

(c1) |NS(P )/P | = 2 and [NS(P ), P ] = P ∩ [S, S],

(c2) NS(P ) is not contained in any subgroup in H, and

(c3) either P is abelian or [P, P ] ∼= C2 and Z(P ) = Z(S).
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(d) Assume F is a saturated fusion system over S × T for some 2-group T . If P < S is
such that PT is F-essential, then P ∈ H.

(e) Fix a 2-group T and a saturated fusion system F over S ×T . If P � S is such that
PT is F-essential, then there exists θP ∈ AutF (PT ) of order 3 such that

(e1) OutF (PT ) = ΓP × HP , where ΓP = 〈[θP ], OutS(PT )〉 ∼= Σ3 and |HP | is odd,
and

(e2) [NS(P ), P ] � [θP , PT ] � PZ(T ), [θP , T ] � Z(PT ) and [θP , PT ] ∩ Z(T ) = 1.

Proof. Points (b) and (c) are easy.

(a) The second statement ([S, S] is cyclic) is easily checked. In all cases (S is dihedral,
semi-dihedral or wreathed), S/ Fr(S) ∼= C2

2. If S is dihedral or semi-dihedral, let A � S

be the cyclic subgroup of index 2; otherwise, let A be the unique abelian subgroup of
index 2. Then A is characteristic in S. Each automorphism of S induces the identity on
S/A ∼= C2 and on A/ Fr(S) ∼= C2, so Aut(S) is a 2-group by Lemma 2.1.

(d) We prove this case by case. Fix a 2-group T , a saturated fusion system F over
S × T and a subgroup P < S such that PT is F-essential.

Assume S = 〈a, b〉 is dihedral or semi-dihedral, where |a| = 2n−1 and |b| = 2. If P � S

is dihedral of order at least 8 or quaternion of order at least 16, then Z(P ) = Z(S), and
Out(P ) is a 2-group (Lemma 2.1 or (a)). So PT is not F-essential by Lemma 3.3. If
P � S is cyclic, then [NS(P ), P ] � Fr(P ), since it is a proper subgroup, and PT is not
F-essential by Proposition 1.10 (d). This leaves only the cases where P ∼= C2

2 or P ∼= Q8,
and hence P ∈ H.

Now assume S = 〈a, b, t〉 ∼= C2n � C2 (n � 2), where A = 〈a, b〉 ∼= C2n × C2n , t2 = 1 and
tat−1 = b. Set Ui = 〈ab, a2n−1

, ait〉 for all i ∈ Z. Thus, Ui
∼= C2n ×C2Q8 when i is even, Ui

contains the cyclic subgroup 〈ait〉 of index 2 when i is odd and aUia
−1 = Ui+2. If P � A

and P ∩A > Z(S) = 〈ab〉, then Z(P ) = Z(S), so Aut(P ) is not a 2-group by Lemma 3.3,
and Aut(P/Z(S)) is not a 2-group by Lemma 2.1. If |P/Z(S)| � 8, then P/Z(S) is
dihedral, and we saw above that Aut(P/Z(S)) is a 2-group. Thus, |P/Z(S)| = 4, and
P = Ui for some i. When i is odd, A ∩ Ui (∼= C2n × C2) is characteristic in Ui (the
other two subgroups of index 2 containing Z(Ui) are cyclic), so Aut(Ui) is a 2-group by
Lemma 2.1 again. This leaves the case P = Ui for even i, and thus P ∈ H.

If P � A and P ∩A = 〈ab〉, then NS(P ) = 〈P, a2n−1〉, [NS(P ), P ] = 〈(ab)2
n−1〉 � Fr(P )

and PT is not F-essential by Proposition 1.10 (d). Finally, if P � A, then P = A ∈ H,
since P is centric in S.

(e) Fix a 2-group T , a saturated fusion system F over S × T and a subgroup P � S

such that PT is F-essential. By (d), P ∈ H.
Since OutF (PT ) contains a strongly embedded subgroup, O2(OutF (PT )) = 1 by

Lemma 1.9 (c). Since the kernel of the action of OutF (PT ) on PT/ Fr(PT ) is a 2-
group by Lemma 2.1, this action must be faithful. Also, OutST (PT ) ∈ Syl2(OutF (PT )),
since PT is F-essential and hence fully normalized. By (c1) and (a), |OutST (PT )| =
|NS(P )/P | = 2 and [NS(P ), P ] is cyclic, and hence [OutST (PT ), PT/ Fr(PT )] is cyclic.
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So, by Proposition 2.3 applied to the action of OutF (PT ) on PT/ Fr(PT ), there is
θP ∈ AutF (PT ) such that OutF (PT ) = ΓP × HP , where |HP | is odd, [θP ] ∈ ΓP has
order 3 and ΓP = 〈[θP ], OutS(PT )〉 ∼= Σ3. Since Inn(PT ) is a 2-group, we can choose
θP ∈ AutF (PT ) to also have order 3. This proves (e1).

Let Γ � AutF (PT ) be the normal closure of AutS(PT ). The image of Γ in OutF (PT )
is ΓP (the normal closure of OutS(PT )), so Γ has 2-power index in 〈θP , AutST (PT )〉 =
O2′

(AutF (PT )). Hence, Γ � O2(O2′
(AutF (PT ))), and so θP ∈ Γ .

Set P0 = [NS(P ), P ] and Pθ = [θP , PT ] for short. We first show that P ′ := [P, P ] is Γ -
invariant. If P is abelian, there is nothing to prove. Otherwise, |P ′| = 2 and Z(P ) = Z(S)
by (c3), and hence P ′ � Z(P ). The group AutST (PT ) acts trivially on Z(PT ) = Z(ST ),
so its normal closure Γ also acts trivially. In particular, P ′ is Γ -invariant.

Thus, Γ acts on PT/P ′, and leaves invariant its centre PZ(T )/P ′. Hence, PZ(T ) is
Γ -invariant, and so Γ acts on PT/PZ(T ) ∼= T/Z(T ). Since AutS(PT ) acts trivially on
this quotient, so does its normal closure Γ , and hence [θP , PT ] � [Γ, PT ] � PZ(T ). Also,
Z(P )T = CPT (PZ(T )) is Γ -invariant, so [θP , T ] � Z(P )T ∩ [θP , PT ] � Z(PT ).

By Proposition 2.3, now applied to the action of the group OutF (PT ) on PZ(T )/P ′,
[ΓP , PZ(T )/P ′] = [θP , PZ(T )/P ′], and hence [θP , PZ(T )/P ′] � P0/P ′. Thus, P0 �
Pθ · P ′. Recall P0 = [AutS(PT ), PT ] is cyclic by (a); fix a generator g. Since P0 � Fr(P )
by Proposition 1.10 (d) (and since P ′ � P0 = [NS(P ), P ]), P ′ � 〈g2〉. Hence, g = hg2k

for some k and some h ∈ Pθ; h = g1−2k, and thus P0 = 〈h〉 � Pθ.
Since Pθ = [θP , PT ] � PZ(T ), Pθ = [θP , PZ(T )] by Lemma 2.4(a). Hence, by Proposi-

tion 2.3 again, applied to the action of OutF (PT ) on PZ(T )/P ′, Pθ/P ′ = [θP , PZ(T )/P ′]
is abelian of rank 2. So, if Pθ ∩ Z(T ) �= 1, then Ω1(Pθ/P ′) is generated by Ω1(P0/P ′)
and an element of Z(T ), both of which are fixed by OutS(PT ). This is impossible, since
ΓP

∼= Σ3 acts faithfully on Ω1(P0/P ′), and thus Pθ ∩ Z(T ) = 1. �

We are now ready to prove Theorem B.

Theorem 6.2. Fix a pair of 2-groups S1 and S2, and set S = S1 × S2. Let F be a
saturated fusion system over S such that O2(F) = F = O2′

(F). Assume the following
conditions hold.

(i) S1 ∼= D2n (n � 3), SD2n (n � 4) or C2n � C2 (n � 2).

(ii) Either S2 contains no proper subgroup isomorphic to S1 × S1 or (more generally)

(ii′) if P = S or P is an F-essential subgroup containing S1, then each element of
AutF (P ) sends Ω1(Z(S1)) to itself.

Then there are saturated fusion systems Fi over Si and α ∈ Aut(S) such that αF =
F1 × F2.

Proof. For i = 1, 2, set

Zi = Z(Si), Ŝi = SiZ3−i, Ui = {P � Si | PS3−i is F-essential},
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and U+
i = Ui ∪ {Si}. For each P ∈ U+

i , set

P • = PS3−i and P̂ = PZ3−i.

By Lemma 1.11, the only F-essential subgroups of S are the subgroups P • for P ∈ U1∪U2.
As in Proposition 4.4, define fusion subsystems F•

1 and F•
2 over S:

F•
i = 〈AutF (P •) | P ∈ U+

i 〉.

We check that (ii) implies (ii′). Assume S2 contains no subgroup isomorphic to S1×S1.
Fix a fully normalized subgroup P � S containing S1; thus, P = S1×P2 for some P2 � S2.
Let Aut0F (P ) be the subgroup of those automorphisms in AutF (P ) that send Ω1(Z1) to
itself. Then AutS(P ) � Aut0F (P ), so [AutF (P ) : Aut0F (P )] is odd by the Sylow axiom,
and is at most 2 by Proposition 3.2 (c). Thus, AutF (P ) = Aut0F (P ), and (ii′) holds. So
from now on, we assume (ii′).

Step 1. By (ii′), Ω1(Z1) is strongly closed in F•
2 . The hypotheses of Lemma 5.1 thus

hold, but with the roles of S1 and S2 switched. So by that lemma, there is a normal
complement S0

2 to Z1 in Ŝ2 which is strongly closed in F•
2 . Choose α ∈ Aut(S) such that

α|S1 = Id, α ≡ IdS (mod Z1) and α(S0
2) = S2. Since α is the identity modulo Z(S), it

sends each subgroup in U1 ∪ U2 to itself, and hence (αF)•
i = α(F•

i ) for i = 1, 2. So upon
replacing F by αF , we can assume S0

2 = S2; i.e. S2 is strongly closed in F•
2 .

Thus, for P ∈ U+
2 , AutF (P •) leaves P invariant, and acts on P •/P ∼= S1 via inner

automorphisms, since Aut(S1) is a 2-group by Lemma 6.1 (a). Hence, [AutF (P •), P •] �
[S1, S1] · P for each P ∈ U+

2 , and

foc(F•
2 ) = 〈[AutF (P •), P •]|P ∈ U+

2 〉 � [S1, S1] · S2. (6.1)

Step 2. By the Sylow axiom, AutF (S) is an extension of the 2-group Inn(S) by the
odd order group OutF (S). So, by the Schur–Zassenhaus Theorem (see, for example, [8,
Theorem 6.2.1]), there exists H � AutF (S) of odd order, unique up to conjugacy by an
element of Inn(S), such that AutF (S) = H · Inn(S).

By step 1, S2 is AutF (S)-invariant. Since Aut(S/S2) is a 2-group by Lemma 6.1 (a),
[H, S] � S2. Also, Ŝ1 = CS(S2) is AutF (S)-invariant, and hence [H, S1] � Ŝ1 ∩ S2 = Z2.
Since [Ŝ1, Ŝ1] = [S1, S1] is H-invariant, H acts trivially on this subgroup. We have now
shown that

[H, S] � S2, [H, S1] � Z2 and [H, [S1, S1]] = 1. (6.2)

Step 3. Throughout this step, we fix a subgroup P ∈ U1. By Lemma 6.1 (d), P ∈ H,
where H is an explicitly defined set of subgroups of S1. By Lemma 6.1 (e1),

OutF (P •) = ΓP × HP where |HP | is odd and ΓP = 〈[θP ], OutS1(P
•)〉 ∼= Σ3 (6.3)

for some θP ∈ AutF (P •) of order 3, and, by Lemma 6.1 (e2),

[NS1(P ), P ] � [θP , P •] � PZ2 = P̂ and [θP , P •] ∩ Z2 = 1. (6.4)
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For each β ∈ AutF (P •) of odd order whose class [β] ∈ OutF (P •) is in HP , [β]
commutes with OutS(P •) � ΓP , so β normalizes AutS(P •) and extends to a mor-
phism β̂ ∈ AutF (NS(P •)) by the extension axiom. Since neither NS(P •) nor any of
its conjugates is contained in an F-essential subgroup (Lemma 6.1 (c2)), β̂ extends to
β̄ ∈ AutF (S) by Proposition 1.10 (a). Upon replacing β̄ by an appropriate power, we can
assume it also has odd order. Then β̄ is Inn(S)-conjugate to an element of H and, since
[AutS1(S), H] = 1 (since [H, S1] � Z2 by (6.2)), β̄ is AutS2(S)-conjugate to an element
of H. Thus, β is Inn(P •)-conjugate to the restriction of an element of H. Conversely,
every element of H restricts to an automorphism of P • since [H, S] � S2 � P • by (6.2).
So

HP = {[η|P • ] | η ∈ H}. (6.5)

By Proposition 2.3, applied to the action of OutF (P •) on P̂ /[P̂ , P̂ ], HP acts trivially
on [θP , P̂ /[P̂ , P̂ ]]. Hence, H acts trivially on this group by (6.5). Also, H acts trivially on
[P̂ , P̂ ] � [S1, S1] by (6.2), so it acts trivially on [θP , P̂ ] by Lemma 2.1. Since [θP , P •] =
[θP , [θP , P •]] = [θP , P̂ ] by Lemma 2.4 (a) (and (6.4)), this proves that

[H, [θP , P •]] = [H, [θP , P̂ ]] = 1. (6.6)

Step 4. For P ∈ U1, set P0 = [NS1(P ), P ] and Pθ = [θP , P •]. We next claim that

for each P ∈ U1, there exist xP ∈ P and zP ∈ Z2 such that Pθ = 〈P0, xP zP 〉,
and such that either P is abelian and 〈P0, xP 〉 = P or 〈P0, xP 〉 ∼= Q8. (6.7)

When S1 is dihedral or semi-dihedral, P ∼= C2
2 or P ∼= Q8 and P0 has index 2 in P . By

(6.4), Pθ is contained in PZ2 and has trivial intersection with Z2 (and strictly contains
the cyclic group P0), so it must have the form in (6.7). Similarly, when S1 is wreathed
and P ∼= C2n × C2n , P0 ∼= C2n , Pθ is isomorphic to a subgroup of P by (6.4) and hence
to P , since it has an automorphism of order 3, and again has the form described in (6.7).

By Lemma 6.1 (d), it remains to consider the case where S1 is wreathed, and where
(in the notation of the lemma) P = U2i = 〈ab, a2n−1

, a2it〉 ∼= C2n ×C2Q8 for some i.
Then P contains a unique subgroup P1 ∼= Q8, generated by all elements of order 4 in
P�Z(P ), and P0 has index 2 in P1. Set g = (ab−1)2

n−2
: a generator of P0. Since g ∈ Pθ,

g ·θP (g) ·θ2
P (g) ∈ [P̂ , P̂ ] = 〈g2〉, so Pθ = 〈g, θP (g)〉. Set θP (g) = xP zP , where xP ∈ P and

zP ∈ Z2. Since g has order 4 and lies in P̂�Z(P̂ ), so does θP (g), and hence xP ∈ P�Z(P )
has order 4, since otherwise θP (g2) ∈ Z2 (contradicting (6.4)). Thus, Pθ = 〈P0, xP zP 〉
and 〈P0, xP 〉 = P1 ∼= Q8.

Step 5. Now, F = 〈F•
1 ,F•

2 〉, since by Lemma 1.11 (b) each F-essential subgroup has
the form P • for P ∈ U1 ∪ U2. So F = 〈F•

2 , θP | P • ∈ U1〉 by (6.3) and (6.5). Hence,
by (6.1) and (6.7),

foc(F) = 〈foc(F2), [θP , P ] | P ∈ U1〉 � 〈[S1, S1], S2, xP zP | P ∈ U1〉.

Since O2(F) = F by assumption, foc(F) = S by Theorem 1.7 (a), and so S1/[S1, S1]
is generated by the classes [xP ] for P ∈ U1. If P, Q ∈ U1 are S1-conjugate, then there
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exists g ∈ P such that Q = gPg−1 and θ±1
Q = cgθP c−1

g , and hence Qθ = gPθg
−1. Thus

〈[S1, S1], xP 〉 = 〈[S1, S1], xQ〉. Since S1/[S1, S1] is not cyclic, we conclude that U1 contains
at least two S1-conjugacy classes. So, by parts (b) and (d) of Lemma 6.1, U1 = H and
contains exactly two conjugacy classes.

Fix representatives P1, P2 for the S1-conjugacy classes in U1 = H, and set xi = xPi

and zi = zPi
for short. Set

S0
1 = 〈[S1, S1], Pθ|P ∈ U1〉 = 〈[S1, S1], x1z1, x2z2〉.

Thus, S0
1Z2 = 〈[S1, S1], x1, x2〉Z2 = S1Z2 = Ŝ1. Since least one of the xi has order 2 in

S1/[S1, S1] by the proof of (6.7), S1/[S1, S1] = 〈[x1]〉 × 〈[x2]〉. Also, |zi| is at most the
order of xi in Piθ/Pi0 (otherwise Piθ ∩Z2 �= 1). Hence, S0

1 ∩Z2 = 1, and so S0
1 is a normal

complement to Z2 in Ŝ1.
Now, [H, S0

1 ] = 1: [S1, S1] � CS(H) by (6.2), and [H, Pθ] = 1 by (6.6). Thus, S0
1

is AutF (S)-invariant. For P ∈ U1, S0
1 ∩ P • is θP -invariant since it contains Pθ, it is

AutS(P •)-invariant since [NS1(P
•), P •] � [S1, S1] � S0

1 and [S2, S
0
1 ] = 1, and hence it is

AutF (P •)-invariant by (6.3) and (6.5). This proves that S0
1 is strongly closed in F•

1 .
Let β ∈ Aut(S) be the (unique) automorphism such that β|S2 = Id, β(S0

1) = S1,
and β(g) ≡ g (mod Z2) for all g ∈ S1. By the same reasoning as that used in step 1,
upon replacing F by βF , we can assume S0

1 = S1. So F satisfies the hypotheses of
Proposition 4.4 and splits as a product of saturated fusion systems over the Si. �

There is one more important case which we want to include, that of a product of three
or more 2-groups which are dihedral, semi-dihedral or wreathed, and pairwise isomorphic.
In fact, this result holds more generally, without assuming the factors are isomorphic.

Theorem 6.3. Assume S = S1 × · · · × Sm, where each Si (1 � i � m) is isomorphic
to D2n (n � 3), SD2n (n � 4) or C2n � C2 (n � 2). Let F be a saturated fusion system
over S such that O2(F) = F = O2′

(F). Then there are saturated fusion systems Fi over
Si such that αF = F1 × · · · × Fm for some α ∈ Aut(S).

Proof. For each i, let zi ∈ Z(Si) be the element of order 2, and set

U•
i = {P � S | P is F-essential, P � Sj for all j �= i}.

By Lemma 1.11 (b),
⋃m

i=1 U•
i contains all F-essential subgroups of S.

Fix i and P ∈ U•
i . By parts (c1) and (a) of Lemma 6.1, OutS(P ) ∼= C2, and

[NSi(P ), P ] � [Si, Si] is cyclic. By Lemma 6.1 (e), there is an automorphism θP ∈
AutF (P ) of order 3, and a factorization OutF (P ) = ΓP × HP , such that ΓP =
〈[θP ], OutS(P )〉 ∼= Σ3 and HP has odd order, and such that

zi ∈ [NSi(P ), P ] � [θP , P ] � P ∩ SiZ(S) and [θP , Sj ] � Z(P ) for j �= i. (6.8)

Also, [θP , P ] ∩ 〈zk | k �= i〉 = 1 by Lemma 6.1 (e) again and, since zi ∈ [θP , P ],

[θP , P ] ∩ Ω1(Z(S)) = [θP , P ] ∩ 〈zk | 1 � k � m〉 = 〈zi〉. (6.9)
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For each η ∈ AutF (P ) such that [η] ∈ HP , η normalizes AutS(P ), hence extends
to an F-automorphism of NS(P ) by the extension axiom, and hence extends to some
η̄ ∈ AutF (S) by Proposition 1.10 (a) since no F-essential subgroup contains NS(P ) (see
parts (c2) and (d) of Lemma 6.1). Thus,

P ∈ U•
i =⇒ AutF (P ) = 〈θP , η|P | η ∈ AutF (S), η(P ) = P 〉. (6.10)

Let I(S) be the set of involutions in S. For each i = 1, . . . , m, let Xi ⊆ I(S) be
the smallest subset that contains zi, is invariant under Inn(S) and is such that, for
each P ∈ U•

i , θP sends Xi ∩ P to itself. These conditions imply that each element
of O2′

(AutF (P )) = 〈AutS(P ), θP 〉 (for each P ∈ U•
i ) sends P ∩ Xi to itself, so this is

independent of the choice of the θP . We claim the following hold for all i �= j in {1, . . . , m}:

θP |Xj
= IdXj

for all P ∈ U•
i (6.11)

and

Xi ∩ Xj = ∅. (6.12)

Assume (6.11) and (6.12) hold; we now finish the proof of the theorem. By (6.10) (and
Proposition 1.10 (a)), F is generated by AutF (S) and the θP for P ∈

⋃m
i=1 U•

i . Each
α ∈ AutF (S) permutes the subgroups SiZ(S) by Proposition 3.1, and hence permutes
the sets U•

i , since U•
i contains exactly those F-essential subgroups that do not contain

SiZ(S). Hence, each α ∈ AutF (S) permutes the subsets Xi. For 1 � i � m and P ∈ U•
i ,

θP (Xj) = Xj for all j �= i by (6.11), and θP (P ∩Xi) = P ∩Xi by definition of Xi. Hence,
for each P, Q � S and each ϕ ∈ HomF (P, Q), there is σ ∈ Σm such that ϕ(P ∩ Xi) ⊆
Q ∩ Xσ(i) for all i = 1, . . . , m.

Let Fc be the set of F-centric subgroups of S (as in § 4). If P ∈ Fc, then Z(S) � P .
So, for each i, zi ∈ P ∩Xi implies P ∩Xi �= ∅. Since the Xi are pairwise disjoint by (6.12),
the permutation σ determined by any given ϕ ∈ HomF (P, Q) is unique. Thus there is a
uniquely defined map

Ψ : Mor(Fc) → Σm,

which preserves composition of morphisms and of permutations and sends inclusions to
the identity.

Let F0 ⊆ F be the ‘kernel’ subsystem: the fusion system over S generated by those
morphisms ϕ ∈ Mor(Fc) such that Ψ(ϕ) = 1. Since F is generated by AutF (S) and
the θP , and Ψ(θP ) = 1 for each P ∈ U•

i (for each i), Im(Ψ) = Ψ(AutF (S)). Thus,
F0 is F-invariant, and a subgroup of S is F0-centric if and only if it is F-centric by
Lemma 1.5 (b). Since Ψ(Inn(S)) = 1, Im(Ψ) is a subgroup of odd order. The Sylow and
extension axioms on centric subgroups hold for F0, since they hold for F . Since, by
definition, F0 is generated by morphisms between centric subgroups, F0 is saturated by
Theorem 1.3. Thus, F0 is a weakly normal fusion subsystem of odd index in F , and
F0 = F since O2′

(F) = F by assumption.
By Proposition 3.1, each element of Aut(S) permutes the cyclic subgroups [Si, Si],

and hence permutes the involutions zi (i = 1, . . . , m). Since each element of AutF (S)
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sends X1 to itself, AutF (S) fixes z1. For all P ∈ U•
i for i �= 1, θP (z1) = z1 by (6.11).

Assumption (ii′) in Theorem 6.2 thus holds, so there are saturated fusion systems F1

over S1 and F̂ over S2 . . . Sm such that βF = F1 × F̂ for some β ∈ Aut(S). The theorem
now follows by induction on m.

It remains to prove (6.11) and (6.12).

Proof of Equation (6.11). We first claim, for each i = 1, . . . , m, that

Xi ⊆ Ti := 〈[Si, Si], [θP , P ] | P ∈ U•
i 〉 � SiZ(S). (6.13)

By (6.8), Ti � SiZ(S). Hence, Ti is AutSj (S)-invariant for each j �= i, and is AutSi
(S)-

invariant, since it contains [Si, Si]. Also, for each P ∈ U•
i , Ti ∩ P is θP -invariant, since

[θP , P ] � Ti, and thus Ti ⊇ Xi, since zi ∈ Ti. This proves (6.13).
Fix subgroups Pi ∈ U•

i and Pj ∈ U•
j for some i �= j, and set

R = Pi ∩ Pj ∩ SiSjZ(S) = {(x1, . . . , xm) | xi ∈ Pi, xj ∈ Pj , xk ∈ Z(Sk) for all k �= i, j}.

Set G = AutF (R), and consider the subgroups

Gi = 〈θPi
|R, AutSi

(R)〉, Hi = 〈AutSi
(R)〉, Qi = 〈AutSi∩R(R)〉,

Gj = 〈θPj |R, AutSj (R)〉, Hj = 〈AutSj (R)〉, Qj = 〈AutSj∩R(R)〉.

Note that, for k ∈ {i, j}, θPk
|R ∈ Aut(R) since [θPk

, Pk] � Pk ∩ (SkZ(S)) � R by (6.8).
Also, Gk/Qk = 〈[θPk

|R], OutSk
(R)〉 ∼= Σ3 by what was shown above, and thus Qk =

O2(Gk) and Hk ∈ Syl2(Gk).
By (6.8), for k = i and k = j,

[Gk, R] = [θPk
, R] · [NSk

(Pk), R] � [θPk
, Pk] � SkZ(S).

Hence, [Gi, R] ∩ [Gj , R] � SiZ(S) ∩ SjZ(S) = Z(S). If [Gi, R] ∩ [Gj , R] �= 1, then

1 �= [Gi, R] ∩ [Gj , R] ∩ Ω1(Z(S))

� ([θPi , Pi] ∩ Ω1(Z(S))) ∩ ([θPj , Pj ] ∩ Ω1(Z(S)))

= 〈zi〉 ∩ 〈zj〉
= 1

by (6.9). Thus, [Gi, R] ∩ [Gj , R] = 1.
For xi ∈ NSi(R)�Z(R) and xj ∈ NSj (R)�Z(R), [xi, R] and [xj , R] are cyclic and non-

trivial since [NSi
(Pi), Pi] and [NSj (Pj), Pj ] are cyclic by parts (c) and (a) of Lemma 6.1;

and hence [xixj , R] = [xi, R] · [xj , R] is noncyclic. So no element in Hi ∪ Hj can be
G-conjugate to any element of HiHj�(Hi ∪ Hj). In particular, for 1 �= hi ∈ Hi and
1 �= hj ∈ Hj , there is no g ∈ G such that ghig

−1, ghjg
−1 ∈ Hk for k = i or for k = j.

Thus, if h ∈ Hi and g ∈ G are such that ghg−1 ∈ Hj , then since QiQj = Inn(R) � G,
gQig

−1 � Qj and gQjg
−1 � Qi. Since HiHj = AutS(R) ∈ Syl2(G), this is possible only

if Qi = Qj = 1; in which case HiHj
∼= C2

2, cg exchanges Hi and Hj , and this is again
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impossible by the Sylow axiom. We conclude that Hi is strongly closed in HiHj with
respect to G, and similarly for Hj .

Now, [θPi |R, AutSj (R)] = 1 since [θPi , Sj ] � Z(Pi) by (6.8), and [θPj |R, AutSi(R)] = 1
since [θPj , Si] � Z(Pj). So [Gi, Hj ] = 1 = [Gj , Hi]. The hypotheses of Corollary 2.9 are
thus satisfied, and hence [Gi, Gj ] = 1. So [Gi, [Gj , R]] = 1 by Lemma 2.10.

Now, [θPj , Pj ] � Pj ∩ SjZ(S) � R by (6.8), so [θPj , R] � [θPj
, [θPj

, Pj ]] = [θPj , Pj ]
by Lemma 2.4 (a). Thus, [θPi , [θPj , Pj ]] = 1. Also, [θPi , [Sj , Sj ]] = 1 since, by (6.8),
θPi(x) ∈ xZ(Pi) for each x ∈ Sj . So θPi |Xj = IdXj

by (6.13). �

Proof of (6.12). By definition, for each i, Xi is the equivalence class of zi under the
equivalence relation ≈i generated by setting g ≈i h if g, h are S-conjugate, or g, h ∈ P

and g = θP (h) for some P ∈ U•
i .

Fix i �= j, and assume x ∈ Xi ∩ Xj . By (6.11), θP (x) = x for all P ∈ U•
i since x ∈ Xj ,

and θP (x) = x for all P ∈ U•
j since x ∈ Xi. Since x ∈ Z(S), the ≈i- and ≈j-equivalence

classes of x each contain only x. Since zi ≈i x ≈j zj , this implies zi = x = zj , which is
impossible. We conclude that Xi ∩ Xj = ∅. �

�

7. Examples

It is easy to see why the condition O2′
(F) = F is needed in Proposition 4.4 (and it was

also needed in the splitting result [1, Proposition 3.3]). Let F be any saturated fusion
system over a 2-group S, such that O2′

(F) � F . Then there are fusion subsystems of
F × F (over S × S) which contain O2′

(F) × O2′
(F), and which do not split as products

of fusion systems over S.
For a more explicit example which satisfies all of the hypotheses of Proposition 4.4 and

Theorems 5.2 and 6.2, except the condition O2′
(F) = F , let F be the 2-fusion system of

a subgroup G � PGL3(4) × PGL3(4) of index 3 which does not contain either factor.
It is a little less obvious why the condition O2(F) = F is needed. As a first example,

let F be the 2-fusion system of the symmetric group Σ6. This is a fusion system over
S ∼= D8 × C2, and satisfies all of the hypotheses of Proposition 4.4 and of Theorem 6.2
except the condition O2(F) = F . (Note that all F-essential subgroups contain the second
factor C2.)

For an example which satisfies all of the other hypotheses of Theorem 5.2, let G � Σ6×
PGL2(9) be the subgroup of index 2 that contains neither factor. The Sylow 2-subgroups
of G are isomorphic to D8 × D16, but the fusion system of G does not split as a product
of fusion systems over D8 and D16.

The fusion system of the alternating group A14 (a fusion system over the 2-group
D8 ×(D8 � C2)) illustrates why we need to assume that S2 does not contain a subgroup
isomorphic to S1 × S1 in Theorems 5.2 and 6.2. Fusion systems of larger alternating
groups give other examples of this.

To see a larger family of examples, fix any k � 2 and any odd prime power q, and
consider the simple group G = Ω−

4k(q). Let ε ∈ {±1} be such that 4|(q − ε), and let 2n
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be the largest power of 2 dividing q2 − 1. Then G contains subgroups of odd index

G = Ω−
4k(q) � GOε

4k−2(q) � GOε
2(q) � Σ2k−1 ∼= D2(q−ε) �Σ2k−1 � D2n �Σ2k−1

(where GO±
n (q) is the full orthogonal group). Thus, each Sylow 2-subgroup S � G

contains a direct factor D2n . For F = FS(G), O2(F) = F by the focal subgroup theorem
for G (and since O2(G) = G), and O2′

(F) = F since Aut(S) is a 2-group.
Similar examples involving semi-dihedral 2-groups or wreath products C2n � C2 are

obtained by considering the groups

G = SL4k+3(q) � GL4k+2(q) � GL2(q) � Σ2k+1

for odd prime powers q. In particular, for any D as in Theorem 6.3, there is a saturated
fusion system F over D × (D � C2), which is indecomposable and satisfies O2(F) = F =
O2′

(F).
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