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This experimental study employs Bayesian optimisation to maximise the cross-flow
(transverse) flow-induced vibration (FIV) of an elastically mounted thin elliptical cylinder
by implementing axial (or angular) flapping motions. The flapping amplitude was in
proportion to the vibration amplitude, with a relative phase angle imposed between the
angular and transverse displacements of the cylinder. The control parameter space spanned
over the ranges of proportional gain and phase difference of 0 < K]’f <Sand 0 < ¢y <
360°, respectively, over a reduced velocity range of 3.0 < U* = U/(fuwb) < 8.5. The
corresponding Reynolds number range was 1250 < Re = (Ub) /v < 3580. Here, U is the
free stream velocity, b is the major cross-sectional diameter of the cylinder, f,, is the
natural frequency of the system in quiescent fluid (water) and v is the kinematic viscosity
of the fluid. It was found that the controlled body rotation extended the wake-body
synchronisation across the entire U* range tested, with a larger amplitude response than the
non-rotating case for all flow speeds. Interestingly, two new wake-body synchronisation
regimes were identified, which have not been reported in previous studies. As this
geometry acts as a ‘hard-oscillator’ for U* > 6.3, an adaptive gain (i.e. one that varies
as a function of oscillation amplitude) was also implemented, allowing the body vibration,
achieved for a non-rotating cylinder using increasing U* increments, to be excited from
rest. The findings of the present study hold potential implications for the use of FIV as a
means to efficiently extract energy from free-flowing water sources, a topic of increasing
interest over the last decade.
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1. Introduction

Flow-induced vibration (FIV) of structures is an aero- or hydro-elastic phenomenon
resulting from the complex coupled interaction between a fluid and a structure (often
termed fluid—structure interaction — FSI). FIV poses a critical challenge in various
engineering applications, such as the swaying of large structures like bridges and high-rise
buildings in strong winds, where undesirable vibration can lead to structural failure or
long-term fatigue. Conversely, FIV has been considered as a potential source of renewable
energy to harness available kinetic energy from fluid flows (see Bernitsas et al. 2008;
Lee & Bernitsas 2011; Wang et al. 2017; Soti et al. 2018; Tamimi et al. 2019; Lv et al.
2021; Lo et al. 2024c). Therefore, this has motivated an increasing amount of research
that aims to characterise, predict and control FIV (see Khalak & Williamson 1996;
Govardhan & Williamson 2000; Morse & Williamson 20095; Wong et al. 2017; Lo et al.
2024a). Of interest in the present study, a machine-learning-based active control method
is implemented to maximise the cross-flow FIV of a thin elliptical cylinder, which a recent
study (Lo et al. 2023) has shown to produce high amplitude oscillations.

The FIV response of an aeroelastic or elastically mounted bluff body can typically be
characterised in terms of two distinct phenomena: vortex-induced vibration (VIV) and
galloping. VIV occurs as a result of the periodic shedding of vortices, or at least shear
layer vorticity variation (Menon & Mittal 2020), from an elastic or elastically mounted
body leading to a periodic cross-flow forcing. VIV is self-limited due to the breakup
of the symmetrically alternating von Kdrmén vortex street at large vibration amplitudes
(Blevins 1990). Galloping, however, is caused by the asymmetric pressure distribution
across the body arising from the changes in the instantaneous flow incidence angle as the
body oscillates in the fluid. As both manifestations of FIV are dependent on the properties
of the flow and the cylinder (e.g. flow velocity, Reynolds number, geometry, mass ratio,
applied damping, structural stiffness), many past works have chosen parameters such that
VIV and galloping occur separately and can be individually investigated (Brooks 1960).
However, recent studies (see Nemes et al. 2012; Zhao, Hourigan & Thompson 2018a) have
shown that rich and complex fluid—structure interactions can also be observed when both
FIV phenomena concurrently manifest in the dynamic response of an elastic or elastically
mounted cylinder system.

One example of the co-manifestation of VIV and galloping relates to cylinders with
elliptical geometries as parametrised by the elliptical ratio ¢ = b/a, where a and b are
the streamwise and cross-flow (transverse) dimensions, respectively. Since the circular
cylinder is considered a special case of the elliptical geometry (with ¢ = 1) whose
FIV response is VIV due to the inherent symmetry of the system (see the reviews of
Bearman 1984; Williamson & Govardhan 2004), numerous studies have shown that the
introduction of deformation, where ¢ > 1, causes the flow induced by a transversely
oscillating elliptical cylinder to become more unstable (Hall 1984; Navrose et al. 2014;
Zhao, Hourigan & Thompson 2019; Vijay et al. 2020). However, it was only recently when
Lo et al. (2023) investigated the effect of structural damping on the FIV dynamics of a thin
& = 5 cylinder (see figure 1) that large-scale oscillation amplitudes, previously unseen for
other geometries at similar U* values, were discovered. Coined the ‘hyper branch’, the
nominal maximum amplitude of A &~ 8b observed for this region was only limited by the
width of the water-channel facility in which the experiments were conducted. Furthermore,
the presence of a secondary vortex street (SVS) can be identified as the wake formed by
the elliptical (airfoil-shaped) cylinder as it translates rapidly across the oncoming flow. It
indicates that the approximately factor-of-five increase in maximum amplitude over the
elliptical cylinder studies of Zhao et al. (2019) and Vijay et al. (2020) can be attributed
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Figure 1. A schematic defining the problem of interest: an elastically mounted elliptical cylinder model
constrained to oscillate transverse (y) to the velocity U of the free stream, which is in the positive x direction.
Additionally, m is the oscillating mass, k is the spring constant, c is the structural damping, 6 is the angle of
attack of the body relative to the free stream as a function of the transverse displacement y, and F, and F),
represent the respective streamwise and the transverse fluid forces acting on the body.

to the combined effect of VIV and a galloping-like movement-induced instability in the
hyper-branch reduced-velocity range. Additionally, when a non-zero orientation angle 6 is
introduced for an € = 5 cylinder, Lo et al. (2024b) showed that the oscillation amplitude
is reduced, resulting in a 60 % decrease in the peak amplitude value for & = 3.5° when
compared with the zero orientation angle case.

Given the vibration amplitude that can be sustained by such a geometry with its
implication for energy harvesting from FIV, there is a strong motivation to understand how
the coupling between VIV and the galloping-like movement-induced instability influences
the body’s dynamic response. With the movement-induced instability contribution to the
FIV of a thin elliptical cylinder being sensitive to the angle of the incident flow, it raises
the question: can further increases in the oscillation amplitude be gained by imposing axial
rotation? Such an approach has been implemented in numerous studies as part of an active
open-loop control strategy for the canonical circular cylinder constrained to vibrate in the
cross-flow direction (Bourguet & Lo Jacono 2014; Zhao, Cheng & Lu 2014c¢; Du & Sun
2015; Seyed-Aghazadeh & Modarres-Sadeghi 2015; Wong et al. 2017, 2018), as well as
its three-dimensional equivalent, the sphere (Sareen et al. 2018a,b, 2019; McQueen et al.
2021).

However, the rotation imposed on the cylinder in the aforementioned studies is not
directly coupled to the system dynamics. Instead, the resulting fluid—structure interaction
for such systems arises from the vortex dynamics naturally synchronising with the
rotational forcing frequency. To achieve this coupling, Vicente-Ludlam, Barrero-Gil &
Velazquez (2017) proposed a closed-loop feedback control approach where the cylinder’s
rotation is proportional to either its transverse position or velocity. By conducting a
two-dimensional numerical simulation for a zero-damping system with a mass ratio of
12.7 and a Reynolds number of 100, they found that the amplification or suppression
of the oscillations with respect to the non-rotating cylinder can be achieved for both
types of imposed rotation with appropriately chosen proportional gains. It was also
discovered that, for certain gain values where the rotation is proportional to the cylinder’s
displacement, a galloping-type response was observed that could be predicted with a
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quasi-steady model. This conclusion agrees well with their later experimental study
conducted over a higher Reynolds number range for a circular cylinder (Vicente-Ludlam,
Barrero-Gil & Velazquez 2018).

Extending this idea, McQueen et al. (2020) investigated a generalised form of the control
law where, in addition to the proportional gain, a phase difference is allowed between the
transverse and angular displacements of the body. Since the approach by Vicente-Ludlam
et al. (2017, 2018) is equivalent to an imposed rotation at four distinct phase difference
values (i.e. 0°, 90°, 180°, 270°), the modification allowed finer control over the coupling
between the system dynamics and the actuation provided by the body’s rotational motion.
Consequently, McQueen et al. (2020) showed that for a sphere elastically mounted in the
cross-flow direction, imposing axial rotation significantly altered the magnitude of the
vibration response as well as the reduced velocity at which vibrations commenced. The
effectiveness of the closed-loop approach was also highlighted by the almost complete
suppression of the mode I, mode II and mode III transition regimes using rotation rates
well below those required by open-loop control (Sareen ef al. 2018a).

As far as the authors are aware, the implementation of active closed-loop control using
imposed body rotation as the main actuation mechanism has not yet been attempted for
a thin elliptical cylinder undergoing FIV over similar experimental conditions considered
by Lo et al. (2023, 2024b). Beyond the potential applications of such a study for more
efficient energy harvesting, there is also a theoretical interest given that this cross-section
is identical to an elliptical airfoil oriented perpendicularly to the free stream. Therefore, by
allowing the cylinder to undergo angular displacement, such a system becomes a unique
intersection between the literature on the sinusoidally rotating bluff bodies and that on
flapping foils (see Xiao & Zhu 2014; Young, Lai & Platzer 2014; Wang et al. 2017, 2020).
However, the use of first principles and equation-based models to determine the effect
of different control strategies on the FIV of thin elliptical cylinders is made difficult by
the nonlinear dynamics arising from the coupling between VIV and movement-induced
instability. Furthermore, given the complexity of the fluid—structure interaction and the
time frame required for elastically mounted cylinders (especially those subjected to water
channel flows) to reach a steady vibration amplitude before the effectiveness of the control
strategy can be evaluated, the performance of classical data-driven optimisation strategies
(e.g. grid search, random search, Latin hypercube sampling and gradient-based methods)
may be constrained by the limited experimental budget (Blanchard et al. 2021).

To address these challenges, a machine learning (ML) approach can be leveraged
to identify the control law parameters that maximise the oscillations of the elastically
mounted elliptical cylinder. The review by Brunton, Noack & Koumoutsakos (2020) has
shown ML’s applicability for many fluid dynamics applications, where studies have had
success with optimisation-based problems in flow control (see Xue, Zhai & Chen 2013;
Ren, Hu & Tang 2020; Blanchard et al. 2021; Li et al. 2024; Mallor et al. 2024) and
modelling (Babanezhad et al. 2021; Andersen et al. 2024). For flow around a circular
cylinder in particular, machine learning has been used for drag reduction (Sengupta,
Deb & Talla 2007; Rabault er al. 2019; Fan et al. 2020; Larroque, Fosas de Pando &
Lafuente 2022) and vibration suppression (Zheng et al. 2021), as well as for an active
learning strategy that minimises the number of experiments required to map the nonlinear
VIV responses over a large experimental parameter space (Fan et al. 2019). Among the
plethora of existing ML algorithms available to the fluid dynamics community, Bayesian
optimisation was found to be an attractive choice given it was specifically designed to
optimise expensive-to-evaluate black-box functions and generally converges to a global
optimum with few functional evaluations (Brochu, Cora & De Freitas 2010; Shahriari
et al. 2015; Blanchard et al. 2021).

1001 A35-4


https://doi.org/10.1017/jfm.2024.1128

https://doi.org/10.1017/jfm.2024.1128 Published online by Cambridge University Press

Data-driven active control of a thin elliptical cylinder

In summary, past studies have shown that the thin elliptical cylinder’s FIV behaviour
is characterised by nonlinear dynamics resulting in large vibration amplitudes. However,
maximising such oscillations using body rotation as an actuation mechanism is made
challenging due to the coupling between VIV and the movement-induced instability.
Therefore, using Bayesian optimisation, the present study follows on from those of Lo
et al. (2023, 2024b) and identifies the parameters of the control law proposed by McQueen
et al. (2020) that maximise, both locally and globally, the amplitude response of an
& = 5 elliptical cylinder started from rest. Additionally, an analysis of the angle of attack,
observed wake patterns, frequency responses, and fluid forces and their phases relative to
the body displacement will be conducted to understand why the optimal parameters result
in the maximum amplification of the vibration amplitude.

The article proceeds by outlining the methodology in §2, which includes the
experimental set-up (§2.1), the active control approach (§2.2), as well as the
implementation of Bayesian optimisation used (§ 2.3). Next, the results are presented
in § 3, where the effect of axial rotation imposed by the control law on the complex
fluid-structure interaction is discussed. Finally, the conclusions are drawn in §4,
highlighting the important findings and the significance of the current study.

2. Methodology
2.1. Experimental set-up

The dynamic response of the elliptical cylinder (figure 1) was investigated by modelling
the transverse FIV system as a second-order mass-spring-damper oscillator subjected to a
free stream flow. Therefore, the body displacement y(#) due to the transverse fluid force
Fy(2) is governed by

my(t) + cy(t) + ky(t) = Fy(1), 2.1)

where m is the total oscillating mass, c¢ is the structural damping and k is the spring
constant. The fluid—structure system was experimentally modelled in the recirculating
water channel facility of the Fluids Laboratory for Aeronautical and Industrial Research
(FLAIR) group at Monash University, where the free stream turbulence level in the test
section was less than 1%. A diagram of the full experimental set-up is presented in
figure 2.

The angular rotation (for control) of the elliptical cylinder was set using a brushless
servo motor (model EC-i40, Maxon Group) equipped with an optical rotary encoder
(model ENC 16 RIO with 4096 counts per turn, Maxon Group) that had a resolution of
0.02°. This system was electronically controlled at a frequency of 4 kHz using Beckhoff
TwinCAT® 3 software, with a motor controller (model MAXPOS 50/5, Maxon Group)
acting as the hardware interface. Both the cylinder and motor were then mounted on a
low-friction air-bearing system (see figure 2) that had been tested and validated (Zhao et al.
2018a, b). The guide shafts (which dictate the axis in which the carriage, and by extension,
the cylinder, can oscillate) are orientated at a 90° angle to the free stream flow, thereby
allowing the motion to only be in the cross-flow direction where restoring spring forces
are provided by precision extension springs. The transverse displacement was measured
using a digital linear encoder with a resolution of 1 wm (model RGH24; Renishaw, UK),
which was then differentiated to obtain the velocity and acceleration needed to calculate
the transverse force. However, the streamwise force was instead obtained using a force
sensor (model Mini40, ATI-IA, USA) with a resolution of 1/200 N. Data acquisition at
a sampling rate of 100 Hz was also undertaken over a measurement period of 7 = 180s
(equivalent to a non-dimensional time t of approximately 129, where t = tf;,,) using the
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Figure 2. (a) Labelled photograph and (b) top-view diagram detailing the experimental set-up, consisting of
an elliptical cylinder (orientated at & = 90°) connected to the motor, which in turn is mounted to the air bearing
system situated on top of the water channel. The orientation of the guide rails constrains the cylinder to oscillate
along the y-axis only.

TwinCAT software, with the hardware interface provided by Beckhoff Automation GmbH
EtherCAT digital I/O modules.

The elliptical cylinder model tested had a total length of 465 £ 0.1 mm and an elliptical
ratio of ¢ = b/a =5, where b =25+ 0.1 mm and a = 5 + 0.1 mm were the cross-flow
and streamwise dimensions, respectively. The immersed length of the cylinder (i.e. the
section of the body in water) was L = 450 &£ 0.5 mm, giving a length-to-diameter (aspect)
ratio of L/b = 18.0. The resulting mass ratio was m* = m/my = 53, with my = pmabL/4
being the displaced mass of fluid of density p. The applied structural damping was
described by the damping ratio, ¢ = ¢/(2vk(m + my)) = 1.6 x 1073, where my is the
(potential-flow) added mass. To promote parallel vortex shedding by suppressing end
effects, an end-conditioning platform was positioned approximately 1 mm below the free
end of the cylinder. This approach has been validated and used extensively by Zhao
et al. (2014a, 2018b), Wong et al. (2018) and Soti et al. (2018). The body vibration was
characterised by the normalised amplitude A* = A/b, with the FIV dynamics evaluated
as a function of reduced velocity, U* = U/(f,wb), where f,, =~ 0.715Hz is the natural
frequency of the system in quiescent water and f;, ~ 0.718 Hz is the natural frequency
in quiescent air. To determine both the natural frequency of the system and structural
damping ratios, free-decay tests were conducted individually in both quiescent air and
water.

The reduced velocity range of interest was 3 < U* < 8.5, with values taken in U* = 0.5
increments. This corresponds to a free stream velocity range of 54 < U < 152mms™!
and a Reynolds number range of 1250 < Re = Ub/v < 3580, with v being the kinematic
viscosity of the water. Due to the operational range of the force sensor used to measure the
streamwise force acting on the elliptical cylinder, a limit of A = 150 mm, which is equal
to A* = 6, was imposed on the experiments.

It should also be noted that in the present study, the streamwise and transverse
forces are described in dimensionless forms defined by C, = F./(p Usz/ 2) and
Cy=Fy/(pU 2pL/2), respectively. In addition, the dimensionless form of the vortex force
is given by C, = F,/(pU?bL/2), which can be computed through a decomposition of the
total transverse force into a vortex force component (F) and a potential force component
(Fp), namely F, = F, + Fp, with the potential force in an inviscid fluid being Fp = —may
(Govardhan & Williamson 2000; Morse & Williamson 2009b; Zhao et al. 2014b,a).
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To observe the wake structures associated with the body oscillations, particle image
velocimetry (PIV) was employed to visualise a cross-sectional plane in the near wake of
the cylinder. The flow was seeded with hollow micro-spheres (model Sphericel 110P8;
Potters Industries Inc.) of normal diameter 13 wm and specific weight 1.10gcm ™3, and a
5 W continuous laser (model: MLL-N-532nm-5W, CNI) was used to provide illumination
in the form of a 3-mm-thick laser sheet. The images were then captured using a high-speed
camera (Dimax S4, PCO AG, Germany) equipped with a 50 mm lens (Nikon Corporation,
Japan), resulting in a resolution of 2016 x 2016 pixel”> and an optical magnification
factor of approximately 6.23 pixel mm™". For each trial, a set of 3100 image pairs was
recorded at a sampling rate of 10 Hz. Validated in-house software, originally developed
by Fouras, Lo Jacono & Hourigan (2008), was then used to correlate 32 x 32 pixel?
interrogation windows with 50 % window overlap to obtain the time-dependent vector
fields of the wake flow. Finally, employing a phase-band technique, the resultant fields
were averaged using a phase portrait with the cylinder displacement and velocity as the x-
and y-axis, respectively. As PIV measurements were sampled at random points of the body
motion, transistor—transistor logic (TTL) pulses were first used to synchronise the PIV
measurements with the digital linear encoder signal such that the cylinder’s displacement
and velocity could be determined for each vector field. From this information, the fields
were then sorted into 48 different regions (i.e. phases) based on their location in the phase
portrait, with averaging conducted over each bin. Consequently, each phase corresponds
to a specific time interval within the body oscillation period (for more details, see Zhao
et al. 2014a).

2.2. Active control system
To achieve the goal of amplitude maximisation for each U* case of interest, a
machine-learning-based strategy, as represented by the block diagram in figure 3, was
used. Such a framework consists of an inner real-time loop and an outer learning loop
(Gautier et al. 2015; Duriez, Brunton & Noack 2017; Li et al. 2017). This inner loop,
which is the feedback control, can be mathematically described by the following set of
equations:

da

T F(a,0,w), (2.2)
V* = Ga), 2.3)

where the bold symbols indicate vector quantities. Here, a denotes the state of the
dynamical system (i.e. the structural vibration, forces and phases), 6 represents the angular
position of the cylinder set using the servo motor, y* is the measured normalised transverse
displacement taken as the feedback sensing state and w is the external forcing due to the
fluid flow. F, G and K respectively represent the time evolution operator, measurement
function and control law (whose behaviour is governed by parameters K;‘ and ¢4 which
will be discussed below). While (2.2) formally provides the evolution of the system state
and particularly the displacement, in practice, the evolution of the system state is obtained
through the experiments.

The active closed-loop control of interest in this study used axial rotations (about the
z-axis that is perpendicular to both the free stream flow and the free-vibration axis) as the
actuation input to modify the FIV dynamics of the thin elliptical cylinder. In line with
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Figure 3. Block diagram describing the machine-learning-based strategy for FIV control of the elliptical
cylinder bluff body. The ‘inner’ real-time loop is responsible for implementing the control law, which
instantaneously sets the angular position 6 of the bluff body as a function of the state measurement
(i.e. the normalised transverse displacement y*). Meanwhile, the slower outer ‘learning’ loop uses Bayesian
optimisation to identify the parameters of the control law that maximises the vibration as measured by the cost
function C(y*).

the study by McQueen et al. (2020) for a rotating sphere, the cylinder was rotated as a
function of its transverse displacement (with body oscillation frequency f) according to
the following control law:

0 = K(y*: K3 da) = Kiy* (z + 2‘%) ~ K [cos (¢a)y* (1) + sin (@) [—H(* 0))]]
(2.5

which relates the transverse non-dimensional displacement y* = y/b of the elliptical
cylinder to its angular displacement 6 (in radians). The last step requires that the
displacement signal is approximately sinusoidal. Here, H(y*(¢)) is the Hilbert transform
function that imparts a —m/2 phase shift to the transverse displacement signal when
evaluated in real-time. Therefore, the combination of cos (¢4)y* and sin (¢4)(—H(y*))
allows a phase difference ¢y to be introduced between y* and 6, with K; acting as the
proportional gain. These two parameters of the control law, ¢4 and K, will hence modify
the evolution of the system state a over time, thereby impacting the vibrational amplitudes
achieved. In the experiments, the Hilbert transform was implemented using the Simulink®
‘Hilbert Filter’ block, and evaluated in real-time by employing a TwinCAT target for
Simulink® (model: TE1400; Beckhoff).

Meanwhile, the role of the outer loop is to identify the ideal control law for a
problem-specific objective. As such, this task can be expressed as a search for the optimum
control law parameters K;‘ and ¢, that minimise the cost function C(y*). Given that the
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objective of this study is to understand the coupling between VIV and the galloping-like
movement-induced instability by maximising the vibrational amplitude of the elliptical
cylinder, C(y*) was chosen to be the negative root-mean-square of the displacement signal
y* over the measurement period 7':

1 (T 2

where J is the measured value of the cost function. We note that the energy harvesting
performance of this system (with active control imposed) can also be optimised by
including the axial rotation as an input in the cost function; however, this is outside the
scope of the present study.

To minimise this cost function, Bayesian optimisation was selected as the machine
learning algorithm that determines the ideal control law parameters for the inner real-time
loop of figure 3. The offline learning loop is iterative, which means that for the ith
iteration of the algorithm, the cost values from the i — 1 previous iterations will be used to
determine the K} and ¢z parameters of KC; that will most likely yield the highest vibrational
amplitude. After evaluating the performance of K; based on the resultant cost J;, the
algorithm will again determine, using this new information, the next control law /C;4 .
This process continues until the iteration limit n is reached, with the ideal control law
being the one corresponding to the lowest value in the [J1, ..., J,] vector of total costs.
The implementation of the Bayesian optimisation algorithm used in this study is further
described in § 2.3.

To ensure identical initial conditions at the start of each iteration, the elliptical cylinder
is first set to & = 90° and allowed to reach a steady vibration amplitude. Due to the
high elliptical ratio of the cylinder, the dynamics for this angle is desynchronised with
vibrations that are near-zero in amplitude (i.e. A* = 0). The elliptical cylinder is then
rotated to 8 = 0 over a period of At =1 (i.e. 1/f,, seconds) before the control law is
activated (inner loop of figure 3). After the system is allowed to reach an equilibrium state,
measurements of T & 129 (i.e. T = 180 seconds) in length were then taken to evaluate the
cost value J (2.6) for the outer learning loop.

2.3. Bayesian optimisation of active control parameters

As the main component of the outer offline learning loop as shown in figure 3, Bayesian
optimisation was implemented in MATLAB (MathWorks) using the Bayesopt function
from the Statistics and Machine Learning Toolbox. Since the inner real-time loop was
performed in TwinCAT, the TE1410 interface (Beckhoff) was also used to facilitate
communication and data transmission between the two programs.

The role of the Bayesian optimisation algorithm within the active control system
described in §2.2 is to minimise the true cost value Jr for the control law parameters
b= (K¥, ¢;) in a pre-specified bounded domain B. This optimisation problem is

formulated as
minJy (b y 2.7
1 T( ) ( )

where B C R? comprises proportional gain and phase difference values over the range
0< K;‘ <5 and 0 < ¢4 < 360°, respectively. However, minimising the above function
is not a straightforward process as the dependence of the cost on b does not have a
closed form. These difficulties are further compounded by the additional presence of
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measurement noise, modelled as additive Gaussian noise with standard deviation o,,:
J=Jrb) +¢&, &~N©,0?), (2.8)

which arise when experimentally evaluating J7 for a specific combination of control
parameters b. Thus, to optimise the cost function in a data-efficient manner, a surrogate
model J was employed to approximate the true cost function J7. For the ith iteration of the
Bayesian optimisation algorithm, the corresponding J is hence constructed by training the

model on the actuation-cost pairs {by, Jk};{;ll from the available data D,_; collected in the
previous i — 1 iterations. Using this surrogate model, the algorithm determines the optimal
control law /C; to implement next by maximising the acquisition function a(b; J). After
evaluating the performance of K; and obtaining J;, the surrogate model is first updated by
including the newly collected actuation-cost pair {b;, J;} in the data set D; before being
used in the next iteration of the algorithm. Until the iteration limit n has been reached, the
algorithm will search the control parameter space 3 for the minimum cost and refine the
surrogate model in the process, one query at a time.

Although different surrogate models have been proposed in the past (see Shahriari et al.
2015), Gaussian processes (GPs) will be used in this study due to their ability to account
for measurement noise and their previous successful application in active flow control
problems (Blanchard et al. 2021). While a very brief outline of this model will be provided
below, a full mathematical description can be found in the book by Rasmussen & Williams
(2006). Gaussian processes are, generally speaking, based on the assumption that control
laws with similar b = {K*, ¢4} parameters in the solution space of possible control laws
B will naturally result in performances (i.e. the cost value J) that are also alike. To achieve
this, the GP is hence defined as a set of random variables such that they have a joint
Gaussian distribution, and that can be completely specified by its mean and covariance
function. For generality, the surrogate model employed in this study can be mathematically
described as

g(b) = h(d) B +f(b), f(b) ~ GP(O,k(b,b; O)+ 0,1, (2.9)

where f(b) is a zero-mean GP prior with covariance imposed by the function k(b, b'; ©),
and h(b) and B are a set of basis functions (taken to be unity in this study) and its
corresponding coefficients, respectively. The covariance function, whose behaviour can
be modified with the hyper-parameter ®, determines the influence of the cost value at
one point b on the cost at other points b'. As such, the covariance plays an important
part in encoding our prior understanding of how the cost function varies as a function
of K* and ¢, since it imposes a limit on the kinds of functions that will be used to fit
the data. The ARD (automatic relevance determination, see Neal 1996) Matérn 5/2 kernel
function (Rasmussen & Williams 2006; Snoek, Larochelle & Adams 2012) was used in
this research to calculate the covariance, which takes the following form:

K(b,b; ©) = o} (1 5+ %rz) exp (—ﬁr), (2.10)
2
(b — b},)?
r= m; o 2.11)
O = [log(o1), log(02), log(oy)], (2.12)
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where oy is the signal standard deviation. Additionally, 0;, (m = 1, 2) is the characteristic
length scale for each control parameter of b= (b1, by) = (K¥, ¢4), which was
implemented using ARD (Neal 1996).

Whilst the Gaussian process without any knowledge of the dataset D is known as the
prior distribution, training this model on the available actuation-cost pairs results in the
posterior distribution Q. This process can be thought of as selecting functions available
to the prior distribution that also passes through the points in the dataset (accounting for
the measurement noise with variance o2). This posterior distribution, which can make
predictions of J for unknown b, is hence the surrogate model used in the acquisition
function a(b; J). Consequently, the b vector that maximises this function will be the
control law parameters that the Bayesian optimisation algorithm tries in the next iteration.
The acquisition function used in this study is ‘expected-improvement-plus’, which is a
variant of the expected improvement that is mathematically defined as

EI(b, Q) = Eg [max(0, 110 (brest) — J(B))], (2.13)

where by are the control parameters corresponding to the lowest mean value of the
posterior distribution pg(bpesr). To ensure that the Bayesian optimisation algorithm can
escape the local minima of the cost function, the ‘expected-improvement-plus’ function
will modify its behaviour whenever it detects that over-exploitation of an area in B is
occurring. Since the variance of the posterior distribution is

oj(b) =05, +o,. (2.14)

over-exploitation is hence defined to be occurring when og, < t;0,, wWhere og, is the
standard deviation of the noiseless posterior distribution (which is the equivalent posterior
distribution if the actuation-cost pairs used for training are assumed to be noise-free).
Here, #, is the exploration ratio that controls the trade-off between exploring new points
that may lead to a better global solution (i.e. exploration) versus concentrating on areas of
B that the previously collected data has shown to result in low cost (i.e. exploitation). This
has the effect of raising the standard deviation o for b in between observations, with a
larger ¢, corresponding to a higher degree of exploration. If found to be over-exploiting,
the hyper-parameter of the kernel function ® will be multiplied by the number of
iterations (Bull 2011) and a new b will be suggested. If this new point is also found
to be over-exploiting, ® will be multiplied by an additional factor of ten and another
new b generated. This process will continue until a new point is suggested that is not
over-exploiting, up to a limit of five times, with the final b taken by the acquisition function
as the next control law parameters to try.

As the ability of the Bayesian optimisation algorithm to make suggestions about which

b vectors to sample next depends on the fidelity of the J model, care must also be taken
to maximise the accuracy of the Gaussian process model. Since the model performance

depends on selecting the correct hyper-parameter (i.e. 8, ©, o,%) values, they were hence
approximated from the data using maximum likelihood estimation.

Whilst this study mainly seeks to identify the proportional gain K;‘ and phase
difference ¢, that maximally amplifies the vibration amplitude of the elliptical cylinder,
a secondary objective is to characterise other regions in the control parameters space 3
that correspond to auxiliary peaks in the amplitude response. Local maxima are also
of interest as their presence suggests that distinct FIV dynamics, arising from changes
in the coupling between VIV and the galloping-like movement-induced instability, exist.
To this end, Bayesian optimisation was implemented in a multi-stage process that begins
with the algorithm initially set to operate for 100 iterations using an exploration ratio of
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U* Total iterations Region 1 domain (0 < ¢y < 360°) Region 2 domain (0 < ¢y < 360°)

30 225 0 < K} <0.500 —
3.0 225 0 < K < 0.400 —
4.0 225 0 < K} <0300 —
45 225 0< K <0250 —
5.0 225 0< K} <0210 —
5.5 225 0 < K; <0200 —
6.0 225 0 < K; <0095 —
6.5 350 0 < K} < 1.000 350 < Kj <5
70 350 0< K < 1.800 250 < KP <5
75 350 0 < K} < 2.000 250 < KF <5
8.0 350 0 < K} < 1.750 205 <K:<5
8.5 350 0 < K < 1.750 195 < KF <5

Table 1. Regions of interest in B = {K\, ¢4} found using the first 100 iterations of the Bayesian optimisation
algorithm (7, = 1 x 10'2) for every U* case. A further 125 iterations are used to explore each identified region.

to = 1 x 10'2. The large ¢, was chosen to prioritise exploration over exploitation, allowing
the algorithm to select unknown points to sample that will maximally reduce the
variance of the model. The main goal of this stage is to gain as much knowledge of
the control law parameter space with as few points as possible, and then use the newly
acquired actuation-cost pairs to ascertain the regions of particular interest for vibration
amplification.

For each region manually identified, the Bayesian optimisation will continue for 100
iterations using an exploration ratio of #, = 0.5 and the points collected in the first stage
as the initial knowledge base to build the Gaussian process model. To ensure that the
location and magnitude of the peak can be accurately measured for each region, a further
25 iterations using an exploration ratio of 7, = 0 are conducted. Thus, this multi-stage
approach to Bayesian optimisation allows the entire control law parameter space B to be
explored, while providing additional resolution to regions corresponding to local maxima
in the vibrational amplitude. Table 1 details the regions of interest for each U* case.
The total iterations for each U* case are also presented, which is in line with the typical
optimisation budget of O(100) water channel experiments (Blanchard et al. 2021; Li et al.
2022).

3. Results

To understand how the imposition of axial rotation impacts the FIV of a transversely
oscillating thin elliptical cylinder, the case when no rotation is applied (i.e. K; = 0) must
first be discussed. As shown by the filled black circles in figure 4(a), the response with
the cylinder started from rest (i.e. rotated from 6 = 90° to 0° over 1/f,, seconds as
described in § 2.1) for each U* increment can be separated into three different wake-body
synchronisation regimes: Regime I, II, III, which is in line with the naming convention
proposed by Lo et al. (2023). From figure 5(a), wake-body synchronisation is represented
by the matching of the dominant frequencies of fy* and fa, occurring at fy,,,. Regime
I (resembling the initial branch of a circular cylinder) is characterised by a negligible
mean phase difference of ¢, ~ 10° between the body motion and the transverse fluid
force (figure 4b) (Lo et al. 2023). However, as the reduced velocity is increased beyond
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Figure 4. (a) Amplitude response (A*) and (b) mean phase between body displacement and transverse fluid
force (¢y) as a function of reduced velocity.

* a4, the onset of Regime II is marked by the emergence of a third harmonic in
fa (figure Saiii), with the strength of both the second and third harmonics increasing

with reduced velocity until U* = 6.3. In this regime, the high oscillation amplitudes are
likely assisted by positive lift and reduced drag associated with the cylinder acting like an
elliptical airfoil as it transverses across the background flow. Regime III then occurs over
the range 6.4 < U* < 7.4, and corresponds to a monotonic decrease in A* and a jump in
the phase to ¢, ~ 180° (figure 4b) (Lo ef al. 2023, 2024b). This branch has some similar
characteristics to those seen in the lower branch for VIV of a circular cylinder. Unlike
Regimes I and II, the oscillation frequency, as shown in figure 5(a iv), gradually increases
from f* = f,,, with the reduced velocity. For U* > 7.4, the fluid—structure interaction
becomes desynchronised as the frequency response of the transverse force is characterised
by a broadband frequency response centred about a main signal at the Strouhal vortex
shedding frequency, fs; (figure 5). While the same contribution was observed in the
body vibration PSD contours, there was also an additional broadband signal close to
the system’s natural frequency in quiescent water. For the stationary cylinder case, the
Strouhal number was experimentally measured to be St = fs;b/U = 0.169.

After employing the multi-stage Bayesian optimisation methodology outlined in § 2.3
to find (K}, ¢4) that maximises A*, the data collected for each U* case over the total
iterations (table 1) can be visualised using a polar contour plot. It is important to note
that while predictions made by the Gaussian process model are used to inform the b to
try in the next iteration of Bayesian optimisation (§ 2.3), the optimised control law (i.e.
corresponding to either the local or global peak vibration amplitude for a given U™ case)
reported in this study is directly determined from the sampled actuation-cost pairs and, as
such, are only susceptible to measurement noise associated with the sensors.

Shown in figures 6 and 7, one peak is observed for 3 < U* < 6 whilst two peaks exist
for U* > 6.5. Although gain values across the range 0 < K; < 5 are also investigated
for U* < 6, the contour plots in figures 6 and 7(a) are limited to 0 < K;‘ < 0.25 due to
the primary peak’s proximity to the origin and a lack of a secondary peak at high gain
values. Given their locations in the plot, maxima with a proportional gain in the range
K; < 0.25 and K > 1 will henceforth be referred to as the ‘low-gain’ and ‘high-gain’
peaks, respectively. From figure 4(a), the low-gain solution is the global maxima for
all U* values tested in this study, with the high-gain peak only observed for U* > 6.5.
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Figure 5. Structural response (started from rest) for (a) the non-rotating cylinder and (b) when the control law
corresponding to the global maximum A* (i.e. low-gain peak) is imposed. Panel (i) presents the normalised
amplitude response, while logarithmic-scale PSD contours of the (ii) normalised vibration (fy*), (iii) transverse
fluid force (fc’fy), (iv) vortex force (fév) and (v) streamwise force (fa) frequencies as a function of U* are shown
below. In panels (ii)-(iv), the horizontal dashed line highlights the frequencies at f* € {1, 2, 3}, respectively;
the vertical dashed lines represent the boundaries of different response regimes (i.e. I, II, III, IV, V and
desynchronisation (D)); and the dash-dotted line in panels (ii)—(iv) represents the Strouhal frequency measured
for a stationary cylinder. Note that the frequencies of the horizontal dashed and dash-dotted lines in panel (v)
are doubled compared with their counterparts in panels (ii)—(iv).
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Figure 6. Polar contour plot of the non-dimensional vibration amplitude A* as a function of phase difference
¢4 and proportional gain K; for U* values: (a) 3.0; (b) 3.5; (¢) 4.0; (d) 4.5; (e) 5.0 and (f) 5.5. The red marker
represents the low-gain peak.

Both maxima types (i.e. low- and high-gain solutions) will be discussed separately in
§§3.1 and 3.2.

Furthermore, the K and ¢, values of each U* case for the low- and high-gain peaks are
presented in figures 8(a) and 8(b), respectively. Most interestingly, the optimum ¢, values
determined with Bayesian optimisation did not solely couple to the body displacement or
velocity (i.e. ¢g = 0°,90°, 180° or 270°) in a consistent manner, meaning that the peak
in the orientation angle does not occur at y* = 0 or the peak displacement position. The
observation is intriguing given the symmetric nature of the elliptical profile, but highlights
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Figure 7. Polar contour plot of the non-dimensional vibration amplitude A* as a function of phase difference
¢4 and proportional gain K; for U* values: (a) 6.0; (b) 6.5; (¢) 7.0; (d) 7.5; (e) 8.0 and (f) 8.5. The red
marker represents the low-gain peak (global maximum), while the green marker denotes the high-gain peak
(local maximum). Note that the range of the radial axes for panel (a) is 0 < K;‘ < 0.25,and 0 < K;‘ < 5 for
panels (b—f).

the nonlinear FIV dynamics experienced by the elliptical cylinder due to the coupling
between VIV and a galloping-like movement-induced instability.

3.1. Ideal control parameters for the low-gain peak

From figure 4(a), the curve corresponding to the low-gain peak (denoted using
red markers, with the corresponding K; and ¢y for each U* case presented in

1001 A35-16


https://doi.org/10.1017/jfm.2024.1128

https://doi.org/10.1017/jfm.2024.1128 Published online by Cambridge University Press

Data-driven active control of a thin elliptical cylinder

(a) (b)
0.24 360 5.0+ o 90
022 b 330 45
8%2 IF--.\I/-'."' 3(7)8 40 R e 7

L0164 / 240 gg 60
K> 0144 __ .m- ] o9 210 .
Popn e e 180 25 45 4,

0109 = 150 204
0084 . el SV R R S 30

. e, é | E90 104 -—— - ————— 3
0.04 : 60 ] 15
0.02 ooe o [P E30 05

0 rrrrrrrrrrrrrrrrr T T O 0 T T T 0
34 5 6 7 8 6.5 70 75 80 85
U* U*

Figure 8. Proportional gain and phase difference value (in degrees) as a function of the reduced velocity for
(a) low-gain and (b) high-gain peaks.

figure 8a) has a higher vibration amplitude than the FIV response with no control law
(.e. K; = 0) for all the U* cases of interest. Due to the introduction of eccentricity to
the cross-section geometry, the proportional gain value required to increase the vibration
amplitude maximally is lower than for a circular cylinder as experimentally shown by
Vicente-Ludlam et al. (2018). They found that a minimum gain of K;; = 2.125 (with
¢q = 0°) is required for galloping-type oscillations with motion-induced forces
dominating the FIV response. Interestingly, the imposition of axial rotation for the
elliptical cylinder results in wake-body synchronisation occurring over the entire reduced
velocity range (figure 5bhii—b v), with the lack of Regimes I and III in the FIV response
coinciding with the appearance of a previously unseen wake mode labelled in this study
as Regime I'V. A detailed analysis of the U* range corresponding to each lock-in regime of
the FIV response (with the ideal control law applied) will be given in the following.

3.1.1. U* < 6 (RegimeIl)

Within this reduced velocity range of 3 < U* < 6, applying the optimised active control
law results in the absence of Regime I, as well as Regime II becoming the dominant
wake-body synchronisation regime. From the contour plots of the amplitude response in
figures 6 and 7(a), the low-gain peak (i.e. corresponding to Regime II) is shown to migrate
towards the origin with U* over this reduced velocity range (U* < 6). While the axial
rotation amplitude is at its maximum of 12.5° when U* = 3 and decreases to a minimum
of 3.0° when U* = 7, an average increase in the vibration amplitude of 14.7 % is observed.
This highlights how only slight variations in the orientation angle over a body oscillation
cycle are needed to see improvements in the A* value achieved by the elliptical cylinder. Lo
et al. (2024b), who investigated the FIV of an ¢ = 5 elliptical cylinder for different fixed
orientation angles, also observed that the amplitude response had a similar sensitivity to
6. They found that increasing the angle from 0° to 3.5° resulted in an approximately 60 %
reduction in the peak A* value. Furthermore, a region of lower vibration amplitude is
also seen for phase differences 0° < ¢; < 135°, with greater gain values corresponding to
increased vibration suppression. As the reduced velocity increases, higher gain values are
generally required to minimise the oscillation of the elliptical cylinder.

To understand why the proportional gain and phase difference parameters chosen by
Bayesian optimisation maximise the vibration of a thin elliptical cylinder for U* < 6
(figure 8a), an analysis is conducted to determine the differences between the wake
structures with and without active control. Using PIV for the representative flow speed
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Figure 9. Evolution of phase-averaged vorticity contours for the non-rotating cylinder case (K;‘ = 0) at
U* = 5.0 (Regime II), with the flow moving from left to right. The normalised vorticity field is w} = w. b/ U,
where w; is the vorticity out of the x—y plane. The blue and red contours represent clockwise and anti-clockwise
vorticity, respectively. The black dot at the far left denotes the body centre position of the cylinder and the green
vertical line between two horizontal bars indicates the peak-to-peak vibration amplitude. A single vortex is shed
every half-cycle as part of the observed 2S wake mode, with additional vorticity in a zigzag pattern between
the counter-rotating vortex pair forming a secondary vortex street (SVS).

case of U* = 5, figures 9 and 10 show the resultant vortical structures shed by the elliptical
cylinder without and with the imposition of axial rotation, respectively. Additionally,
figure 11(a) shows the displacement and force time traces of the representative U* = 5.0
case when control is applied, with the time traces of the non-rotating cylinder for the same
reduced velocity presented in figure 11(b) for comparison.

In figure 9, the evolution of the vorticity shed by the elliptical cylinder with no imposed
rotation (i.e. K = 0) bears a marked resemblance to that first reported by Lo ef al.
(2023). The main wake structure is the 2S mode (Williamson & Roshko 1988), which
comprises two large counter-rotating vortices that are shed from either side of the cylinder
per oscillation cycle. These large vortices are associated with the dominant frequency
component of the vortex shedding process and the body vibration (see the PSD contours of
féy and f}7) at the natural frequency f,,. In addition, as the elliptical cylinder moves rapidly

in the transverse direction between its extreme positions, it acts like an elliptical airfoil at
a non-zero angle of attack and forms a wake, which manifests as a zigzag vorticity pattern
that is particularly apparent in the near wake. The remnants appear between the two widely
separated single vortices of the 2S mode. Termed an SVS, Lo et al. (2023) showed that
this wake appears as a coalescence of vortices that resemble a local von Kdrman vortex
street. We also note that this structure shows similarities to the ‘coalescence’ wake pattern
previously identified by Wang et al. (2020) for a flapping NACAOQ0012 airfoil.

Although the main features of the wake structure are still present even when the
ideal control law parameters are applied, the increase in the vibration amplitude arises
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Figure 10. Evolution of phase-averaged vorticity contours for control law parameters K} = 2.39 x 1072 and
¢q = 178° at U* = 5.0 (Regime II). Although the SVS is more linear, does not persist as far downstream of the
body and is more connected to the 2S vortices, the wake pattern is almost identical to figure 9 when no rotation
is imposed. More details can be found in the caption of figure 9.

from modifications to their strength and position relative to the elliptical cylinder.
From figure 10, which shows the steady-amplitude oscillation for K;," =2.39 x 1072 and
¢q = 178°, the SVS is weaker (i.e. the SVS is thinner and does not persist as far
downstream compared with the case with no axial rotation), with the largest structural
difference occurring in the near wake when the cylinder approaches the peak displacement
of the oscillation cycle. As opposed to the K = 0 case where the SVS is predominately a
separate entity from the main 2S vortices, when the ideal control is imposed (figure 10), the
same sign SVS vorticity remains connected and contributes to the 2S vortices whilst the
body accelerates away from the peak displacement. It should be noted that the attachment
of the SVS to the 28 vortices in figure 10 is not amplitude-dependent, as the wake structure
is nearly identical for all U* cases evaluated within the reduced velocity range of interest
for this section. Furthermore, due to the similarity in orientation angle, this attachment can
also be observed between the anti-clockwise vortex of the 2S mode and the SVS for the
FIV of the ¢ = 5 cylinder set at & = 2.5° and a reduced velocity of U* = 5 (see figure 9
of Lo et al. 2024b).

The increased vibration amplitude and the associated changes in the SVS when axial
rotation is imposed can be further explored by considering the incident flow relative to
the bluff body in motion. Due to the behaviour of the thin elliptical cylinder acting as
a lift-generating airfoil (see Lo er al. 2023) over its transverse motion, it is useful to
characterise the flow in the following discussion based on the angle of attack «. As shown
in figure 12, « is taken to be the angle between the relative flow (U,,; = Ui + yj, where i
and j are unit vectors in the x and y direction, respectively) and the semimajor axis, and is
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Figure 11. Sample time traces of the cylinder response at different reduced velocities and control law
parameters selected from the three wake-body synchronisation regimes: (a) {U*, K;,(pd} ={5.0,2.39 x

1072, 1780} (II — with COHU‘OD; (b) {U*, K;, ¢d} = {507 O’ OO} (II — no COIItI'Ol); (C) {U*, K;)ka (bd} —
{7.0,1.36 x 107!, 301°} (IV); and (d) {U*, K};, ¢a} = {8.5,3.80, 18°} (V). Note that the time is normalised
by fuw, namely T = tfy,y,.

defined as

o = arctan (i) + @ = arctan (i) + K*y* <t+ ﬂ) 3.1)
- ) 0T si) T\ ) ‘

when using the control law outlined in (2.5). From figure 13(a), which shows the minimum
« value achieved by the body as a function of U*, the minimum angle of attack when the
ideal control law was imposed (i.e. for the low gain peak) remains relatively constant
over the range U* < 6 with a mean of «,,;, = 12.5°. This angle of attack causes the flow
around the elliptical cylinder to generate strong lift as it reaches its maximum speed whilst
limiting separation to the rear section of the body. The resulting vortex shedding results
in the formation of an SVS that bears a marked resemblance to the vortex shedding from
airfoils at an angle of attack (Gupta et al. 2023).

Interestingly, if the FIV dynamics for the U* range investigated in this section was purely
driven by a galloping-like movement-induced instability, one might expect the phase
difference between the axial rotation and y displacement signal to either be approximately
90° or 270°. This is due to the modification in the angle of attack « being maximised
(for a given non-zero K value) over the oscillation period (i.e. as the cylinder travels
from one peak displacement position to the next) for the two phase differences angles.
However, with the FIV dynamics also seeing contribution from VIV, an analysis of the
energy transfer between the cylinder and the fluid flow is needed to determine the physical
mechanism that allows the axial rotations (imposed by the ideal control law) to maximise
the oscillation amplitude.
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Figure 12. Schematic of the elliptical cylinder moving upwards with a body velocity of y and a body
orientation angle of 6. Here, the angle between the instantaneous relative flow U,,; and the semimajor axis
is given by «.
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Figure 13. (@) Minimum angle of attack (with respect to the relative flow U,,;) achieved by the cylinder as a
function of reduced velocity for the low-gain peak (red) and when no control is applied (black). (b) Angle of
attack time trace at the low-gain peak (K;‘ =239 x 1072 and ¢q = 178°) when U* = 5.0 and without control
when U* = 5.4 (corresponding to the non-rotating cylinder with a nearly identical A* value).

Figure 14(a) shows the displacement and the energy transfer between the cylinder and
the fluid over three oscillations for the representative case of U* =5 when the ideal
control law is applied. Time traces corresponding to approximately the same vibration
amplitude and net energy transfer when no rotation is imposed (i.e. U* = 5.4) are also
presented in figure 14(b). To ensure a fair comparison between the two cases, the rate
of energy transfer is characterised by CpU *3 (since it is proportional to the dimensional
energy transfer rate), where C, = F\ (1) - y(1)/ (%pU3bL) is the power coefficient. Because
the fluid force and the body displacement is approximately in phase (i.e. ¢, ~ 10° from
Lo et al. 2024b) for Regime II, energy is removed from the oscillating system when the
cylinder is travelling away from the peak displacement position as observed in figure 14.
Energy is then input back into the system by the fluid as the cylinder moves from zero
displacement (i.e. y* = 0) to the opposite peak displacement position. Net energy transfer
to the body over a cycle is positive to match the loss from non-zero structural damping.
Interestingly, although the average energy transfer (and hence vibration amplitude) is
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Figure 14. Time trace of the body displacement and instantaneous energy transfer (in total and decomposed
into the contribution from lift and drag) between the cylinder and fluid for (a) {U*, K;, ¢4} = {5.0,2.39 x

1072, 178°} and (b) {U*,K;‘,qbd} = {5.4,0,0°}. Note that the right and left axes of panels (a) and (b),

respectively, refer to CpU *3 and are of the same scale.

almost identical for figures 14(a) and 14(b), the peak positive and negative energy transfer
when rotation is imposed is larger in magnitude when compared with the case when no
control as applied.

By considering the elliptical cylinder as an airfoil, further insight into the dynamics
can be gained by decomposing the energy transfer into lift and drag components. Here,
lift and drag are defined as the force perpendicular and parallel to the relative flow U,
respectively. Their relationship with the streamwise Cy and transverse Cy forces is defined
as

Cp = Cysin(a —0) + Cycos (a — 0), (3.2)
Cp = Cysin(a —0) — Cycos (a — 0). 3.3)

Manipulating these expressions allows the power coefficient to be expressed as
C,=Co+Cyp= % (Crsin (o —6) 4+ (—Cpcos (a — 6))), (3.4)

where Cp, 1 and C, p are the components of the total power coefficient due to the lift
and drag forces, respectively. By comparing figures 14(a) and 14(b), it becomes clear that
although the peak rate of energy loss due to drag remains roughly the same, the imposed
axial rotation results in the same vibration amplitude with a smaller lift contribution by
decreasing the rate of energy loss from the drag as the cylinder moves from y* = 0 to
the point of peak displacement. To achieve this, ¢4 of the control law, which dictates the
period within the oscillation cycle where the modification to o occurs, was found to be
near 180° by the optimisation algorithm (figure 8a). The above conclusions agree well
with figure 13(b), where the decrease in the rate of energy loss aligns with a reduction
in the angle of attack. With a lower angle of attack increasing the flow attachment when
the cylinder moves from y* = 0 to its position of peak displacement, it is also consistent
with the SVS maintaining the connection to the main 2S vortices (figure 10) when the
ideal control law is applied. Additionally, as the decrease in «,,;, between the two cases
in figure 13(b) is only approximately 0.88°, it further establishes the sensitivity of the
elliptical cylinder to the location in the oscillation period where the minimum angle of
attack occurs.

To visualise this sensitivity of the FIV of the thin elliptical cylinder to axial rotation,
figure 15 shows the C; — Cp Lissajous plots for the two cases presented in figure 14:
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Figure 15. Cp — Cp Lissajous plots for (a) {U*, K;, ¢q) = {5.0,2.39 x 1072, 178°} and (b) {U*, K;, ba} =
{5.4,0,0°} over three oscillation cycles. Here, y 1 denotes the part of the vibration where the cylinder is
travelling from negative to positive peak displacement, while y | denotes the cylinder travelling in the opposite
direction.

U* = 5.0 when the ideal control law is imposed and U* = 5.4 with no applied rotation.
Since both instances have approximately the same vibration amplitude, it is perhaps
surprising that the topology of the C;, — Cp Lissajous plots are significantly different.
Although the range of lift coefficients over an oscillation cycle is similar for both cases,
introducing axial rotation as imposed by the ideal control law results in a decrease in
the minimum drag coefficient experienced by the cylinder regardless of its direction of
travel. This concurs with the observation of a weaker SVS in figure 10 since Lo et al.
(2023) showed that this structure induces a ‘. .. “drag”-like force that impedes the motion
of the cylinder along the y-axis’. Furthermore, there is less overlap in the lines of the
Cr — Cp plot when no rotation is applied (figure 15b), indicating an increased variation
in the evolution of the lift and drag forces over each oscillation cycle as compared with
figure 15(a). We also note that the difference between the dynamics of the elliptical
cylinder moving upwards as opposed to moving downwards is exacerbated when the
ideal control law is applied; this amplification is attributed to the ¢4 generally not taking
symmetric values (i.e. ¢4 = 0°, 90°, 180° or 270°).

3.1.2. U* > 6.5 (Regime IV)

As shown in figure 5 for the reduced velocity range 6.5 < U* < 8.5, imposing axial
rotation (corresponding to the low-gain peak) causes Regime III and the desynchronised
region to be replaced by a previously unseen type of wake-body synchronisation. Hereafter
referred to as Regime IV, the vibration amplitude of this regime is characterised by an
initial sharp decrease in amplitude with reduced velocity before plateauing to A* ~ 2.8 for
U* > 7. Interestingly, the frequency response of this new regime bears more similarities
to Regime II than Regime III, with the presence of a weak second harmonic and a strong
third harmonic component of the transverse and vortex fluid forcing detected in addition
to the dominant frequency contribution at the natural frequency (féy o~ fa =~ 1). The low
minimum angle of attack magnitude (figure 13a), the total phase remaining close to zero
and the substantially larger oscillation amplitude than seen in Regime III indicate that the
dynamics of the dominant lock-in regime over this reduced velocity range appears to be
also partly driven by a movement-induced instability when the control law is imposed.
This contrasts with the FIV response when no rotation is applied (i.e. Regime III), which
is more consistent with pure VIV. For Regime III, it is noted there is a lack of a zigzag
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Figure 16. Time trace of (a) the absolute angle of attack and arctan(U/y), and (b) the body displacement and
instantaneous energy transfer between the cylinder and fluid for {U*, K;‘, ¢a} = {7.0,1.36 x 10~!,301°}.

structure in the wake shedding, an almost complete absence of second and third harmonics
in the fluid forcing (Lo ez al. 2023), and, importantly, a jump in the total phase from close to
zero to close to 180° consistent with that observed for the lower to upper branch transition
in the generic circular cylinder case (Williamson & Govardhan 2004). Consequently, the
largest amplitude increases are observed over this U* range due to the imposed rotation
inducing the movement-induced vibration, thereby allowing wake-body synchronisation
to occur over the entire explored reduced velocity range (i.e. 3 < U* < 8.5).

To gain a further understanding of this new type of coupling between VIV and the
galloping-like movement-induced vibration, PIV conducted for the representative case
of U* =7.0 (with control parameters K;‘ =1.36 x 107! and ¢, = 301°) is presented
in figure 17. As expected from the frequency response of the fluid forcing in figure 5,
the wake structure for Regime IV is dissimilar to Regime III with the clear appearance
of elliptical airfoil wakes from the body as it moves between positive and negative
maximum displacements, i.e. displaying SVSs, similar to those found for Regime II.
However, due to the rotation from negative to positive orientation angle as the cylinder
approaches its positive peak displacement, the last anti-clockwise vortex in the set of
small vortices that make up the SVS is disproportionately larger than the others. While
the flow advects this region of vorticity, the last anti-clockwise vortex separates from the
SVS and becomes an independent secondary vortex that travels downstream with (but is
weaker than) the top main clockwise vortex. Due to the symmetry in the vortex shedding
pattern, the above observations also apply (but in reverse) when the cylinder is at its
negative peak displacement. As such, the resulting vortex pairs belong to a 2P’ wake
formation (defined as two vortex pairs shed every oscillation cycle) in line with the naming
convention proposed by Morse & Williamson (2009a) and Williamson & Govardhan
(2004). Additionally, while the aforementioned wake pattern remains approximately the
same for the low-gain peak over the reduced velocity range 6.5 < U* < 8.5, we note that
the secondary vortex of the 2P mode and its separation from the SVS becomes stronger
and more clearly defined with U*.

The presence of the SVS observed in figure 17 agrees well with the low angle of
attack observed over the reduced velocity range 6.5 < U* < 8.5 in figure 16(a). We note
that the minimum « value for Regime IV, which is lower than for Regime II, decreases
with increasing U*. Comparing the angle of attack time trace with arctan(U/y) for the
representative case of U* = 7.0 in figure 16(a), the small minimum « value is achieved
by setting the phase difference of the control law to be near ¢4 = 270°, concurring with
figure 8(a).
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Figure 17. Evolution of phase-averaged vorticity contours for control law parameters K; =136 x 107!
and ¢4 = 301° at U* = 7.0 (Regime IV). The main wake pattern is a 2P, wake mode consisting of two
counter-rotating vortex pairs (with one vortex in the pair being weaker than the other) shed every oscillation
cycle. Additional vorticity in the form of an SVS is also observed in between the 2P, wake, although the angle
with respect to the y-axis is larger in magnitude compared with Regime II (see figures 9 and 10). More details
can be found in the caption of figure 9.

The behaviour mentioned above may also explain why the low-gain peak in the
amplitude response corresponding to Regime IV does not vary smoothly over the
control parameter space 3 = {K*, ¢4} but is instead discontinuous with changes in K;
(figure 7b—f). This means that, with ¢y set to its ideal value (e.g. 301° for U* = 7.0),
the vibration amplitude will increase with decreasing proportional gain until the low-gain
peak is reached at the ideal K ; value determined by Bayesian optimisation (e.g. 0.136 for
U* =7.0). A sudden drop in A* occurs once the gain is decreased past this critical point.
Therefore, since the proportional gain relates the oscillation amplitude to the amplitude
of the axial rotation, a higher K means that the angle of attack required for attached
flow (and hence the onset of the movement-induced instability) can be reached at lower
oscillation amplitudes. This, along with the ¢, values for this regime being generally
closer to 270° as compared with Regime II (with ideal control law imposed), suggests
that the movement-induced instability plays a significant role in causing wake-body
synchronisation over the reduced velocity range 6.5 < U* < 8.5. Additionally, while the
ability of the body to synchronise with the wake generally improves with the gain, the
vibrational amplitude rises as KI;k is decreased. As such, the low-gain peak over the reduced
velocity range 6.5 < U* < 8.5 can be considered to be the lowest gain value that can reach
the minimum angle of attack shown in figure 13(a) while still able to achieve lock-in.

As the transverse fluid forcing is approximately in-phase with the body displacement
(figure 4b), the energy transfer between the fluid and cylinder is similar to that for Regime
IT in that the C, value in figure 16(b) is positive (i.e. energy is being input from the
fluid) when the body is moving from y* = 0 towards the position of peak displacement.
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However, when decomposing the power coefficient into its lift and drag components (see
(3.2)~(3.4)), Cp,1 and C, p were found to generally contribute minimally to the energy
transfer for At = 0.05 after the cylinder has reached its peak displacement, with C, 1.
found to be slightly negative in value. This is in contrast to Regime II (figure 14), where
the energy transfer due to the lift and drag (both of which closely resemble the absolute
value of a sinusoidal function) is always positive and negative, respectively. The observed
differences likely arise due to the larger and positive orientation angle when the cylinder
is accelerating away from its positive peak displacement, resulting in smaller lift and drag
forces. This observation concurs with the time traces in figure 11(c), where the low Cy
value between t = 0.25 and 0.5 (repeating every At = 1) is due to the direction of lift
induced by the cylinder with a positive orientation angle being in the opposite direction
to the x-axis. The same reasoning also holds as the cylinder is accelerating away from its
negative peak displacement with a negative 6 value. Furthermore, it is interesting to note
that the energy transfer is in stark contrast to that of Regime III, with ¢, ~ 180° (figure 4b)
resulting in the net positive energy transfer to the cylinder occurring as the body moves
from its peak displacement towards the y* = 0 centreline.

3.2. Ideal control parameters for the high-gain peak (Regime V)

For reduced velocity in the range 6.5 < U* < 8.5, a secondary peak in the oscillation
amplitude was observed that was previously unseen for the 3 < U* < 6 cases, with the
variation of the corresponding proportional gain and phase difference values as a function
of U* presented in figure 8(b). Occurring for K; > 1, as shown by the contour plots
in figure 7(b—f) and belonging to a new wake-body synchronisation regime hereafter
referred to as Regime V, this high-gain peak (represented by the green markers in
figure 4a) is considered a local maximum since it is smaller in magnitude than the
low-gain peak. The displacement and fluid force time traces of this regime for the
representative U* = 8.5 case (with control parameters K; = 3.80 and ¢4 = 18°) are
presented in figure 11(d). In addition, the presence of the high-gain peak also shifts the
range of phase difference between the rotation and the body displacement for minimal
vibration from 0° < ¢g < 135° (as described in § 3.1.1) to 90° < ¢g < 180°.

As a result of the axial rotation amplitude required for the high-gain peak exceeding
1t (i.e. the cylinder achieving more than one complete rotation in a body oscillation
cycle), the physical mechanisms causing the vibration amplification are hence different
from those controlling Regimes II and IV. Instead of modifying the angle of attack to
decrease the energy loss from drag forces acting on the cylinder during an oscillation
cycle, the large axial rotations due to the high gain value indicate significant vorticity
emission from the cylinder’s surface. With the cylinder rotating in the same direction as the
vorticity being shed, it increases the circulation intensity of the vortices and, as a result, the
oscillation amplitude. Therefore, it appears likely that this vibration enhancement arises
from the significant external energy input into the fluid—structure system by the servo
motor imposing the axial rotations.

Since the frequency of both the transverse fluid and vortex forces occur just
below the natural frequency in quiescent water, f;,,, with a complete absence of any
higher-order harmonics (see figure 18), it indicates that vortex formation is still very
much coupled to the oscillation of the cylinder despite the body’s high rotation rate
caused by the large gain value. This is in contrast to the behaviour observed by
Vicente-Ludlam et al. (2017) for U* > 15 when K[”; = 1.2 and ¢4 = 0°, where the
clear separation between the vortex shedding and body vibration frequency demonstrates
that a galloping-like movement-induced instability predominately drives the oscillations.
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Figure 18. Logarithmic-scale PSD contours of the (a) normalised vibration (fy*), (b) transverse fluid force
(fZi\_), (c) vortex force (fa) and (d) streamwise force (fgv) frequencies as a function of U* for the high-gain

peék (Regime V). In panels (a—c), the horizontal dashed line highlights the frequencies at f* € {1, 2, 3},
respectively, and the dash-dotted line represents the Strouhal frequency measured for a stationary cylinder.
Note that the frequencies of the horizontal dashed and dash-dotted lines in panel (d) are doubled compared
with their counterparts in panels (a—c).

However, an exception to the above discussion about harmonics is the U* = 6.5 case,
where fc"iv ~ fa =~ 2.9 frequency components are also observed. This is likely due to the

proportional gain value of the true local maxima being outside the K; < Srange of interest
in this study. Additionally, we note that the large body rotation rate representative of
Regime V also causes weak harmonics to appear sporadically in the drag force frequency
response as shown in figure 18(d).

As the transverse fluid forcing is approximately in phase with the body displacement
(figure 4b), it also indicates that the Magnus effect does not drive the vibrations of Regime
V. The Magnus effect results in a lift force that is perpendicular to the axis of rotation and
acting in the direction of the side of the body rotating with the free stream flow. Since this
phenomenon arises due to the pressure difference between the top and bottom sides of the
body from the addition of momentum near the body’s surface, the resultant force produced
is hence proportional to the angular velocity 6. Consequently, if a Magnus-force-like effect
is the primary instigator of the vibration in Regime V, one would expect the peak transverse
force Cy to occur when 0 is greatest. As ¢g ~ 18°, the axial velocity, and by extension
the transverse force C,, should have a phase shift of approximately 108° relative to the
displacement signal (i.e. ¢, = 108°). However, with the fluid force being approximately in
phase with the body displacement (i.e. ¢, ~ 0°), it implies that the Magnus force does not
play a significant role in driving the oscillations and in the FIV dynamics of Regime V.

A greater understanding of the FIV dynamics can be gained by observing the wake
structures shed by the cylinder. As shown by PIV results in figure 19 for the representative
case of U* = 8.5, the large rotation rate of the cylinder in Regime V results in a vortex
shedding pattern with a greater number of vortices that are generally less defined when
compared with the other lock-in regimes (i.e. I, II, III and IV). Unexpectedly, while the
wakes discussed so far in this study have been symmetric over an oscillation period,
Regime V is the first type of wake-body synchronisation that results in an uneven number
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Figure 19. Evolution of phase-averaged vorticity contours for control law parameters K7 = 3.80 and ¢y = 18°
at U* = 8.5 (Regime V). The shedding pattern is a T + P wake mode characterised by one vortex triplet
(consisting of one clockwise vortex situated above two counter-clockwise vortices) and one counter-rotating
vortex pair. The black dashed line represents the past trajectory of the cylinder, with more details found in the
caption of figure 9.

of vortices above and below the y* = 0 centre line. From figure 19(b), this pattern is
labelled a T 4 P wake mode since a vortex pair (i.e. P) is shed as the cylinder is travelling
downwards from the positive peak displacement and a triplet (i.e. 7, consisting of a
clockwise vortex situated above two anti-clockwise vortices positioned side-by-side) is
shed as the cylinder travels upwards from the negative peak displacement. The pattern
of T + P has been previously observed by Wang et al. (2017) for a 2-degree-of-freedom
flapping NACAOO12 airfoil. While the vortices are shed in a wave-like manner similar
to that observed by Vicente-Ludlam et al. (2018) for a circular cylinder with parameters
{U*, K;)", da} = {17, 1.875, 0°}, the vortices are not shed independently at different points
of the oscillation cycle. This is most evident by the clear vortices observed in figure 19,
which are PIV phase-averaged fields based on the body displacement and velocity.
Therefore, the presence of distinct vortices indicates that vorticity is consistently shed
at particular points in the cylinder’s oscillation cycle, further supporting the above
conclusion that the observed dynamics is due to wake-body synchronisation.

To summarise, the above observations have shown that the Magnus effect and
the movement-induced instability are unlikely candidates to explain the dynamics of
Regime V. However, with fy* ~ fa ~ fé‘v ~ 1 and periodic vortex shedding occurring

in figure 19, it suggests that Regime V is likely to be VIV-dominated with the resultant
dynamics arising from the resonance between the body oscillation and the vortex shedding.

3.3. Adaptive gain for further vibration amplification

Although this study has shown that introducing the axial rotation imposed by the control
law specified in (2.5) increases the vibration amplitude of the elliptical cylinder started
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Figure 20. (a) Comparison of the amplitude response for an elliptical cylinder started from rest (filled black
symbol) and when increasing U* increments are used. The red marker with the black edge denotes the
amplitude achieved with the adaptive gain control law, while the purely red marker represents the intermediate
state (i.e. maximum A* achieved when K;, «= K;‘). (b) Amplitude contour plot as a function of adaptive gain
control law parameters A’r‘ef and A, with the black star indicating maximum achievable amplitude (A* = 5.87).
(c) Time trace of y*, Kl’f, 4 and 6 over 200 non-dimensional time units 7 for the cylinder started from rest when
the adaptive gain control law is applied. Here, {K*, ¢4, A, A:‘ef} = {0.236, 301°, 2.35, 2.16}.

from rest, Lo et al. (2023, 2024b) found that even larger oscillations at higher reduced
velocities could be sustained for a non-rotating cylinder (i.e. K** = 0) if the flow speed was
continuously increased from minimum to maximum reduced velocity. This behaviour can
be attributed to the cylinder being a ‘hard-oscillator’ (see Naudascher & Rockwell 2005)
as indicated by the amplitude response with increasing U* increments in figure 20(a),
where large Regime II vibrations for U* > 6.3 can only occur when the initial amplitude
is beyond a certain threshold. Therefore, the following question arises: can axial rotations
be used as a method to excite Regime II oscillations for an elliptical cylinder initially at
rest when the reduced velocity is above 6.3?

Since the physical cause of the elliptical cylinder acting as a hard oscillator is due to
an absence of (semi-)attached flow around it (producing lift) when the body velocity is
below a critical value (Lo et al. 2023), the strategy of inducing Regime II oscillations
can hence be broken down into two main steps. First, axial rotations are used to establish
flow attachment around the cylinder. Once established, the second step will be to ensure
that this attachment is sustained even as the proportional gain approaches zero, thereby
resulting in an oscillation amplitude that is identical to the amplitude response when
increasing U™ increments are used (denoted by hollow markers in figure 20a). With the
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control law proposed in (2.5) only able to achieve the first objective (see §3.1.2), we
found that the desired result could be attained for the representative U* = 7 case with
appropriate modification of the proportional gain term to the following form (hereafter
known as adaptive gain):

K J(A% 4, A%) = K - min (exp [—A(A* — AL, 1) , (3.5)

where A is the decay rate, K, o is the initial gain constant and A*,.s is the amplitude
where exponential decay begins (i.e. the intermediate state). Here, we have included
the vibrational amplitude as an additional input into the control law, with K, , decaying
exponentially with A*. The choice of the exponential function arises from the sensitivity
of the amplitude response to small orientation angles as shown by Lo et al. (2024b),
where a ~ 60 % decrease in the maximum vibration amplitude was observed when
an angle of o = 3.5° was introduced. Furthermore, by leveraging the gain and phase
difference parameters previously obtained in § 3.1.2 for U* = 7 (i.e. the low-gain peak)
as the intermediate state, a greedy approach can be used since the adaptive gain will only
require optimisation with respect to A*,,r and A. As such, this will simplify the problem by
minimising the dimensionality of the search space explored by the Bayesian optimisation
algorithm to find the optimal control law.

To implement this adaptive gain, K;’ 4 the A* input signal was measured to be V24
with A% being the moving root-mean-square of the normalised displacement signal over
the period At =1 (i.e. 1/f,, seconds). Due to the sensitivity of the low-gain peak to
the proportional gain value, the control law parameter values were taken as {K, ¢4} =
{0.236, 301°} (resulting in an amplitude of A* = 2.18) to ensure consistent lock-in that
is independent of experimental conditions. Again, the multi-stage Bayesian optimisation
approach described in § 2.3 was used to optimise the parameters of the adaptive gain
K;’ . and the decay rate A with respect to the cost function (2.6). In the first stage, 100

iterations were conducted over the range Afef € [0, 2.18] and A € [0, 6] with an exploration

*
rms?

ratio of 7, = 1 x 10'2. A further 100 iterations were completed over a smaller range of
decay values A € [0, 3] using an exploration ratio of #, = 0.5, before finally conducting
a final 25 iterations with an exploration ratio of #, = 0. The resultant contour plot of the
vibration amplitude as a function of the adaptive gain parameters 1 and Afef is presented
in figure 20(b).

From the contour plot, we can see that enabling the gain to vary with the vibration
amplitude allows the large vibrations of Regime II to be excited for an elliptical cylinder
started from rest. This could not be achieved with the constant gain law (i.e. 4 = 0)
due to the ability of the body to synchronise with the wake increasing with K;‘, at the
expense of oscillation amplitude that can be achieved. The maximum obtained vibration
amplitude of A* = 5.87 is marked by the black star and occurs when {K*, ¢q, 4, Ajef} =
{0.236, 301°, 2.35, 2.16}. Interestingly, a large diagonal band of high A* values can also be
observed in figure 20(b), thereby indicating the robustness of the adaptive gain approach
since large vibrations can be excited over a range of Afef and A values.

To understand the dynamics of the elliptical cylinder started from rest, figure 20(c)
presents the evolution of the body displacement, adaptive gain and orientation angle over
200 non-dimensional time units, T = #f;,,, when the optimised control law is imposed
(1 =2.35, Afef = 2.16). The evolution of the wake, as determined using time-resolved PIV

(conducted using 3100 image pairs at a frequency of 30 Hz), is also presented in Movie 1
and is available at https://doi.org/10.1017/jfm.2024.1128. Starting from v = 0 when the
cylinder is at rest (i.e. & = 90°), the body is rotated to # = 0° and axial rotation is imposed.
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AsA* < AT of from t = 1 to 47.06, the gain remains static and the system evolves similarly
to that of the constant-gain control law (§ 2.2). Once Afgf has been reached and the rotation

amplitude reaches a maximum of 29.3°, the exponential decay of K} , with vibration
amplitude begins. Since wake-body synchronisation has already been established and flow
streamlining is occurring around the body, a reduction in K;’ , corresponds to further
rises in A, which in turn results in a further decrease in K} ,. This positive feedback
loop then continues until a steady vibration amplitude of A* = 5.87 (corresponding to an
approximately 110 % increase compared with the low-gain peak for the same U* value) is
reached when T ~ 117.5. However, care must also be taken to maintain the flow attachment

around the body as the rotational amplitude is decreased. If K;y o 18 decreased too early
(i.e. Afef € [0, 0.75]) or too rapidly (A 2 3), as indicated by the low-amplitude regions in
figure 20(c), the elliptical cylinder will not be able to consistently sustain the necessary
flow condition required to increase the vibration amplitude until A* = 5.87 is attained.
Furthermore, since the rotational amplitude reaches a value of near-zero (i.e. Ag =~ 0.1°)
at T ~ 104, it indicates that the cylinder can reach an amplitude of A* = 5.87 without
imposing any further axial rotation once A* &~ 5.35 is achieved and attached flow is
established around the cylinder.

Therefore, we can conclude that the control law with adaptive gain allows the elliptical
cylinder to act as a ‘soft’ oscillator (i.e. exciting oscillations corresponding to Regime II
from rest) when U* = 7.0. Although this has only been validated for one reduced velocity,
it is expected that the proposed approach will also work for 6.3 < U* < 8.5 values as well
given the low-gain peak (i.e. indicating the presence of flow attachment) in figure 4(a)
when the constant-gain control law is used. In addition, once the high-amplitude limit
cycle belonging to Regime II is reached, it may also be possible to switch back to the
normal control law described in (2.5) for further amplitude enhancement. However, this
is outside the scope of the current study given the current limits of our water channel
facilities.

From an engineering perspective, the success of the control law with adaptive gain has
potential implications for energy harvesting applications since increasing the vibration
amplitude of the cylinder (for a fixed damping value) will increase the power output from
the system. With the body subjected to external perturbations in the real world (e.g. flow
velocity fluctuations and collisions with foreign objects) that may reduce the vibration
amplitude to an unrecoverable value, the control strategy can be used to restore the large
oscillations of Regime II efficiently due to the imposed rotation also being dependent on
A*. Beyond the possible use as a vibration recovery mechanism, it would also be interesting
to explore the capability of the proposed adaptive gain approach in attenuating both the
effect of FIV and unsteady flow (arising from external upstream disturbances) on the body
dynamics. With appropriate modification to the cost function (2.6), this could be applied to
transient problems like minimising the impact of unsteady aerodynamics from wing—gust
encounters on the lift generation performance of airfoils (see Fukami & Taira 2023; Sedky
et al. 2023) and, as such, should be explored as part of a future study.

4. Conclusions

In our study, Bayesian optimisation was used to identify the control law that maximises
(both locally and globally) the FIV of an elastically mounted elliptical cylinder (with an
elliptical ratio of ¢ = 5 and a mass ratio of m* = 53) started from rest across a reduced
velocity range of 3.0 < U* < 8.5. Axial rotation was used as the primary actuation
mechanism where the relationship between the cylinder orientation and displacement was
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determined by the proportional gain, K, and phase difference, ¢4, parameters of the
control law (2.5). By modifying the fluid—structure interaction, the resulting amplitude
response when control was applied was larger than the non-rotating case for all U* values
considered in this study. Specifically, an average increase of 14.7 % (with the maximum
axial rotation amplitude required being less than 12.5°) was observed over a reduced
velocity range of 3.0 < U* < 6, with the imposed rotation extending the wake-body
synchronisation across the entire U* range of interest as opposed to 3.0 < U* < 7.4 for
the non-rotating cylinder.

Furthermore, three wake-body synchronisation regimes (II, IV, V) were identified when
active control was applied; two of which, to the authors’ knowledge, have not been
previously reported. Although the wake pattern for Regime II did not significantly change
when active control was applied, the length of the SVS — the vortex street from the body as
it moves up and down between maximum displacements — was observed to increase with
its persistence in the far wake reduced. This change was attributed to the phase difference
between the rotation and transverse displacement being approximately 180°, resulting in a
lower angle of attack and hence increased flow attachment as the cylinder moves from
y* =0 to the peak displacement point. Interestingly, while the 2S wake mode is the
primary flow pattern for the non-rotating elliptical cylinder, the main vortex-shedding
structure of Regime IV is a 2P wake mode. As evidenced by the additional presence
of the SVS and the low total phase, the FIV dynamics of this regime seems to show
contributions from both VIV and movement-induced vibration, again with the fluid forcing
being strongly in phase with the body displacement (i.e. ¢, < 20°). However, Regime V is
characterised by the asymmetric 7 + P mode and is the only wake-body synchronisation
regime in this study marked by axial rotations with an angular displacement amplitude
greater than m radians. Unlike Regimes II and IV where the large oscillations can be
attributed to the attached flow around the cylinder caused by the low minimum angle
of attack, Regime V’s dynamics is predominantly driven by the significant body rotation
injecting circulation from the cylinder surface into the shed vortices.

Although the control law increases both the vibration amplitude and the U* range where
wake-body synchronisation occurs as compared with the non-rotating cylinder started
from rest, the resulting oscillations are less than the non-rotating case for increasing U*
increments when 6.3 < U* < 7.1. Given that the elliptical cylinder is a ‘hard oscillator’
over this reduced velocity range, we further propose an adaptive proportional gain (i.e.
varies as a function of A*) which overcomes this limitation by providing the cylinder
with the required initial vibration amplitude to sustain the large Regime II oscillations.
As the rotation magnitude depends on the cylinder’s current oscillation amplitude, the
approach allows Regime II oscillations to be maintained in an energy-efficient manner
for flow speeds where the body acts as a hard oscillator. This has potential implications
for renewable energy applications since, for practical applications, the cylinder is likely to
be initially at rest and/or may be subjected to external perturbations that may reduce the
vibration amplitude to an unrecoverable value.

However, the success of the adaptive gain has also highlighted the potential for even
further vibration enhancements to be gained from rotations imposed by more sophisticated
control strategies. Applying deep learning methodologies for FIV maximisation could be
an interesting avenue to explore in future studies, especially for systems that see the joint
occurrence of VIV and movement-induced instability. For energy harvesting applications,
the effect of, and the manner in which, damping is applied to the rotating cylinder should
also be investigated. Additionally, as energy is required to drive the motor, the net power
output from this FIV system can be maximised by making the active control strategy more
efficient through the incorporation of angular rotation as a term in the cost function.
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Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.1128.

Movie caption: Time-resolved particle image velocimetry showing the evolution of the wake shed by
the elliptical cylinder started from rest when the optimised adaptive control law is imposed (K = 0.236,
¢q =301°, 1= 2.35,A7fef =2.16).
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