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Asymptotic Chow stability of symmetric reflexive

toric varieties

King LeungLee

Abstract

In this note, we study the asymptotic Chow stability of symmetric reflexive toric
varieties. We provide examples of symmetric reflexive toric varieties that are not
asymptotically Chow semistable. On the other hand, we also show that any weakly
symmetric reflexive toric varieties which have a regular triangulation (so are spe-
cial) are asymptotically Chow polystable. Furthermore, we give sufficient criteria to
determine when a toric variety is asymptotically Chow polystable. In particular, two
examples of toric varieties are given that are asymptotically Chow polystable, but not
special. We also provide some examples of special polytopes, mainly in two or three
dimensions, and some in higher dimensions.
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1. Introduction

In Geometric invariant theory (GIT), when constructing moduli spaces one typically focuses on
those varieties that are asymptotically Chow semistable [MFK94, GKZ94]. Chow stability has
many relations with other stabilities in Kähler geometry (see [RT07, Yot17] for example), so it
is important to study the Chow stability of singular varieties. However, unlike the smooth case,
which is related to the constant scalar curvature (cscK) manifolds ([Don01, Mab04, Mab06,
RT07]; see also the survey paper [PS10] for example), in general, K stability or the existence of
cscK cannot imply Chow stability. Moreover, there are few examples of Chow polystable singular
varieties. In general, it is very difficult to show that a variety is asymptotically Chow semistable.
However, by the work of Futaki [Fut04] and Ono [Ono13], we can determine the asymptotic
Chow polystability of toric varieties. We first recall the main theorem we used in [Ono13] (see
also [LLSW19]).

Theorem 1.1 ([Ono13]). Let P be an integral convex polytope of an n-dimensional toric variety
XP , and let G<SL(n,Z) be the biggest finite group acting on P by multiplication. Then XP

is asymptotically Chow semistable if and only if for any k ∈N, and for any convex G invariant
function f on kP , we have

1

Vol(kP )

∫
kP

f dV � 1

χ(kP ∩Zn)

∑
v∈kP∩Zn

f(v).

As a remark, in the original literature, Ono used concave functions instead of convex
functions, so the direction of inequality in this note is different.

In this note, we mainly focus on symmetric reflexive toric varieties. One of the reasons is
inspired by [BS99], which shows that if a polytope is symmetric and reflexive, then it admits
a Kähler–Einstein metric. With the result of [Don02], we can see that symmetric and reflexive
implies K stability. So it is natural to ask if it is true for Chow stability. The second reason is
that, in this note, we define an invariant called Futaki–Ono invariant, which is

FOP (a, k) :=
1

χ(kP ∩Zn)

∑
kp∈kP∩Zn

a(p)− 1

Vol(P )

∫
P
a(x) dV.

As a rephrasing of Corollary 4.7 in [Ono13], we can see that if P is asymptotically Chow
semistable, then this invariant will vanish for all k >> k0 and for all affine functions a. We can
see that symmetric polytopes satisfy this criterion, so it is natural to study symmetric polytopes.
Also, by Claim 4.3 in [LLSW19], there is an example in which a symmetric non-reflexive polytope
is not asymptotic Chow semistable. On the other hand, by the results in [LLSW19], with the
fact that P2 and P1 × P1 are asymptotic Chow polystable, we can see that all two-dimensional
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symmetric reflexive toric varieties are asymptotically Chow polystable. So it is natural to study
symmetric reflexive polytopes.

However, a toric variety being symmetric and reflexive is generally not enough to guarantee
that it is asymptotically Chow semistable, as illustrated by Example 3.9. Notice that this is not
an isolated example. Indeed we can construct many examples using Proposition 3.7.

Therefore, to ensure asymptotic Chow polystability holds, one need more conditions on
symmetric reflexive polytopes. One of the sufficient conditions is given by the following.

Definition 1.2 (See Definition 4.3 for the details). Let P be an n-dimensional integral convex
polytope on Rn. We say P has regular boundary if for any k ∈N, there exists a triangulation of
∂kP which every ‘triangle’ is integrally isomorphic to

Tn−1 := conv{(0, . . . , 0), e1, . . . , en−1},
the standard (n− 1)-dimensional simplex (i.e. the intersection between different T i

n−1 are at the
boundary) such that:

(i) for any point p∈ ∂kP , the number of simplices intersects with p, denoted as mk(p), is
bounded by n! (i.e. mk(p)� n!); and

(ii) this is the sub-triangulation of each face.

Here, integrally isomorphic means one of the objects is obtained from another object by an
integral rigid motion, i.e. the multiplication of a matrix A∈ SL(n,Z) and translation of v ∈Zn.

We also make the following definition.

Definition 1.3 (See Definition 4.5 for the details). An integral convex polytope on Rn is called
special if it is reflexive, weakly symmetric, and has a regular boundary.

One of our main theorems is given as follows.

Theorem 1.4 (See Theorem 6.1 for the details). Let P be a special polytope. Then P is
asymptotically Chow polystable.

Notice that this condition is not necessary, as Theorem 8.1 gives another sufficient criterion
to show when a toric variety P is asymptotically Chow polystable. The statement of the theorem
is the following.

Theorem 1.5 (See Theorem 8.1 for the details). Let P be an integral polytope with 0∈ P 0 such
that all the Futaki–Ono invariants vanish, and one has a triangulation on kP by n simplices,
and a triangulation on ∂kP by (n− 1) simplices. We let n(p; k) be the number of n simplices
attached to p∈ kP in the first triangulation, and m(p; k) be the number of (n− 1) simplices
attached to p∈ ∂kP in the second. Suppose n(p; k)� (n+ 1)! for all p �= 0, and(n

2

)
m(p; k)< ((n+ 1)!− n(p; k)),

for all k >> 0 and for all p∈ ∂kP . Then P is asymptotically Chow polystable.

As a concrete example, we have the following corollary.

Corollary 1.6 (See Corollary 8.4 for the details). D(X8) and D(X9) are asymptotically Chow
polystable, where D(X8) and D(X9) are defined in Example 4.8.
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This example shows that there are non-special symmetric reflexive polytopes that are asymp-
totically Chow polystable.

In the last section, we provide examples which are asymptotically Chow polystable, mainly
of dimension 3, and have two classes of examples for higher dimensions. Notice that besides
D(X8) and D(X9), the remaining examples are special. Also, the corresponding varieties of the
examples are given in the Appendix.

2. Chow stability of toric varieties and criteria

2.1 GIT and Chow stabilities

In this section, we briefly recall some basic knowledge of GIT. For details, please read [GKZ94].

Definition 2.1. Let G be a reductive algebraic group and V be a finite-dimensional complex
vector space such that G acts linearly on V . Let v �= 0∈ V , and let OG(v) be the G-orbit in V .
Then:

(i) v is called G-semistable if the Zariski closure of OG(v) does not contain the origin, i.e.
0 /∈OG(v);

(ii) v is called G-polystable if 0 /∈OG(v) is a closed orbit;

(iii) v is called G-stable if v is G-polystable and Stabilizer of v, Gv, is a finite group.

It is said that [v]∈ P(V )is G-polystable (respectively, semistable) if v ∈ V is G-polystable
(respectively, semistable).

Let (X, L) be an n-dimensional polarized variety of degree d, i.e. X is a complex irreducible
variety with degree d, and L is an ample line bundle. Then there exists k0 ∈N such that, for
every integer k� k0, there exists an embedding map ιk : X → P(H0(X, kL))∼= PNk defined by

ιk(x) := [s0(x), . . . , snK(x)],

where {s0, · · · , sNk
} is a basis of H0(X, kL). Consider ιk(X) be the corresponding image on

H0(X, kL), i.e. p∈ ιk(X) if and only if [p]∈ ιk(X). Then ιk(X) is an (n+ 1)-dimensional cone in

H0(X, kL)∼=CNk+1. Then, for a generic linear Nk − n+ 1 subspace W ⊂H0(X, kL), the set of
intersections between W and ιk(X) is in dimension 1, but for a generic linear Nk − n subspace

L⊂H0(X, kL), the set of intersections between L and ιk(X) is {0}.
Therefore, we can define a degree d divisor ZX on the Grassmannian Gr(Nk − n, Nk + 1)

by

Zk := {LNk−n ⊂H0(X, kL) |LNk−n ∩ (ιk(X)− {0}) �= φ}.
This induces a point RX ∈ P(H0(Gr(Nk − n, Nk + 1)),O(d)), which is called the Chow point.

Also, under the embedding Gr(Nk − n, Nk + 1)→∧n+1(H0(X, kL)), where V =H0(X, kL),
we have

Rk ∈ Symd(∧n+1H0(X, kL)) := Vk,

and then the SL(Nk + 1,C) action on H0(X, kL) induces an action on Vk.

Definition 2.2. We say that:

(i) X is k Chow stable (respectively, polystable, semistable) if RX ∈ Vk is SL(Nk + 1,C)-stable
(respectively, SL(Nk + 1,C)-polystable, SL(Nk + 1,C)- semistable); and
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(ii) X is asymptotically Chow stable (respectively, polystable, semistable) if there exists k0
such that X is k Chow stable (respectively, polystable, semistable) for all k� k0.

2.2 Toric varieties

We now recall some background knowledge of toric varieties.

Definition 2.3. Let X be an n-dimensional algebraic variety. Then X is a toric variety if:

(i) X is a Zaraki closure of (C∗)n;
(ii) the left multiplication of (C∗)n on (C∗)n can extend to an action on X.

We will focus on polarized toric varieties (X, L). There exists k0 such that for all k� k0, the
map ιk : X → P(H0(X, kL)) we defined above is embedding. Moreover, we can choose the basis
{s0, . . . , sNk

} such that for any λ := (eλ1 , . . . , eλn)∈ (C∗)n,

λ · si = eα
1
iλ1+···+αn

i λnsi.

Then for λ∈ (C∗)n,

λ · ιk(x) = ιk(λ · x),
and, in particular, the (S1)n < (C∗)n is a subgroup of the Hamiltonian group of ι∗kωFS . Thus we
have the moment polytopes μk : X → Lie((S1)n)∼=Rn, and the images are defined as the moment
map polytope Pk. Notice that we have

Pkl = lPk,

if ιk defines an embedding. Moreover,

Pk = conv{(α1
i , . . . , α

n
i )∈Rn | i= 0, . . . , Nk}.

The reason is we have a moment map μPNk : PNk → Lie((S1)Nk)∗, and the image is the
standard simplex. Then the moment map

μ= ι∗k ◦ μPNk |ιk(X),

where

ι∗k : Lie((S
1)Nk)∗ → Lie((S1)n)∗,

is the induced homomorphism from ιk,

(ι∗kη
∗)(ξ) = η∗((ιk)∗(ξ)).

In terms of a matrix,

(ιk)∗ =

⎛
⎜⎜⎝

α1
0 · · · αn

0

...
. . .

...

α1
Nk

· · · αn
Nk

⎞
⎟⎟⎠ ,

and as a result, ι∗k = ((ιk)∗)T is the transpose and therefore

Im(μ) = conv{(α1
i , . . . , α

n
i )∈Rn | i= 0, . . . , Nk}.

Definition 2.4. Let (X, L) be a polarized toric variety such that ι : X → P(H0(X, L)) is the
toric equivariant Kodaira embedding map, and let P be the corresponding polytope. Then
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P is said to be asymptotically Chow stable (respectively, polystable, semistable) if (X, L) is
asymptotically Chow stable (respectively, polystable, semistable).

2.3 Chow stability of toric variety and criteria

Recall that by Fataki and Ono ([Fut04, Ono13, OSY12], and also see [LLSW19]), a toric variety
XP is asymptotically Chow semistable if there exists C such that for any k�C, and for any
convex G invariant function f : kP →R, we have

1

Vol(kP )

∫
kP

f dV � 1

χ(kP ∩Zn)

∑
kp∈kP∩Zn

f(p), (1)

and XP is polystable if the equality holds only when v is affine. (In [Ono13] and [LLSW19], the
inequality is on the opposite side as the inputs are concave functions.) Here G<SL(n,Z) is the
biggest group fixing P , which is a discrete group.

Notice that if there exists a toric equivariant C∗ action on XP , then it corresponds to an
affine function on P (see [Don02]). So we can write the following definition.

Definition 2.5. Let P be an integral convex polytope. The Futaki–Ono invariant of an affine
function v(x) = a1x1 + · · ·+ anxn + a0 is given by

FOP (a, k) :=
1

χ(kP ∩Zn)

∑
kp∈kP∩Zn

a(p)− 1

Vol(P )

∫
P
a(x) dV.

We can rephrase Corollary 4.7 in [Ono13] as the following lemma.

Lemma 2.6 (Corollary 4.7 in [Ono13]; also see [Fut04]). Suppose P is asymptotically Chow
semistable. Then there exists C such that for any k�C, and for any affine function a on kP ,
we have

FOP (a, k) = 0.

Recall the following definition.

Definition 2.7. An integral convex polytope P is symmetric if there is exactly one fixed point
(which must be 0 for reflexive polytopes) of the symmetric group G<SL(n,Z) acting on P .

In particular, any G invariant affine function on symmetric polytopes must be constant; hence
it must vanish. We also define the following.

Definition 2.8. A polytope P is weakly symmetric if for any k, and for any affine function a
on kP ,

FOP (a, k) = 0.

Remark 2.9. Notice that this condition is stronger than assuming FOP (a, k) = 0 for all k >> 0.
There are two questions that arise.

(i) It is easy to see that P is symmetric implies P is weakly symmetric. But is the opposite
true?

(ii) If P is not weakly symmetric, does this imply P is not asymptotically Chow semistable?
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Notice that the K stability version is not true, as there are non-symmetric K stable toric varieties,
for example, the toric Del Pezzo surface of degree 1. However, it is not weakly symmetric and
not asymptotically Chow semistable (see [LLSW19], Section 5).

Lemma 2.10. A weakly symmetric integral polytopes P is (asymptotically ) Chow semistable
if for any k ∈N (k�C for some fix C), and for any convex function f : kP →R which
minx∈kP f(x) = f(0) = 0, we have

1

Vol(kP )

∫
kP

f dV � 1

χ(kP ∩Zn)

∑
kv∈kP∩Zn

f(v).

Proof. For any convex function f : kP →R, there exists an affine function ak such that

min
x∈kP

(f(x)− a(x)) = f(0) = 0.

Therefore, we have∑
kp∈kP∩Zn f(p)

χ(kP ∩Zn)
−

∫
P f(x) dV

Vol(P )
=

∑
kp∈kP∩Zn(f − a)(p)

χ(kP ∩Zn)
−

∫
P (f − a)(x) dV

Vol(P )
.

The result follows. �

3. Some special classes of toric varieties

3.1 Product class

The first class of polytopes is in the form P1 × · · · × Pr, where P1, . . . , Pr, and is Chow stable.

Lemma 3.1. Let P1 and P2 be bounded convex sets. Then for any f which is a convex function
on P1 × P2, fP2

(x) :=
∫
P2

f(x, y)dVy is a convex function on P1.

Proof. Consider fP2
(tx1 + (1− t)x2), where 0� t� 1. We have

fP2
(tx1 + (1− t)x2) =

∫
P2

f(tx1 + (1− t)x2, y)dVy

�
∫
P2

tf(tx1, y)dVy +

∫
P2

f((1− t)x2, y)dVy

=tfP2
(x1) + (1− t)fP2

(x2). �

Proposition 3.2. Let P1 and P2 be integral convex polytopes. Then P1 × P2 is (asymptotic)
Chow polystable (semistable) if and only if P1 and P2 are (asymptotic) Chow polystable
(semistable).

Proof. Suppose for any k�C1 and k�C2 and for any convex function f1, f2 on P1 and P2, we
have

1

Vol(kP1)

∫
kP1

f1(x)dV � 1

χ(kP1)

∑
p∈P1

f2(p);

1

Vol(kP2)

∫
kP2

f2(x)dV � 1

χ(kP2)

∑
p∈P2

f2(p).
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Then for any k�max{C1, C2}, and for any convex function f , we have

1

Vol(kP1 × kP2)

∫
kP1×kP2

f(x, y)dVxdVy =
1

Vol(kP1)

∫
kP1

1

Vol(kV2)

∫
kP2

f(x, y)dVydVx

=
1

Vol(kP1)

∫
kP1

1

Vol(kV2)
fkP2

(x)dVx (Lemma 3.1)

� 1

Vol(kP2)

1

χ(kP1)

∑
p1∈kP1∩Zn1

fP2
(p1)

=
1

χ(kP1)

∑
p1∈kP1∩Zn1

(
1

Vol(kP2)

∫
kP2

f(p1, y)dVy

)

� 1

χ(kP1)

∑
p1∈kP1∩Zn1

1

χ(kP2)

∑
p2∈kP2∩Zn2

f(p1, p2)

=
1

χ(k(P1 × P2))

∑
p∈k(P1×P2)∩Zn1×Zn2

f(p).

In particular, if C1 =C2 = 1, then this inequality holds for any convex function and any k.
For the opposite, without loss of generality, assume P1 is unstable. Then there exists a

sequence of convex functions fk on kP1 such that for any k >> 0,

1

Vol(kP1)

∫
kP1

fk(x)dV � 1

χ(kP1)

∑
p∈kP1∩Zn1

f(p).

Define fk : kP1 × kP2 →R such that

fk(x, y) = fk(x).

Then
1

Vol(kP1 × kP2)

∫
kP1×kP2

fk(x, y)dV =
1

Vol(kP1)

∫
kP1

fk(x)dv�
1

χ(kP1)

∑
p∈kP1∩Zn1

fk(p)

=
1

χ(kP1 × kP2)

∑
p∈kP1∩Zn1

χ(kP2)fk(p) =
1

χ(k(P1 × P2))

∑
p∈k(P1×P2)∩Zn1×Zn2

fk(p).

�

As a quick check, we have a computational proof of the following well-known fact.

Corollary 3.3. The variety ((P1)n,−K(P1)n) is asymptotically Chow polystable.

Proof. The polytope [−1, 1] is asymptotically Chow polystable. A direct consequence of
Proposition 3.2 implies that [−1, 1]n is asymptotically Chow polystable. �

3.2 Symmetric double cone type

We now consider a class of examples where the members are reflexive and symmetric, but not
asymptotically Chow semistable. Also, it is arguably one of the simplest and yet non-trivial
classes to study.

Definition 3.4. Let P be an n-dimensional integral polytope. Then we define the double cone

D(P ) := conv{0, . . . , 0, 1), (0, . . . , 0,−1), (p, 0) | p∈ P}.

8
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Notice that

kD(P ) = {(p, q)∈Rn ×R | p∈ (k− q)P,−k� q� k}.
Lemma 3.5. Suppose P is symmetric. Then D(P ) is symmetric.

Proof. If G acts on P , then G×Z/2Z acts on D(P ) by

(g,±1) · (p, q) = (g · p,±q).

Hence if P is symmetric, then D(P ) is symmetric. �

To give a counterexample, first we have the following well-known fact.

Lemma 3.6 (See [Ehr77] or [BDLD+05]). Let P be a convex integral polytope with dim � 2.
Then the number of points

χ(kP ) :=| kP ∩Zn |=Vol(P )kn +
1

2
Vol(∂P )kn−1 + p(k),

where p(k) is a polynomial in k of degree n− 2 which depends on P only. For n= 1,

χ(kP ) =Vol(P )k+ 1;

and for n= 2, we have the Pick theorem (see [Pic99]),

χ(kP ) :=| kP ∩Zn |=Vol(P )k2 +
1

2
Vol(∂P )k+ 1.

In particular, for k >> 0,

χ(kP )−Vol(kP ) =
Vol(∂P )

2
kn−1 + p(k)> 0.

Proposition 3.7. Let P be an n-dimensional integral polytope. Suppose Vol(P )�
(n+ 2)(n+ 1), so then D(P ) is not asymptotically Chow semistable.

Proof. For kD(P ), denote the point in kD(P ) to be (p, q), where p∈Rn, q ∈R. Consider the
function

f(p, q) =

{
0 if | q |� k− 1,
t if | q |= (1− t)(k− 1) + tk= k− 1 + t, 0� t� 1.

Then ∑
p∈kD(P )

f(p) = 2.

Let Vol(P ) = (n+ 2)(n+ 1)(1 + δ) for some δ� 0 . Then∫
kD(P )

f(x) dV = 2

∫ 1

0
t(1− t)nVol(P )dt= 2Vol(P )

∫ 1

0
tn(1− t)dt

=2Vol(P )

(
1

n+ 1
− 1

n+ 2

)
= 2

Vol(P )

(n+ 1)(n+ 2)
= 2+ 2δ,

for some fix δ > 0. Therefore,

1

Vol(kD(P ))

∫
kD(P )

f(x) dV =
2+ 2δ

Vol(D(P ))kn+1
,

9
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and
1

χ(kD(P ))

∑
p∈kD(P )

f(p) =
2

χ(kD(P ))
.

As a result,

1

χ(kD(P ))

∑
p∈kD(P )

f(p)− 1

Vol(kD(P ))

∫
kD(P )

f(x) dV =
2

χ(kD(P ))
− 2 + 2δ

Vol(kD(P ))

<
2

Vol(kD(P ))
− 2 + 2δ

Vol(kD(P ))

=
−2δ

Vol(kD(P ))
� 0. �

Example 3.8 (Claim 4.3 in [LLSW19]). Let P = [−a, a] for a> 3. Then D(P ) is not asymptot-
ically Chow semistable by the Proposition 3.7.

In the following example, we construct a toric variety which is defined by a reflexive and
symmetric polytope, but it is not asymptotically Chow semistable.

Example 3.9. Consider P = [−1, 1]6 = ((P1)6, O(2, 2, 2, 2, 2, 2)), so then

Vol(P ) = 26 = 64> 56 = 8× 7 = (6 + 2)(6 + 1).

Indeed, as 2x − (x+ 2)(x+ 1) is increasing when x� 6, so for all n� 6,

2n − (n− 2)(n− 1)� 64− 56 = 8> 0,

which implies that D([−1, 1]n) are not asymptotically Chow semistable for all n� 6.

Remark 3.10. In the previous example, we provided a sequence of functions fk : kD([−1, 1]n)→R

such that the inequality (1) does not hold for all k >> 0, and hence we show that D([−1, 1]n)
are not asymptotically Chow semistable for all n� 6. We can generalize this construction to
any d-dimensional toric variety with the polytope Δ. To be precise, for any p∈Δ, we define a
sequence of piecewise linear functions fp,k : kΔ→R such that:

(i) fk(kp) = 1 and fk(q) = 0 for any q ∈ kΔ∩Zn; and

(ii) for any piecewise linear function gk satisfies the condition (i),∫
kΔ

fp,k(x)dV �
∫
kΔ

gk(x)dV.

This is equivalent to defining hyperplanes Hk :=
{
L
(
x
k

)
= 0

}
with L(p)> 0 such that:

(i) Ro
p,k := {L (

x
k

)
> 0} ∩ kΔ= {kp}; and

(ii) for any R′
p,k

o := {L̂ (
x
k

)
> 0} ∩ kΔ= {kp},

Vol(Ro
k)�Vol(R′

k
o
).

We denote

Qp := {L (x) = 0} ∩Δ,

10
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which is the base of the cone Ro
p,1. By the same argument as in the proof of Proposition 3.7,

if there exists p such that Vol(Qp)� d(d+ 1), then fk do not satisfy the inequality (1) for all
k >> 0. The whole construction is called the cut a vertex technique as kΔ=Ro

p,k ∩ {fk = 0},
where we separate kΔ into a cone Rp,k near the vertex kp and the remaining, and we can show
that Δ is not asymptotically Chow semistable by studying the properties of Rp,k or even only
Rp,1.

Additionally, for (Pn, O(n+ 1)) and ((P1)n, O(2, . . . , 2)), under the above construction, Ro
k

must be an n-dimensional simplex. Hence Qp are (n− 1)-dimensional simplices for all p, and the
volume of Qp is

Vol(Qp)
1

(n)!
< (n+ 2)(n+ 1),

which is expected as we know that they are asymptotically Chow polystable.

In § 4, we will define a more restrictive type of polytopes, which are asymptotically Chow
polystable.

4. Special polytopes

We first recall some definitions from toric geometry.

Definition 4.1. An integral polytope P is reflexive if the boundary is given by the equations
n∑

i=1

aixi =±1,

where ai ∈Z. Or equivalently, there exists exactly one interior point (0, . . . , 0).

Definition 4.2. An integral polytope P is symmetric if there is exactly one fixed point of the
symmetric group G acting on P .

Notice that if P is reflexive, then the fixed point is 0, and the G<SL(n,Z) action is given by the
matrix multiplication. We now add one extra restriction on the symmetric reflexive polytopes.

Definition 4.3. Let P be an n-dimensional integral convex polytope on Rn. We say P has
regular boundary if for any k ∈N, there exists a triangulation of ∂kP which every ‘triangle’ is
integrally isomorphic to

Tn−1 := conv{(0, . . . , 0), e1, . . . , en−1},
the standard (n− 1)-dimensional simplex, (i.e. the intersection between different T i

n−1 are at the
boundary) such that:

(i) for any point p∈ ∂kP , the number of simplices intersecting with p, denoted as mk(p), is
bounded by n! (i.e. mk(p)� n!); and

(ii) this is the sub-triangulation of each face.

Here, integrally isomorphic means one of the objects is obtained from another object by an
integral rigid motion, i.e. the multiplication of a matrix A∈ SL(n,Z) and translation of v ∈Zn.
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Remark 4.4. If two objects P1, P2 are integrally isomorphic, then for all k, kP1 has the same
number of integral points as kP2. Indeed, integral isomorphism is obtained by a bijection map
ϕ : Zn →Zn. So for each compact object U ⊂Rn, the map ϕ : U ∩Zn →ϕ(U ∩Zn) is a bijection.

Definition 4.5. An integral convex polytope on Rn is called special if it is reflexive, weakly
symmetric, and has a regular boundary. A Fano toric variety (X,−KX) is called special if the
corresponding polytope is special.

Example 4.6. Suppose P is a two-dimensional symmetric reflexive polytope, so then it is
special. This is because the boundary of P is a loop, so every point must connect with two
segments hence the boundary has a regular triangulation.

Remark 4.7. The two-dimensional symmetric reflexive polytopes are

X3 := conv{(−1,−1), (1, 0), (0, 1)}, X4 := conv{(±1, 0), (0,±1)},
X6 := conv{(0,±1), (±1, 0), (1,−1), (−1, 1)}, X8 := conv{(±1,±1)},
X9 := conv{(−1,−1), (2,−1), (−1, 2)}

Example 4.8. The polytopes D(X3), D(X4), D(X6), D(X8) and D(X9) are symmetric and
reflexive. However, among these five polytopes, only D(X3), D(X4) and D(X6) are spe-
cial. For instance, the faces of D(X8) are given by the triangles integrally isomorphic to
conv{(−1, 0), (1, 0), (0, 1)}. As a result, for any k, and for the point (0, 0,±k), there must be 2
simplices attaching the vertex for each face. Therefore,

n(0, 0,±k) = 2 · 4 = 8.

Similarly, we can see that for any triangulation for D(X9),

n(0, 0,±k) = 3 · 3 = 9.

There are pictures indicating how to triangulate a face of D(X8) and a face of D(X9) in § 10.

5. Properties of special polytopes

In this section, we study what results each assumption in the definition of the special toric
varieties can provide, starting with reflexivity.

Lemma 5.1. Let P be a reflexive polytopes. Then, for all k ∈N,

kP ∩Zn =

k⋃
i=0

(∂iP ∩Zn).

Proof. Let P be reflexive. Then (0, . . . , 0)∈ ∂(0P ) by definition. Notice that, for any p=
(p1, . . . , pn) �= 0∈ kP , there exists α and 0< cα < k such that

a1,αp1 + · · ·+ an,αpn = cα.

But p∈Zn implies cα∈Z, and hence p∈ ∂cαP ∩Zn. �

Also, we have the following.

Lemma 5.2. Let P be a reflexive n-dimensional polytope. Then

Vol(∂P )

n
=Vol(P ).
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Proof. Let
⋃r

i=1 Qi = ∂P , where the Qi are faces of P . Then define

C(Qi) := conv{(0, . . . , 0), Qi}= {tx∈ P | x∈Qi, 0� t� 1}.
Then

P =

r⋃
i=1

C(Qi),

and

Vol(P ) =

r∑
i=1

Vol(C(Qi)).

The assumption that P is reflexive implies the height is 1 for any C(Qi), so

Vol(P ) =

r∑
i=1

Vol(C(Qi)) =

r∑
i=1

Vol(Qi)

n
=

Vol(∂P )

n
.

�

Lemma 5.3. Suppose f : P →R is a G-invariant convex function such that

min
p∈P

f(x) = f(0)� 0.

Then

Ff (t) :=

∫
t∂P

f(tx)dσP

is convex, where σ∂P |x= d(lQi
) |x for x∈Qi, the defining boundary function of the face Qi ⊂ ∂P .

Proof. First, we have a map ϕ : ∂P × [0, 1]→ P defined by

ϕ(x, t) = tx.

Notice that this map is surjective, that ϕ(x, 0) = 0 and that ϕ |∂P×(0,1] is bijective. Hence any
function f on P can be represented by the function

g(x, t) := f ◦ϕ(tx).
Notice that f(0) is the minimum, so f(x)� 0. We find that a (decreasing) sequence of smooth G-
invariant convex functions fi, with fi(0)� 0, converges to f . Denote Q= ∂P . We define gi : Q×
[0, 1]→R by

gi(x, t) := fi ◦ϕ(x, t).
Now, by convexity, and since f(0) is minimum, f is increasing along the segment

{(tx, t) | 0� t� 1}, so it implies

dgi
dt

(x, t)� 0.

Also, convexity of fi implies

d2gi
dt2

(x, t)� 0.

As ∫
tQ

fi(tx)dσQ = tn−1

∫
Q
gi (x, t) dσQ,
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we now compute the second derivative of Fi. For n� 3, the second derivative of Fi is given by

d2

dt2

∫
tQ

fi(x, t)dσQ =
d2

dt2
tn−1

∫
Q
gi(x, t)dσQ

=
d

dt

(
(n− 1)tn−2

∫
Q
gi (x, t) dσQ + tn−1

∫
Q

dgi
dt

(x, t) dσQ

)

= (n− 1)(n− 2)tn−3

∫
Q
gi (x, t) dσQ

+2(n− 1)tn−2

∫
Q

dgi
dt

(x, t) dσQ + tn−1

∫
Q

d2gi
dt2

dσQ

� 0,

so all Fi are convex. Thus F is convex.
Also, for n= 2,

F ′′
i (t) = 2(n− 1)

∫
Q

dgi
dt

(x, t) dσQ + t

∫
Q

d2gi
dt2

dσQ.

Finally, for n= 1, F (t) = f(−ta) + f(tb) for P = [−a, b], so

F ′′
i (t) = a2f ′′(−ta) + b2f ′′(tb)� 0.

So F ′′
i (t)� 0 for all i, which implies that F (t) is convex. �

As a remark, when we put f(x) = c, then Fc(t) = cVol(∂P )tn−1, in which we can see that if
c < 0 and n� 3, Fc is not convex on [0, 1].

Corollary 5.4. Suppose P is symmetric. Then for all k ∈R, for all G invariant convex
functions f : kP →R with minx∈kP f(x) = f(0) = 0, we have∫

kP
f(x, t) dV � 1

2
F (0) + F (1) + · · ·+ F (k− 1) +

1

2
F (k),

where

F (t) :=

∫
t∂P

f(x, t)dσ∂P .

Also, equality holds if and only if f = 0.

Proof. Now ∫
kP

f(tx)dV =

∫ 1

0

∫
t∂kP

f(tx)dσdt=

∫ 1

0
Ff,kP (t)dt.

By Lemma 5.3, F (t) is convex, and hence by the trapezoid rule, we have∫
kP

f(x, t)� 1

2
F (0) + F (1) + · · ·+ F (k− 1) +

1

2
F (k).

�

The final lemma is a property of a regular boundary.

Lemma 5.5. Let P have a regular boundary. Then for any k, and for any convex function f ,
we have ∫

∂kP
f(x)dσ�

∑
v∈∂kP

f(v).
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Proof. Let n be the dimension of P . Then its boundary can be triangulated by the (n− 1)
simplex Tn−1. Let the vertex point of Tα

n−1 be p
α
0 , . . . , p

α
n−1, so then convexity implies all simplex

Tn−1 have the property ∫
Tn−1

f(x)dσ�Vol(Tn−1)

n−1∑
i=0

f(pi)

n
=

n−1∑
i=0

f(pi)

n!
.

Therefore, if we denote n(p) to be the number of simplex touching the point p, then the regular
boundary assumption means n(p)� n!, which implies

∫
∂kP

f(x)dσ=
∑
α

∫
Tα
n−1

f(x)dσ�
∑
α

n−1∑
i=0

f(pαi )

n!
=

∑
p∈∂kP∩Zn

n(p)f(p)

n!

�
∑

p∈∂kP∩Zn

n!f(p)

n!
=

∑
p∈∂kP∩Zn

f(p).

�

6. Chow stabilities of special polytopes

We now show that a special polytope is asymptotically Chow polystable.

Theorem 6.1. Let P be a special polytope. Then P is asymptotically Chow polystable.

Proof. First, denote χ(kP ) :=#{kP ∩Zn}, so then

1

Vol(kP )

∫
kP

c dV =
1

χ(kP )

∑
p∈kP∩Zn

c.

Second, P is reflexive and symmetric implies that for any G invariant convex function f ,

min
x∈kP

f(x) = f(0).

Therefore, to show that the inequality (1) holds for any G-invariant convex function f , we only
need to show that the inequality (1) holds for all G-invariant convex functions f satisfying

min
x∈kP

f(x) = f(0)� 0.

.
Let f be a G-invariant convex function satisfying

min
x∈kP

f(x) = f(0)� 0.

By Corollary 5.4, ∫
kP

f(x)dV � f(0)

2
+

k−1∑
r=1

∫
∂rP

f(x)dσ+
1

2

∫
∂kP

f(x)dσ.

Lemma 5.5 implies∫
kP

f(x)dV � f(0)

2
+

k−1∑
r=1

∑
∂rP∩Zn

f(p) +
1

2

∑
∂kP∩Zn

f(p)

=

k∑
r=0

∑
p∈∂rP∩Zn

f(p)− f(0)

2
− 1

2

∑
p∈∂kP∩Zn

f(p).

15

https://doi.org/10.1112/mod.2025.1 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.1


King Leung Lee

Therefore, Lemma 5.1 implies∫
kP

f(x)dV �
∑

kP∩Zn

f(p)− 1

2
f(0)− 1

2

∑
p∈∂kP∩Zn

f(p).

Therefore,

1

Vol(kP )

∫
kP

f(x)dV =
1

χ(kP )

∫
kP

f(x)dV +

(
1

Vol(kP )
− 1

χ(kP )

)∫
kP

f(x)dV

� 1

χ(kP )

⎛
⎝ k∑

r=0

∫
∂rP

f(x)dσ− 1

2
f(0)− 1

2

∑
p∈∂kP∩Zn

f(p)

⎞
⎠

+

(
1

Vol(kP )
− 1

χ(kP )

) ∫
kP

f(x)dV

� 1

χ(kP )

k∑
r=0

∑
p∈∂rP

f(p)− 1

2χ(kP )

⎛
⎝f(0) +

∑
p∈∂kP∩Zn

f(p)

⎞
⎠

+

(
1

Vol(kP )
− 1

χ(kP )

) ∫
kP

f(x)dV (Lemma 5.5)

=
1

χ(kP )

∑
p∈kP

f(p)− 1

2χ(kP )

⎛
⎝f(0) +

∑
p∈∂kP∩Zn

f(p)

⎞
⎠

+

(
1

Vol(kP )
− 1

χ(kP )

) ∫
kP

f(x)dV (Lemma 5.1).

So we only need to show

− 1

2χ(kP )

⎛
⎝f(0) +

∑
p∈∂kP∩Zn

f(p)

⎞
⎠+

(
1

Vol(kP )
− 1

χ(kP )

)∫
kP

f(x)dV � 0.

That is,

(
1

Vol(kP )
− 1

χ(kP )

) ∫
kP

f(x)dV � 1

2χ(kP )

⎛
⎝f(0) +

∑
p∈∂kP∩Zn

f(p)

⎞
⎠ . (2)

Now, we can triangulate kP by Cα := conv{(0, . . . , 0), Tα
n−1}, where

⋃
α Tα

n−1 is the regular

triangulation on ∂kP , Vol(Cα) =
k

n(n−1)! =
k
n! , and by convexity,

∫
kP

f(x)dV �
∑
α

Vol(Cα)
∑
i

f(0) + f(pα0 ) + · · ·+ f(pαn−1)

n+ 1

=
∑

p∈∂kP

kn(p)f(p)

(n!)(n+ 1)
+

Vol(∂kP )

Vol(Cn−1)

k

n!(n+ 1)
f(0)

�
∑

p∈∂kP

kf(p)

n+ 1
+Vol(∂kP )

k

n(n+ 1)
f(0).
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Therefore, in order to show equation (2), it suffices to show that we have

(
1

Vol(kP )
− 1

χ(kP )

)⎛⎝ ∑
p∈∂kP

kf(p)

n+ 1
+Vol(∂kP )

k

(n+ 1)n
f(0)

⎞
⎠� 1

2χ(kP )

⎛
⎝f(0) + ∑

p∈∂kP∩Zn

f(p)

⎞
⎠,

or [(
χ(kP )−Vol(kP )

Vol(kP )

) (
k

n(n+ 1)
Vol(∂kP )

)
−
(
1

2

)]
f(0)

�
(
1

2
−
(

k

n+ 1

)(
χ(kP )−Vol(kP )

Vol(kP )

)) ∑
p∈∂kP

f(p).

By assumption, f(0) =minp∈kP f(p) = 0, so we only need to show

0�
(
1

2
−
(

k

n+ 1

)(
χ(kP )−Vol(kP )

Vol(kP )

))
.

By Lemma 3.6, χ(kP ) =Vol(P )kn + 1
2Vol(∂P )kn−1 + r(k), where r(k) = an−2k

n−2 + · · ·+
a1k+ 1 is a polynomial, and ai depends on P only, so

χ(kP )−Vol(kP )

Vol(kP )
=

Vol(∂P )

2kVol(P )
+ r(k)k−n.

Using Lemma 5.2,(
k

n+ 1

)(
χ(kP )−Vol(kP )

Vol(kP )

)
=

k

n+ 1

(
Vol(∂P )

kVol(P )
+ r(k)

k−n

Vol(P )

)

=
k

n+ 1

(
n

k
+ r(k)

k1−n

Vol(P )

)

=
n

2(n+ 1)
+ r(k)

k1−n

Vol(P )
.

Therefore, there exists C such that

| r(k)k1−n |
Vol(P )

=
1

Vol(P )
| an−2k

−1 + · · ·+ a1k
2−n + k1−n |< 1

2(n+ 1)

for all k�C, and hence(
k

n+ 1

)(
χ(kP )−Vol(kP )

Vol(kP )

)
� n

2(n+ 1)
+

| r(k)k1−n |
Vol(P )

<
1

2
,

which shows our theorem. �

Example 6.2 (See also [LLSW19]). By Example 4.6 and Remark 4.7, all two-dimensional sym-
metric reflexive polytopes are special, which are Xi for i= 3, 4, 6, 8, 9, and hence the above
varieties are asymptotically Chow polystable.

7. Regular triangulation of an n simplex

To find higher-dimensional examples, we first need to know how to triangulate a polytope in
higher dimensions. In general, it may be very difficult, but at least we can triangulate a polytope
kP by the following.

(i) Triangulate P into simplices.
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(ii) Triangulate kP , by first enlarging the triangulation on P , then triangulating kP by
enlarged simplices kTn. After that, further triangulate every enlarged n simplex kTn into
simplices.

So we need to know how to triangulate a simplex kTn := conv{(0, . . . , 0), kei | i= 1, . . . , n},
where ke1 = (k, 0, . . . , 0), . . . , ken = (0, . . . , 0, k). As a remark, the Lemma 7.1 is also proven in
[LY24], but for completeness, we will provide the proof here as well.

Lemma 7.1 (Lemma A1 in [LY24]). For any p∈Zn, there exists a simplex triangulation T of
Rn such that n(p) = (n+ 1)!. Moreover, this triangulation T can triangulate the simplex

kΔn = conv{(0, . . . , 0), (k, 0, . . . , 0), . . . , (0, . . . , 0, k)},
so that

n(p) =
(n+ 1)!

(k+ 1)!
,

for all p∈ ((n− k)-faces of kΔn)
o ∩Zn.

Proof. We modify an idea from [Hat02, p. 112] for the construction. Let I = [0, 1] be the unit
interval in R. After taking an appropriate parallel transformation, we pick up one vertex p from
V(In).

First, we triangulate the n-dimensional cube In into exactly n! copies of an n-simplex Δn.
For the vertex p∈ V(In), we construct such a triangulation by induction on n. Since the vertex
p has n hyperfaces F1, . . . , Fn ⊂Δn opposite it, we regard each Fi as an (n− 1)-cube. By the
assumption of inductive argument on n, each Fi can be triangulated into (n− 1)! copies of an
(n− 1)-simplex such as

Fi =

(n−1)!⋃
j=1

Δ
(j)
n−1.

Let V(Δ(j)
n−1) = {q(j)1 , . . . , q

(j)
n }. Then, conv{p, q(j)1 , . . . , q

(j)
n } gives an n-simplex for each j, and

hence we have n× (n− 1)! = n! copies of an n-simplex by considering all n hyperfaces F1, . . . , Fn.
Second, we denote by T (In) this triangulation of In into exactly n! simplices. Then we use

parallel transformations of T (In) for obtaining a triangulation of Rn such that n(p) = (n+ 1)!.
For n= 1, this is obvious. For n= 2, T (I2) consists of two triangles (see Figure 1). Keeping this

and taking parallel transformations of T (I2) around the vertex p, we obtain the triangulation
of R2 with n(p) = 3!. See Figure 2, also the Figure 3 for the parallel transformation in finite
steps.

For arbitrary n∈N, let us denote the set of 2n vertices of the n-cube by

V(In) = {p1, p2, . . . , p2n}.
Then we see that n(p) is given by the number of all simplices in T (In) whose vertices lie in V(In).
If we denote by T (Rn) the triangulation of Rn induced by T (In), we see that n(p) coincides with
the value of the characteristic function ϕT (In) : Z

n →R defined by

ϕT (In)(p) =
∑

S:p∈V(S)
n!vol(S),

18

https://doi.org/10.1112/mod.2025.1 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.1


Asymptotic Chow Stability of Symmetric Reflexive

Figure 1. Triangulation of I2.

Figure 2. Triangulation of R2 induced from I2.

O

Figure 3. Triangulation of a 2-simplex and rectangle.

where the summation is over all n-simplices of T (Rn) for which p is a vertex (see, [GKZ94,
p. 220]). Consequently, we have n(p) = (n+ 1)!, which proves the first part.

For the second part, by taking a suitable kΔn ⊂Rn, the triangulation of Rn induced a trian-
gulation of kΔn (see the red triangle in Figure 2). Moreover, an action of the permutation group
Sn+1 on kΔn (which permute the vertices) induces the action on the triangulation T in kΔn.
Consequently, the stabilizer group of p in Sn+1 is Sk+1, which implies that

n(p) =
(n+ 1)!

(k+ 1)!
,

for p∈ ((n− k)-faces of kΔn)
o ∩Zn. �

8. Another sufficient condition of Chow stabilities on reflexive toric varieties

Theorem 8.1. Let P be a reflexive polytope such that all the Futaki–Ono invariants vanish, and
one has a triangulation on kP by n simplices, and a triangulation on ∂kP by (n− 1)simplices, We
let n(p; k) be the number of n simplices attached to p∈ kP in the first triangulation, and m(p; k)
be the number of (n− 1) simplices attached to p∈ ∂kP in the second. Suppose n(p; k)� (n+ 1)!
for all p �= 0 and (n

2

)
m(p; k)< ((n+ 1)!− n(p; k)),

for all k >> 0 and for all p∈ ∂kP . Then P is asymptotically Chow polystable.

Proof. First, P is weakly symmetric implies that we can assume f(0) =minx∈P f(x)� 0. Now,

1

Vol(kP )

∫
kP

f(x) dV =
1

χ(kP )

∫
kP

f(x)dV +

(
1

Vol(kP )
− 1

χ(kP )

) ∫
kP

f(x)dV.
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Notice that∫
kP

f(x)dV �
∑
p∈kP

n(p; k)f(p)

(n+ 1)!
�

∑
p∈kP

f(p)−
∑

p∈∂kP

(n+ 1)!− n(p; k)

(n+ 1)!
f(p).

Also, as in the proof of theorem 6.1, using the triangulation of ∂kP , we triangulate kP such
that each component is the convex hull of the origin and the simplex on ∂(kP ), so we have∫

kP
f(p) dV �

∑
p∈∂kP

m(p; k)kf(p)

(n)!(n+ 1)
+Vol(kP )

f(0)

(n+ 1)
.

Also,

χ(kP )−Vol(kP ) =
Vol(∂P )kn−1

2
+O(kn−2) =

nVol(P )kn−1

2
+O(kn−2).

By assumption, we may assume f(0) = 0 is the minimum, and therefore

1

Vol(kP )

∫
kP

f(x) dV

� 1

χ(kP )

⎛
⎝∑

p∈kP
f(p)−

∑
p∈∂kP

(n+ 1)!− n(p; k)

(n+ 1)!
f(p)

⎞
⎠

+

(
nk−1

2χ(kP )
+

O(k−2)

χ(kP )

)⎛
⎝ ∑

p∈∂kP

m(p; k)kf(p)

(n)!(n+ 1)
+Vol(kP )

f(0)

(n+ 1)

⎞
⎠

=
1

χ(kP )

∑
p∈kP

f(p) +
1

(n+ 1)!χ(kP )

((n
2
+O(k−1)

)
m(p; k)− ((n+ 1)!− n(p; k))

) ∑
p∈∂kP

f(p).

Therefore, if ((n
2
+O(k−1)

)
m(p; k)− ((n+ 1)!− n(p; k))

)
� 0,

then the inequality holds. Therefore, if for all k, for all p∈ ∂kP ,
n

2
m(p; k)< ((n+ 1)!− n(p; k)),

then P is asymptotically Chow polystable. �

Remark 8.2. We cannot generalize this statement from a reflexive polytope to an integral
polytope as the inequalities∫

kP
f(p) dV �

∑
p∈∂kP

m(p; k)kf(p)

(n)!(n+ 1)
+Vol(kP )

f(0)

(n+ 1)

and

χ(kP )−Vol(kP ) =
Vol(∂P )kn−1

2
+O(kn−2) =

nVol(P )kn−1

2
+O(kn−2)

do not hold in general. However, suppose there exists a positive integer c such that

P =

M⋂
i=1

{li(x)� c},
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where li(x) = a1ix1 + · · ·+ ani xn are linear functions with integral coefficients such that
(a1i , . . . , a

n
i , c) are coprime. Then the inequalities become∫

kP
f(p) dV �

∑
p∈∂kP

cm(p; k)kf(p)

(n)!(n+ 1)
+Vol(kP )

f(0)

(n+ 1)

and

χ(kP )−Vol(kP ) =
Vol(∂P )kn−1

2
+O(kn−2) =

nVol(P )kn−1

2c
+O(kn−2).

Then, by the same calculation as in the proof of Theorem 8.1, if we have other assumptions in
Theorem 8.1, then the result still holds.

8.1 D(X8) and D(X9)

Recall that D(X8) and D(X9) are given by

D(X8) := conv{(1, 1, 0), (−1, 1, 0), (1,−1, 0), (−1,−1, 0), (0, 0, 1), (0, 0,−1)},
D(X9) := conv{(−1,−1, 0), (2,−1, 0), (−1, 2, 0), (0, 0, 1), (0, 0,−1)}.

In Example 4.8, we showed thatD(X8) andD(X9) are not special. Therefore, to show thatD(X8)
and D(X9) are asymptotically Chow polystable, we have to triangulate the whole polytopes and
compute the inequality directly.

Notice that the only way to triangulate D(X8) and D(X9) into simplices is the following. We
triangulate X8 and X9 as follows.

O

Then we connect any small triangle to (0, 0, 1) and (0, 0,−1) to get 3-simplex. Therefore, we
can triangulate D(X8) into 16 simplices and D(X9) into 18 simplices. Then, by triangulation of
each simplex, we have a triangulation of kD(X8) and kD(X9).

As a consequence of Lemma 7.1, we have the following lemma.

Lemma 8.3. For kD(Xi), under the above triangulation,

n(p)

⎧⎨
⎩

= i if p= (0, 0,±k),
� 24 if p∈ kD(Xi)

o,
� 12 if p∈ ∂kD(Xi).

Moreover, the triangulation on kT2 combined with the induced triangulation on D(Xi) onto
∂kD(Xi) gives

m(p)

{
= i if p= (0, 0,±k),
� 6 otherwise.

As a remark, for each D(Xi), nkP (0, . . . , 0) = 2i, also for the triangulation of ∂kDi, n(p) = 4 for
p∈ ∂kP intersect with the red line.

Corollary 8.4. For i= 3, 4, 6, 8, 9, D(Xi) are asymptotically Chow polystable.
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X3 X4 X6 X8 X9

Figure 4. Xi for i= 3, 4, 6, 8, 9.

Proof. For p∈ ∂kP such that p �= (0, . . . ,±1), n(p; k)� (n+1)!
2 and m(p; k)� n!, the inequality

becomes

n(n!)� (n+ 1)!,

which is true. Also, at p= (0, . . . , 0,±1), we have

n(p; k) =m(p; k) = i,

and then we need

(n+ 1)!>
(n+ 2)

2
i.

That is,

1>
(n+ 2)i

2(n+ 1)!
.

If n= 3, then it becomes

1>
5i

48
,

and hence this inequality holds for i� 9. Therefore, by Lemma 8.3 and Theorem 8.1, for
i= 3, 4, 6, 8, 9, D(Xi) are asymptotically Chow polystable. �

9. Examples of the stability of symmetric reflexive polytopes

9.1 One- and two-dimensional symmetric reflexive polytopes

Example 9.1. The only one-dimensional symmetric reflexive polytope is [−1, 1], which is Chow
stable (see [LLSW19]).

Example 9.2. Suppose P is a two-dimensional symmetric reflexive polytope, so then it is
special, and hence it is asymptotic Chow stable. Indeed, by Theorem 1.2 and Corollary 3.3 in
[LLSW19], combined with the fact that P2 and P1 × P1 (by Proposition 3.2) are Chow stable,
so indeed, all two-dimensional special polytopes are Chow stable.

As a remark, they are given by

X3 := P2/(Z/3Z), X4 := P1 × P1/(Z/2Z), X6 := P2 blow up 3 points, X8 := P1 × P1, X9 := P2,

and all the line bundles to define the polytopes are −KXi
. The polytopes are given in Figure 4.

Notice that in [LLSW19] there are some examples of the non-reflexive polytopes which we
will not discuss in detail in this note.
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�0

�3
O

�0

�4
O

�0

�6
O

Figure 5. 
0 ⊂X3, 
0 ⊂X4 and 
0 ⊂X6.

X3 × [−1, 1] X4 × [−1, 1] X6 × [−1, 1] X8 × [−1, 1] X9 × [−1, 1]

Figure 6. Xi × [−1, 1].

D(X3) D(X4) D(X6) D(X8) D(X9)

Figure 7. D(Xi).

9.2 Three-dimensional polytopes

To study the higher-dimensional polytopes, we first recall that, given a reflexive polytope P , we
can define the dual polytope P̂ as follows. Let

P̂ := {y ∈Rn 〈x, y〉�−1, for all x∈ P}.
If P is symmetric and reflexive, so is P̂ . For example, D(P ) = ̂̂P × P1. However, the duality may
not share the stability.

By Lemma 7.1, for faces that are 2-simplices or rectangles, then m(p) = 6 for p∈ P o, m(p) = 3
if p∈ (∂P )o, and m(p) = 1 if p is the vertex. For any p∈ (∂P )o, there are at most two faces
connected to p, so in order to check if a polytope is special, we only need that there are i� 6
simplices connecting each vertex under the triangulation on the boundary.

Denote Δ0 as the triangulation of a 2-simplex. As in Figure 5, if the faces are given by Xi,
for i= 3, 4, 6, then n(0) = i, n(p) = 6 for p∈ P o − {0}, n(p) = 3 if p∈ (∂P )o, and n(p) = 2 if p is
the vertex using the rotation of Δ0 as the triangulation.

Therefore, if the polytopes whose faces are a combination of the above, then the only possible
problem is the vertex, and we can study those polytopes case by case.

Proposition 9.3. The following symmetric reflexive three-dimensional polytopes are asymp-
totically chow polystable.

(i) Xi × [−1, 1] for i= 3, 4, 6, 8, 9 (Figure 6).

(ii) D(Xi), where i= 3, 4, 6, 8, 9 (Figure 7).
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P3 P3/(Z/4Z) P3 blows up at 4 points

Dual of P3 blow up at 4 points. cuboctahedron Daul of cuboctahedron.

Figure 8. Other special polytopes, where the red line indicates part of the triangulation.

(iii) Other polytopes (Figure 8):

(a) the polytope of (P3, O(4)) := conv{(−1,−1,−1), (3,−1,−1), (−1, 3,−1), (−1,−1, 3)}
(tetrahedron) and its dual, A3 = conv{(−1,−1,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1)} (tetra-
hedron;

(b) the polytope of P3 blow up 4 points, which is a convex set of the points
(0,−1,−1), (−1, 0,−1), (−1,−1, 0), (2,−1,−1), (2,−1, 0), (2, 0,−1), (−1, 2,−1),
(−1, 2, 0), (0, 2,−1), (−1,−1, 2), (−1, 0, 2), (0,−1, 2). Hence this polytope is a
truncated tetrahedron, in which the boundaries contain 4 X6 and 4-simplices. Each
vertex is connected with one 2-simplex and two X6; and its dual:

(c) The dual polytope of (B), conv{(±1, 0, 0)(0,±1, 0), (0, 0,±1), (−1,−1,−1), (1, 1, 1)},
which is D(X4) glue with two standard 3-simplices, and the faces are all standard
2-simplices.

(d) The polytope conv{(±1, 0, 0), (0,±1, 0), (±1,∓1, 0), (0, 0,±1), (±1, 0,∓1), (0,±1,∓1)},
which is a cuboctahedron, with eight triangular faces and six square faces, and each
vertex is connected to two 2-simplex and 2-square, and its dual, which is given by:

(e) the convex hull of the points:

(1, 0, 0), (1, 1, 0), (0, 1, 0), (−1, 0, 0), (−1,−1, 0), (0,−1, 0),

(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0,−1), (−1, 0,−1), (−1,−1,−1), (0,−1,−1),

which is a rhombic dodecahedron.

Proof.

(i) Xi × [−1, 1] for i= 3, 4, 6, 8, 9: All two-dimensional reflexive symmetric polytopes are spe-
cial, and hence Xi are asymptotically chow polystable. Also, as stated in Example 9.1,
[−1, 1] is asymptotically chow polystable. By Proposition 3.2, they are asymptotically
chow polystable.
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(ii) D(Xi), where i= 3, 4, 6, 8, 9: This is a direct consequence of Corollary 8.4.

(iii) To show the remaining polytopes are asymptotically Chow polystable, we only need to show
that the remaining polytopes are special. As we explained right before this statement, if
the faces of the boundary consist of Xi for i= 3, 4, 6, 2-simplices and rectangles, then
mk(p)� 6 for all non-vertexes p. Also, for any vertex p, denote N(S) to be the number of
S connected to p, so then

mk(p) =
∑

i=3,4,6

2N(Xi) +N(2 simplices) + aN(rectangles),

where a can be 1 or 2 depending on the triangulation. In particular, if all the faces of
the boundary are given by X3, X4, X6, simplices or rectangles, and the number of faces
connected to a vertex p is smaller than 3, then mk(p)� 6. Also, see Figures 8 in § 10, which
provide the detail of the boundary of the polytopes.

(a) The polytope of (P3, O(4)) := conv{(−1,−1,−1), (3,−1,−1), (−1, 3,−1), (−1,−1, 3)}.
The boundary consists of four enlarged two-dimensional simplices,
hence mk(p)� 6, and for all the vertexes p, mk(p) = 3. For A3 =
conv{(−1,−1,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, the boundary consists of 4 X3.
Also, each vertex p is connected to 3 X3, and hence

mk(p) = 6.

Therefore, A3 is special.
(b) The convex set of the points (0,−1,−1), (−1, 0,−1), (−1,−1, 0).(2,−1,−1), (2,−1, 0),

(2, 0,−1), (−1, 2,−1), (−1, 2, 0), (0, 2,−1), (−1,−1, 2), (−1, 0, 2), (0,−1, 2) is a trun-
cated tetrahedron, in which the boundary contains four X6 and four 2-simplices. Each
vertex is connected with 2 simplices and 2 X6, so for any vertex p,

mk(p) = 2+ 2× 2 = 6.

The symmetric group acting on it is the permutation group S4, which is the induced
action from the permutation of the vertexes of the enlarged simplex, and hence it is
symmetric. Also, by Figures 8 in § 10, we can see that it is reflexive. So, it is special.

(c)

conv{(±1, 0, 0)(0,±1, 0), (0, 0,±1), (−1,−1,−1), (1, 1, 1)},
which is D(X4) glue with two standard 3-simplices, for which the faces are all standard
2-simplices. By Figure 8 in § 10, we can see that the number of faces connected to each
vertex is less than six, the symmetric group acting on it is the permutation group S4,
and it is reflexive. So it is special.

(d) conv{(±1, 0, 0), (0,±1, 0), (±1,∓1, 0), (0, 0,±1), (±1, 0,∓1), (0,±1,∓1)}, which is a
cuboctahedron, with eight triangular faces and six square faces, and each vertex is
connected to one 2-simplices and two squares. Hence, for the surface, and for each
vertex p,

mk(p)� 2 + 2 · 2 = 6.

Also, the group acting on the polytope contains Z3 ×Z2, the rotation group rotates
along the z-axis, times the reflection group {id, σ}, which σ(p) =−p. Therefore this
polytope is symmetric. Also, from Figure 8 in § 10, we can see it is reflexive. Therefore,
it is special, and its dual, which is given by
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(e) the convex hull of the points,

(1, 0, 0), (1, 1, 0), (0, 1, 0), (−1, 0, 0), (−1,−1, 0), (0,−1, 0),

(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0,−1), (−1, 0,−1), (−1,−1,−1), (0,−1,−1),

is a rhombic dodecahedron. This is symmetric as the symmetric group is the same
as its dual. By Figures 8 in § 10, we can see that it is reflexive. Also, the vertices
(0, 1, 1), (1, 0, 1), (0,−1,−1), (−1, 0,−1) have four squares touching the points, and
the others have only three. So when we triangulate the surface, if we choose the tri-
angulation such that two of the squares do not bisect along those points, then for any
point p in it,

mk(p)� 6,

and hence this polytope is special. (See § 10 for the above triangulation.) �

Remark 9.4. Indeed, except for D(X8) and D(X9), all the polytopes given in Proposition 9.3
are special. Also, we conjecture that all three-dimensional symmetric reflexive polytopes are
asymptotically Chow polystable, and they are special except D(X8) and D(X9). The difficulty
in showing this conjecture is to find all three-dimensional symmetric reflexive polytopes up to
the integral isomorphism.

9.3 Higher-dimensional polytopes

One knows that in high dimensions that not every symmetric reflexive polytope is asymptotic
Chow stable, for example D([−1, 1]n) for n� 6. On the other hand, we can provide two classes
of polytopes that are special.

Example 9.5. Consider An := {[z0, . . . , zn+1]∈ Pn+1 | z1 . . . zn+1 = zn+1
0 }. The corresponding

polytopes, also denoted as An, are given by

An = conv{(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0, 1), (−1,−1, . . . ,−1)}.
As all the faces of An are simplices, with all the codimension 2 or above boundary intersecting
with less than n, it is asymptotic Chow polystable.

Notice that A2 =X3 in our notation on symmetric reflexive polygons. Also, as a polytope,
each An is the dual polytope of the polytope corresponding to (Pn, O(n+ 1)).

To show An are special for all n� 3, notice that the boundry of An is given by n piece of
(n− 1)-simplices. So we only need to know how many simplicies will be attached to a point in
the codimension k skeleton.

Let ai = ei and an−1 = (−1, . . . ,−1), so then we can represent any codimensional k piece by
the following: a1 represents the point e1, {a1, a2} represents the segment containing a1, a2, etc.
Also, as the symmetric group Sn+1 acts on An, we only need to consider how many faces contain
the n− r skeleton {a1 . . . an−r}. But the faces containing a1 . . . an−r are represented by the set
{an−r+1 . . . an+1} removing one element. Therefore, there are r+ 1 faces connecting the skeleton
containing a1 . . . an−r. Therefore, Lemma 7.1 implies that, for any point p∈ ∂kP which is in the
interior of the n− r skeleton,

n(p) =
(n)!

(r)!
(r) =

n!

(r− 1)!
� n!.
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Therefore, An has a regular triangulation. Also, all An are symmetric and reflexive, and hence
they are special, which implies all An for n� 2 are asymptotically Chow polystable.

Example 9.6. Consider (Pn, O(n+ 1)). The boundary of k(Pn, O(n+ 1)) is defined by
n⋂

i=1

{xi =−k} ∩ {x1 + · · ·+ xn = k}.

Up to an Sn+1 action, a point p is in the interior of a codimensional r skeleton if

p= (−k, . . . ,−k, v),

where v ∈Rn−r such that

−r+ v1 + · · ·+ vn−r < k,

vi >−k,

for all i= 1, . . . , n− k. Hence n(p) = r. So we have the same calculation of An, which implies it
is special, and therefore it is asymptotically Chow polystable.

Example 9.7. Define Dn := conv{(±1, . . . , 0), (0,±1, 0, . . . , 0), . . . , (0, . . . , 0,±1)} so Dn is
special for all n. Notice that D2 =X4 and D3 =D(X4).

Proof. Notice that kDn =Zn
2 · kTn, where Zn

2 = {1,−1}n with the group action to be multipli-
cation, and the action is multiplication to the corresponding coordinate. Dn is symmetric and
reflexive. To show that Dn has a regular boundary, p is in the interior of the codimension r+ 1
skeleton if p= (x1, . . . , xn)∈ ∂kDn with

xi1 = · · ·= xir = 0,

for r= 0, . . . , n− 1. We denote these points as pr. Hence, similar to Example 9.6, as a
consequence of Lemma 7.1, we have

n(pr) =
(n)!

(r+ 1)!
(2r) =

(
2

r+ 1

)
· · ·

(
2

2

)
n!� n!,

and hence Dn is special. �

Example 9.8. Notice that D6 is the dual polytope of [−1, 1]6, and thus D6 × [−1, 1] (i.e.
D6 × P1 as the corresponding variety) is asymptotically Chow polystable. However, its dual
is D([−1, 1]6); therefore, a dual of an asymptotically Chow polystable polytope need not be
asymptotically Chow polystable (or even semistable).

Appendix A. From integral polytypes to varieties

In this appendix, we will briefly explain how we obtain a toric variety from an integral polytope.
Then we will write down the corresponding varieties of the toric varieties occurring in this note.

A.1 General procedure

Let P be a integral polytope containing (0, . . . , 0). Let {p0 = (0, . . . , 0), p1, . . . , pN} be all the
integral points in P . Then we can define a toric subvariety in PN by the following equations.

Suppose we have

c1pi1 + · · ·+ crpir = b1pj1 + · · ·+ bspjs ,
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and without loss of generality, we may assume

c1 + · · ·+ cr = b1 + · · ·+ bs + a,

for some a� 0. Then we have a homogeneous polynomial defined by

zc1i1 · · · zcrir − zb1j1 · · · zbsjs za0 .
Then the zero set {[z0, . . . zN ]∈ PN | zc1i1 · · · zcrir − zb1j1 · · · zbsjs za0 = 0} is a divisor in PN , and it is a
toric subvariety.The toric action is given by

(C∗)N−1 ∼= {(λ1, . . . , λN )∈ (C∗)N | λc1
i1
· · · λcr

ir
= λb1

j1
· · · λbs

js
}.

By intersecting all these divisors, we can obtain a toric subvariety.
Notice that some of the equations are repeated in (C∗)N , so in the following we will define

the variety only by those which are different equations in (C∗)N , and the variety is the closure
of this.

A.2 Examples

Example A.1 (An). Denote p0 = (0, . . . , 0), pi = ei for i= 1, . . . , n and pn+1 = (−1, . . . ,−1).
Then we have

p1 + · · ·+ pn = (0, . . . , 0) = p0,

so the corresponding varieties, also denoted as An, are given by

An = {[z0, . . . , zn+1]∈ Pn+1 | z1 · · · zn+1 = zn0 }.
Example A.2 (Dn). Recall that Dn := conv{±ei}. Denote p0 = (0, . . . , 0), p2i−1 = ei, p2i =−ei
for i= 1, . . . , n. Then p2i−1 + p2i = 0 for i= 1, . . . , n gives n equations z2i−1z2i = z20 , and it gives
a n codimension subvariety of P2n; hence these equations define Dn,

Dn = {[z0, . . . , z2n]∈ P2n | z2i−1z2i = z20}.
Given

zc1i1 · · · zcrir = zb1j1 · · · zbsjs za0 ,
we denote

f(z0, . . . , zN ) = zc1i1 · · · zcrir − zb1j1 · · · zbsjs za0 .
Example A.3 (D(P )). Let P be defined by

{[z0, . . . , zN ]∈ PN | f1 = · · ·= fr = 0}.
Then we define f̂i(z0, . . . , zN+2) = fi(z0, . . . , zN ). Then by denoting pN+1 = (0, . . . , 0, 1), pN+2 =
(0, . . . , 0,−1), we have a new equation,

zN+1zN+2 = z20 .

Then the variety of D(P ) is given by

D(P ) = {[z0, . . . , zN+1zN+2]∈ PN | f1 = · · ·= fr = zN+1zN+2 − z20 = 0}.
In order to define D(P ), we need to know P as a subvariety of PN . Therefore, in order to

compute all the examples, we need to write down what Xi is as a subvariety.

Example A.4. As a subvariety of Pi, restricted in (C∗)i ⊂ Pi, Xi are given by:
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(i) X3 =A2 = {[z0, z1, z2, z3]∈ P3 | z1z2z3 = z30};
(ii) X4 =D2 = {[z0, z1, z2, z3, z4]∈ P4 | z1z2 = z20 , z3z4 = z20};
(iii) X6 = {[z0, z1, . . . , z6]∈ P6 | z1z4 = z2z5 = z3z6 = z20 , z2z4 = z3z0}, where this last equation

comes from (0, 1) + (−1, 0) = (−1, 1) and z2z4 = z3z0 can be replaced by z1z3z5 = z30 with
other equations to get the same variety;

(iv) X8 = {[z0, z1, . . . , z8]∈ P8 | zrzr+4 = z20 , where r= 1, 2, 3, 4; z1z3 = z2z0, z3z5 = z4z0}; and
(v) X9 = {[z0, z1, . . . , z9]∈ P9 | zrzr+3zr+6 = z30 , where r= 1, 2, 3; z1z3 = z22 , z2z4 = z23 , z2z6 =

z20 , z3z7 = z20}. Another way to write this uses X6 plus 3 points, hence we need two more
relations, namely

{[z0, z1, . . . , z9]∈ P9 | z1z4 = z2z5 = z3z6 = z20 , z2z4 = z3z0, z7z8z9 = z30 , z7z8 = z1z2}.
With this, we can write D(Xi) as subvarieties of Pi+2. For example,

(i) D(X3) = {[z0, z1, z2, z3, z4, z5]∈ P5 | z1z2z3 = z30 , z4z5 = z20};
(ii) D(X4) = {[z0, z1, . . . , z6]∈ P6 | z1z2 = z20 , z3z4 = z20 , z5z6 = z20};
(iii) D(X6) = {[z0, z1, . . . , z8]∈ P8 | z1z4 = z2z5 = z3z6 = z20z2z4 = z3z0, z7z8 = z20};
(iv) D(X8) = {[z0, z1, . . . , z10]∈ P10 | zrzr+4 = z20 , where r= 1, 2, 3, 4; z1z3 = z2z0, z3z5 =

z4z0, z9z10 = z20}; and
(v) D(X9) = {[z0, z1, . . . , z11]∈ P11 | zrzr+3zr+6 = z30 , where r= 1, 2, 3; z1z3 = z22 , z2z4 =

z23 , z2z6 = z20 , z3z7 = z20 , z10z11 = z20}.
Example A.5. Let PXi

be the polytope of Xi. For each i, the toric variety corresponding to
PXi

× [−1, 1] is Xi × P1.

Example A.6.

(i) P1 = conv{(±1, 0, 0), (0,±1, 0), (0, 0,±1), (−1,−1,−1), (1, 1, 1)}, which is D(X4) glue
with two standard 3-simplices, which the faces are all standard 2-simplices;

(ii) P2 = conv{(±1, 0, 0), (0,±1, 0), (±1,∓1, 0), (0, 0,±1), (±1, 0,∓1), (0,±1,∓1)};
(iii) P3, which is given by the convex hull of the points

(1, 0, 0), (1, 1, 0), (0, 1, 0), (−1, 0, 0), (−1,−1, 0), (0,−1, 0),

(0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0,−1), (−1, 0,−1), (−1,−1,−1), (0,−1,−1),

which is a rhombic dodecahedron.

The subvarieties are given by the following:

(i) P1 = {[z0, z1, . . . , z8]∈ (C∗)8 ⊂ P8 | z1z2 = z20 , z3z4 = z20 , z5z6 = z20 , z7z8 = z20 , z1z3z5 = z7z20},
where the last equation is deduced from e1 + e2 + e3 = (1, 1, 1);

(ii) P2 is a subvariety of P12, so we need nine equations: z2r−1z2r = z20 for r= 1, . . . , 6, z1z4 =
z5z0, z7z9 = z1z0 and z7z11 = z3z0;

(iii) P3 is a subvariety of P14. Following the order above, we have z1z4 = z2z5 = z3 = z6 = z20 ,
z1z3 = z2z0, z7z9 = z8z10, z11z13 = z12z14, z7z11 = z8z12 = z9z13 = z10z14 = z20 and z8z11 =
z0z1.
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