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Abstract

Waterhemp [Amaranthus tuberculatus (Moq.) Sauer] is one of the most troublesome weeds in
the United States. An A. tuberculatus population (CHR) was identified in Illinois, USA, as
resistant to herbicides from six different site-of-action groups. Recently, the same population
was also recognized as dicamba resistant. This study aimed to identify key resistance genes and
the putative dicamba resistance mechanism in A. tuberculatus via transcriptomics analysis.
Multiple differentially expressed (DE) genes and co-expression gene modules were identified as
associated with dicamba resistance. Specifically, genes encoding glutathione S-transferases
(GSTs), ATP-binding cassette transporters, peroxidases, and uridine diphosphate (UDP)-
glycosyltransferases (UGTs) were identified. Results indicated enhanced oxidative stress
tolerance as the primary mechanism for reducing dicamba toxicity. Results also point to
potential glycosylation via UGTs and conjugation via GSTs of dicamba and its by-products.
This is the first transcriptomics characterization of dicamba resistance in A. tuberculatus.
Multiple non-target-site resistance genes were identified, indicating a cross-resistance pattern
in the CHR population leading to a putative-enhanced oxidative stress response. Regions of
multiple DE genes (i.e., genomic hot spots) across the A. tuberculatus genome corroborate
previous results and potentially add to the complexity of non-target-site resistance traits.

Introduction

Proper weed management is a crucial step for achieving high yields in agriculture and is
constantly facing many challenges, including the evolutionary phenomenon of herbicide
resistance. Chemical control is a heavily relied upon weed management tool, creating intense
selection pressure for the evolution of herbicide-resistant weeds (Bagavathiannan and
Davis 2018).

Herbicide resistance can be classified into two main types: target-site (TS) and non-target-
site (NTS) resistance. TS resistance mainly refers to when one or more nucleotide mutations in
the gene encoding a protein bound by a herbicide disrupts the toxicity capabilities of the
herbicide but can also be due to increased expression or copy number variation of the gene
(Gaines et al. 2020). NTS resistance refers to any resistancemechanism not involving a change in
the herbicide target site, including metabolic resistance, reduced translocation, and
sequestration (Ghanizadeh and Harrington 2017; Jugulam and Shyam 2019; Rigon et al. 2020).

With the advent of genetically modified crops, herbicide-resistance traits became
overwhelmingly present in several crops, with an 80% to nearly 100% adoption rate in the
U.S. corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] system (Dopson 2022). Recently,
soybean cultivars with a dicamba resistance trait were released, increasing the usage of this
specific herbicide (Behrens et al. 2007). Dicamba is a synthetic auxin herbicide (HRACGroup 4)
commercialized since the 1960s (Egan and Mortensen 2012), and it has recently become one of
the most used herbicides in the United States with the release of dicamba-tolerant cultivars. For
instance, for soybean and cotton (Gossypiumhirsutum L.) production, dicamba is among the top
five most-used herbicides, with 3.76 and 1.08 million kg of dicamba applied in the last 5 yr,
respectively (USDA-NASS 2022). As observed after the release of glyphosate-resistant cultivars
(Heap and Duke 2018), it is predicted that the overuse of dicamba could lead to a substantial
selection of dicamba-resistant weed populations.

Oneof themain targets for dicambaapplication is oneof themost troublesomeweed species in
themidwesternUnited States: waterhemp [Amaranthus tuberculatus (Moq.) Sauer]. Thisweed is
adioecious, herbaceous species, highly prolific andwithpersistent seed in the soil seedbank, and it
can reduce yields in soybean and corn by 40% and 70%, respectively (Hager et al. 2002; Korres
et al. 2018; Steckel and Sprague 2004). An A. tuberculatus population from Champaign County,
Illinois, USA (designated CHR) was identified as resistant to herbicides from multiple site-of-
action groups, including synthetic auxins (2,4-D) and inhibitors of acetolactate synthase,
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protoporphyrinogen oxidase, 4-hydroxyphenylpyruvate dioxyge-
nase (HPPD), photosystem II, and very-long-chain fatty-acid
elongases (Evans et al. 2019; Strom et al. 2020).

Subsequently, the CHR population was characterized as dicamba
resistant, despite no history of repeated dicamba selection, with the
trait identifiedwithmoderate heritability and likely beingmultigenic
(Bobadilla et al. 2022). Previous studies investigated gene expression
patterns of CHR related to 2,4-D and HPPD-inhibitor resistance,
indicating an NTS resistance case involving cytochrome P450
(CYP450), ATP-binding cassette (ABC) transporter, and uridine
diphosphate (UDP)-glycosyltransferase (UGT) as the primary
candidates for resistance (Giacomini et al. 2020). Interestingly,
genomic hot spots, that is, clusters of differentially expressed (DE)
genes, were also observed. This scenario raises the question of
whether other resistance traits in CHR share similar patterns and
candidate resistance genes. CHR also was the first reported case of
dicamba resistance inA. tuberculatus,andnoprior study investigated
the expression patterns of dicamba resistance in this species.

The goal of this study was to characterize the gene expression
patterns and identify candidate genes for dicamba resistance in the
CHR population. An RNA-seq study was conducted comparing
dicamba-resistant and dicamba-susceptible individuals within a
segregating F2 population derived from the CHR population.

Material and Methods

Plant Material and Sequencing

For the RNA-seq experiment, a previously characterized pseudo-
F2 population was used (Bobadilla et al. 2022). Briefly, CHR plants
were treated with 560 g ai ha−1 of dicamba, and the most resistant
was selected to cross with a universal sensitive population (WUS) to
generate an F1 population, from which a pseudo-F2 line was
generated. An F2 line was used for RNA-seq to reduce background
noise and genetic differences between resistant and sensitive
individuals, focusing only on the genes segregating based on the
selected trait (Giacomini et al. 2018). All seeds were subjected to a
50% commercial bleach treatment for 10 min and rinsed twice with
water for 10min each. Pseudo-F2 seeds were suspended in a 0.1 g L−1

agarose solution and placed in a 4 C refrigerator for 4 wk to reduce
dormancy (Bell et al. 2013).

After stratification, seeds were germinated in petri dishes
containing blotting paper with 2.0 ml of water. Petri dishes were
closed with sealing film to avoid water loss and placed in a growth
chamber for 48 h set for 12/12 h day/night and 32/15 C
temperature regimes. After germination, seedlings were trans-
planted into 164-cm3 Cone-tainers (Ray Leach SC10 “Cone-
tainer,” Tangent, OR). Plants were kept under a mist bench
programmed to water plants twice a day. All Cone-tainers were
filled with a custom sandy loam growth medium containing 1:1:1
(soil:peat:sand) and 3.3% organic matter, 6.8 pH. About 0.45 kg of
slow-release complete fertilizer (Osmocote® 13–13–13 slow-release
fertilizer, Scotts, Marysville, OH) was mixed into 200 kg of the
medium before planting. One week after transplant, a supplement
of about 80 mg of additional Osmocote® fertilizer was added
to the top of the growth medium in each Cone-tainer. The
greenhouse was kept in a temperature and light regime of 28/22 C
and 16/8 h, respectively, with sunlight supplemented with metal-
halide lamps.

Four-hundred pseudo-F2 plants were treated with 560 g
dicamba ha−1 (XtendiMax®, Bayer CropScience, St Louis, MO)
when plants had 6 to 7 leaves and were 7 to 10 cm in height. Before

treatment, a single, young, fully formed leaf from each plant was
collected, promptly frozen in liquid nitrogen, and stored at −80 C
for later extraction after phenotyping and plant selection.
Delimiting rate definition and phenotyping approach were
conducted as previously described (Bobadilla et al. 2022).
Briefly, plants were phenotyped 16 d after treatment based on
visual damage estimation, biomass, and plant area reduction
(Figure 1 A and B). After phenotyping, 16 individual pseudo-F2
plants (8 resistant and 8 sensitive) were chosen for further RNA
extraction.

RNA from the 16 selected individuals was extracted using a
Trizol-based method (Simms et al. 1993) followed by a DNAse I
treatment. Samples were checked for quality and quantity via
Qubit analyzer (Thermo Fisher Scientific, Waltham, MA), gel
electrophoresis, and Bioanalyzer (Agilent Technologies, Santa
Clara, CA). Samples were sent to the Roy J. Carver Biotechnology
Center at the University of Illinois, Urbana-Champaign, for
Illumina library construction and sequencing. Libraries were
prepared using an Illumina TruSeq Stranded mRNAseq Sample
Prep kit (Illumina, San Diego, CA). Single reads (100 bp) were
sequenced using a NovaSeq 6000 system with one NovaSeq SP
flow cell.

Data Preprocessing

All fastq files were filtered for low-quality reads, and adapters were
trimmed using Fastp (Chen et al. 2018). Reads were further filtered
to remove rRNA using the software SortMeRNA (Kopylova et al.
2012). A genome-guided transcriptome assembly was conducted
with the trimmed and filtered data. Reads were mapped to the A.
tuberculatus draft genome (Montgomery et al. 2020) using STAR
(Dobin and Gingeras 2015), and all bam files were combined using
the SAMtools merge tool (Li et al. 2009). A merged bam file was
input into Trinity for the transcriptome assembly (Table 1).
Functional transcriptome annotation was done using the Trinotate
pipeline (Bryant et al. 2017), and the final transcriptome was
generated using the annotated transcripts. Transcriptome quality
was assessed using BUSCO (Benchmarking Universal Single-Copy
Orthologs; Simão et al. 2015) completeness score based on the
viridiplantae_odb10 database. Overall quality was accessed by
mapping a set of samples to the assembled transcriptome with
Bowtie2 (Langdon 2015) and obtaining the N50 parameter using a
Trinity custom script (https://github.com/trinityrnaseq/trinityrna
seq/blob/master/util/TrinityStats.pl). The transcriptome was later
mapped back to the genome to identify genomic locations using
GMAP (Wu and Watanabe 2005). All reads were pseudo-aligned
to the assembled transcriptome using Kallisto for read count
quantification (Bray et al. 2016).

Differential Expression

A differential expression analysis was conducted using the R
package EDGER (Robinson et al. 2010). Quantification files
generated from Kallisto were loaded into R using the R package
TXIMPORT and summarized to the gene level (Soneson et al. 2015).
Genes with low expression in more than 80% of samples were
filtered, and the remaining genes were subjected to normalization
via the trimmed mean of M-values method. Common, trended,
and tagwise dispersions were estimated using a quantile-adjusted
conditional maximum likelihood. A negative binomial model was
fit to the data, and the exact test was conducted based on the fitted
dispersion to identify DE genes. A 5% false discovery rate (FDR)
was used to identify DE genes. To identify significant terms within
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the list of DE genes, overrepresented and conditional GO-term
enrichment analysis was conducted using the TOPGO R package
(Alexa and Rahnenführer 2009).

Weighted Co-expression Network Analysis (WGCNA)

A WGCNA was conducted using the WGCNA R package
(Langfelder and Horvath 2008). Such analysis can provide valuable
information regarding which genes are co-expressed, creating a
venue to better interpret the tested trait. Gene expression counts
were normalized using the DESeq2 method and converted to a log2
scale (Love et al. 2014). Hierarchical clustering was used to identify
outlier samples, and the constant-height tree-cut function was used
to remove the outliers. Soft-threshold power was estimated to
approximate network topology to a free-scale model. A signed
adjacencymatrix was calculated via bi-weight midcorrelation and a
signed topological overlap matrix by dissimilarity. Genes were

clustered via hierarchical clustering, and the dynamic tree-cutting
algorithm was used to separate genes into modules. Module
eigengenes were calculated to merge similar modules and identify
modules associated with dicamba resistance. An intra-modular
analysis was conducted to identify hub genes within modules
associated with dicamba resistance. Genes were considered hubs of
a module based on their module membership (0 to 1 scale
according to the overall connectivity) and their gene-trait
significance (0 to 1 Pearson correlation between expression and
the trait). GO-term enrichment analysis was conducted for each
significant module using TOPGO.

Promoter Analysis

A regulatory prediction analysis was conducted to explore the
regulatory nature of the identified DE genes. The promoter regions
from all DE genes were extracted using the A. tuberculatus

Table 1. Genome-guided transcriptome assembly statistics.

% base pairs

Genes Transcripts BUSCOa score Mapping rate N50b Average contig length

Guided assembly 128,317 214,064 86.6 82.8 903 591.21
Functional annotated 24,273 60,821
Pfam annotated 36,328 36,328
GO ontology annotated 10,044 37,025
SignalP annotated 1,288 4,355

aBUSCO, Benchmarking Universal Single-Copy Orthologs.
bN50, sequence mean length.

(A)

(B)

Figure 1. Plant selection and phenotype classification for RNA-seq. Photos show the differences in phenotypes of some of the individuals selected for sequencing: (A) resistant
plants and (B) sensitive plants. Selection was done based on visual damage estimation, biomass, and plant area measured via image analysis (Bobadilla et al. 2022). Photos were
taken 14 d after treatment with dicamba at 560 g ai ha−1. The graph shows the relationship between biomass and plant area across resistant and sensitive individuals.
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reference genome. The promoter region was defined as 2,000 bp
before the transcription starting site. Promoter regions were
extracted using BEDtools software (Quinlan and Hall 2010). The
regulatory prediction was conducted via a transcription factor
enrichment analysis using the PlantRegMap tool in the Plant
Transcription Factor Database (PlantTFDB) utilizing the tran-
scription factormotifs fromArabidopsis thaliana (Tian et al. 2020).

Quantitative PCR Validation

A quantitative PCR (qPCR) assay was conducted to validate results
from the RNA-seq experiment. Five genes (PEROX12, GST-nt,
GST-ct, UGT85A, and ABC10) were selected as our validation
genes. Primers were designed aiming at an annealing temperature
of 60 C, amplicon size of 80 to 180 bp, and targeting an exon/exon
junction (Supplementary Table 1). Initial primer efficiency was
tested by conducting a qPCR assay using a five-step cDNA
dilution. The genes GADPH and EF-alpha were used as the
housekeeping genes to estimate efficiency and relative expression.
A subset of pseudo-F2 plants was selected (six resistant and six
susceptible plants), including individuals that were and were not
used in the RNA-seq experiment. Only primer sets ranging from
95% to 100% efficiency were selected (Supplementary Figure 1).
RNA was converted to cDNA using a ProtoScript II First Strand
cDNA Synthesis Kit (New England Biolab, Ipswich, MA). qPCR
was performed using a QuantStudio 7 (Thermo Fisher Scientific,
Waltham, MA) in triplicate for each sample for each primer set by
combining 5 μl of iTaq Universal SYBR Green Supermix (Bio-Rad
Laboratories, Hercules, CA), 0.5 μl of forward primer (10 μM), 0.5
μl of reverse primer (10 μM), 3 μl of nuclease-free water, and 1 μl of
cDNA. Relative expression was calculated using the 2−ΔΔCt method
(Livak and Schmittgen 2001). The entire experiment was repeated
to ensure consistency. Expression results were subjected to a two-
sided t-test.

Temporal qPCR Expression Assay

Temporal qPCR analysis was conducted to quantify the differential
expression after dicamba application of genes confirmed as DE by
qPCR validation. A total of 200 pseudo-F2 plants were grown
under the same conditions as previously described, and 48 plants
(24 resistant and 24 susceptible) were selected. Tissue from the
youngest fully formed leaf was collected at four periods: 0, 0.5, 4,
and 48 h after application, with a different set of 12 plants (6
resistant and 6 susceptible) sampled during each period. Tissue
collection, RNA extraction, and cDNA conversion were performed
as previously described. All plants were treated with dicamba at a
rate of 560 g ha−1. qPCR for relative expression assay was
conducted utilizing the gene GADPH as the housekeeping gene.
Relative expression using the 2−ΔΔCt method and significance via t-
test analysis were estimated as previously described.

Results and Discussion

Differential Expression Analysis

Differential expression analysis yielded a relatively small number
of DE genes, 67, indicating that utilizing an F2 population greatly
reduced background noise from the data (Giacomini et al. 2018;
Figure 2). The fact that this comparison was made in the absence of
any herbicide application also accounts for the small number of DE
genes. From those 67 genes, 49 were functionally annotated
(Supplementary Table 2), including gene family members

previously characterized with involvement in NTS resistance, such
as glutathione S-transferases (GSTs), UGT, ABC transporters, and
CYP450. GO-term enrichment analysis indicated that DE genes
were mainly enriched for terms related to response to oxidative
stress and multiple other metabolism-related terms such as
glutathione and UDP−glucose metabolic processes (Figure 3).
Major candidates identified included aGST from the phi family with
a C-terminal domain (GST-ct), a GST from the tau family with an
N-terminal domain (GST-nt), a peroxidase (PEROX12), and
multiple UGTs, including UGT85A and UGT2. Other important
putative genes for dicamba resistance were also identified, including
CYP76A and the gene ACS10, which were previously characterized
to respond to synthetic auxins in other species (Gleason et al. 2011;
Johnston et al. 2020; Tsuchisaka and Theologis 2004).

Differential expression results indicated a scenario where the
dicamba resistance is potentially caused by an enhanced response
to oxidative stress via GSTs and peroxidases and by metabolism of
dicamba and abscisic acid (ABA) via UGT glycosylation (Mateo-
Bonmatí et al. 2021). The previously characterized involvement of
glycosylation in regulation of indole-3-acetic acid (IAA) and
results pointing to UGT genes being overexpressed after dicamba
treatment could allow one to extrapolate a hypothesis that
glycosylation could also be involved in dicamba detoxification. DE
genes were mapped to the A. tuberculatus genome to identify their
genomic position and look for clusters (Figure 4). Interestingly,
some similarities were noticed with what was observed by
Giacomini et al. (2020) in a previous study with a subpopulation
also derived from CHR but segregating for 2,4-D and HPPD-
inhibitor resistance.Multiple DE genes from the dicamba RNA-seq
study were mapped to regions in chromosomes 1, 2, 4, and 16,
indicating that those regions potentially contain quantitative trait
loci (QTLs) important for NTS resistance in the A. tuberculatus
CHR population. Genes including ABC transporter 10 (ABC10)
and other transporters were found as DE andwithin those genomic
regions in both studies, indicating that compartmentalization of
the herbicides, secondary metabolites, and reactive oxygen species
(ROS) may play a key role in NTS resistance in the CHR
population (Rigon et al. 2020; Tani et al. 2015; Zhang and Yang
2021). From genes selected for validation, GST-nt, GST-ct,
PEROX12, and ABC10 showed significant elevated expression in
dicamba-resistant plants relative to the sensitive plants (Table 2),
validating observed expression differences obtained from the
RNA-seq experiment.

WGCNA

The WGCNA yielded 33 modules identifying genes with similar
expression patterns within the transcriptomics data (Figure 5;
Supplementary Figure 2). Module sizes range from 41 to 3,730
genes. Module eigengenes were used to identify modules associated
with dicamba resistance. A GO-term enrichment analysis was
conducted for each module to identify the important biological
terms enriched within each. Black, Tan, and Brown modules were
found enriched for response to oxidative stress. Module Grey60
was enriched for terms involved with glutathione metabolic
processes and peroxisome organization, implying that genes
within this module are also potentially associated with oxidative
stress regulation. The Midnightblue module was enriched for
multiple UGT-related terms and hormone metabolic processes,
implying a potential involvement of phytohormone glycosylation
(Huang et al. 2021; Mateo-Bonmatí et al. 2021; Meech et al. 2012).
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Figure 2. Volcano plot of all genes with key differentially expressed genes highlighted. Major genes with potential involvement in dicamba resistance are labeled according to
their homologous UniprotKB ID. Genes in red and blue were significantly up- and downregulated, respectively, in dicamba-resistant relative to sensitive plants.
The y axis refers to −log10 false discovery rate (FDR), and the x axis refers to the log2 expression fold change (FC).
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WGCNA results identified multiple modules associated with
dicamba resistance that were enriched for oxidative stress–related
genes, furthering the hypothesis that dicamba resistance in this
multiple-resistance population is due to an enhanced response to
oxidative stress caused by the herbicide. The gene UGT85A was
one of the main hubs within the Black module, indicating that this
gene could play an important role in dicamba resistance. For the
Midnightblue module, the only annotated hub gene was a gene
encoding an isocitrate dehydrogenase, which has a putative role in
oxidative stress response (Mhamdi and Noctor 2015; Pan et al.
2020). The Grey60 module’s only annotated hub gene encoded a
peroxisomal membrane protein. Peroxisomes are organelles that
sequester diverse oxidative reactions and play essential roles in

Figure 4. Genomic distribution in sliding 50-kb window plots of differentially expressed genes (DEs). The y-axis units refer to windows in mega base pairs (Mbp) Each plot
represents one of the 16 pseudo-chromosomes of Amaranthus tuberculatus. Peaks represent clusters of DEs. Blue dashed lines represent previously identified hot-spot locations
for 2,4-D resistance (Giacomini et al. 2020).

Table 2. Quantitative PCR (qPCR) validation assay results.

Average relative
expressiona

Gene Resistant Susceptible Fold change P-valueb

GST-nt 4.61 1.51 3.05 0.01962
GST-ct 8.99 1.74 5.16 0.00485
PEROX12 3.72 1.16 3.19 0.02832
ABC10 9.91 1.90 5.21 0.00919
UGT85A 2.51 1.52 1.66 NS

aAverage relative expression calculated in relation to two housekeeping genes (GADPH and
EF1-α).
bP-value refers to two-sided t-test significance. NS, nonsignificant P-value.
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metabolism, detoxification of ROS, and signaling (Mhamdi and
Noctor 2015; Pan et al. 2020; Rodríguez-Serrano et al. 2014). In
summary, results from WGCNA corroborate results observed in
the differential expression analysis, suggesting that dicamba
resistance is primarily due to detoxification of ROS generated
after dicamba molecules bind to auxin receptors (Gaines 2020).

Regulatory Prediction

Results from regulatory prediction analysis showed 4,100 potential
regulatory relationships among 510 transcription factors with the
identified DE genes. From these regulatory relationships, 65
transcription factors showed overrepresented binding targets in
the DE genes using a 0.05 q-value threshold. From these significant
interactions, 12 transcription factor families were identified, with
most transcription factors asmembers of theMYB family, followed
by the TCP family (Figure 6). MYB transcription factors represent
one of the largest protein families in plants and are known to be
involved in plant development and responses to stresses (Wang
et al. 2021). TCP is a plant-specific transcription factor family with
a bHLH motif and is also known to play critical roles in abiotic
stress responses (Martín-Trillo and Cubas 2010).

Interestingly, when comparing the number of genes with motifs
for the binding of these enriched transcription factors, a unique
transcription factor from the CPP family showsmotifs inmany DE
genes. Cysteine-rich polycomb-like protein (CPP) transcription
factors are a small gene family that regulates plant growth,
development, and stress response (Andersen et al. 2007; Song et al.
2016; Zhou et al. 2018). Many genes also contain motifs for three
enriched MADS-box transcription factors. MADS-box tran-
scription factors are involved in a wide range of developmental
processes in plants, including the formation of flowers, leaves, and
roots, as well as the determination of cell fate and the regulation of
stress-response pathways (Theissen et al. 2000). Transcription
factors are the major regulators of gene expression. Identifying
how DE genes are regulated could aid in identifying the actual
expression modulator. Understanding the regulatory nature of the

involved genes is key to building further predictions for cross-
resistance and creating strategies to minimize it (Bobadilla and
Tranel 2023).

Temporal qPCR Expression

Previous studies suggested that NTS-related genes are constitu-
tively expressed, allowing for a quick plant response after herbicide
exposure (Giacomini et al. 2018, 2020). We conducted a temporal
qPCR assay to validate this hypothesis and test the expression
variation after dicamba application. Results indicated that, in the
CHR population, all tested genes were upregulated in resistant
plants relative to sensitive plants before herbicide application
(Figure 7) but had varying expression patterns after dicamba
application. PEROX12 and GST-nt expression increased in
resistant plants 30 min after treatment, while expression of
GST-ct decreased in resistant plants after dicamba exposure but
remained elevated relative to sensitive plants. At 4 and 48 h after
treatment, PEROX12 expression was not significantly different
between resistant and sensitive plants. For ABC10, expression
decreased with time in resistant plants, but continued to be
elevated relative to sensitive plants. In summary, results indicated
that GSTs and ABC10 were constantly upregulated in resistant
relative to sensitive plants, while PEROX12 was only upregulated
before and shortly after dicamba application. These results support
the hypothesis that genes for NTS resistance are constitutively
overexpressed in resistant plants before herbicide application
(Giacomini et al. 2018).

Interestingly, expression of the peroxidase gene substantially
increased in sensitive plants by 48 h after dicamba treatment,
suggesting a native response to dicamba exposure. Dicamba was
previously characterized to induce a reduction in peroxidase
expression (Gleason et al. 2011). Previous studies also show that
peroxidase overexpression can lead to resistance to herbicides,
such as paraquat, that cause high oxidative stress (Murgia
et al. 2004).

(A) (B)

Figure 5. Weighted co-expression network analysis results. (A) Gene expression dendrogram for module assignment where a total of 33 modules were identified. (B) Trait-
module correlation plot with values outside parentheses representing Pearson correlation and values inside parentheses representing the significance correlation P-values.
Correlation values range from −1 to 1, with red values indicating a positive association and blue values indicating a negative association with dicamba resistance. ME refers to
modules followed by their color code.
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Dicamba Resistance in CHR

The A. tuberculatus CHR population was previously characterized
as resistant to herbicides spanning six sites of action and
containing a combination of TS and NTS mechanisms (Evans
et al. 2019; Strom et al. 2020). Based on the dicamba RNA-seq
results, we hypothesize the main mechanism of dicamba resistance
is an enhanced ability to deal with oxidative stress, with potentially
additional contribution by conjugation and glycosylation of
dicamba molecules (Figure 8). Multiple DE genes potentially
involved in reducing the effect of ROS in the plant were identified,
including peroxidases and GSTs. ROS overproduction was
previously characterized as one of the main venues whereby
synthetic auxins cause damage and plant death (Christoffoleti et al.
2015; Gaines 2020).

GSTs and peroxidases are known to be agents for dealing with
ROS and reducing the effect of oxidative stress (Cummins et al.

1999; Edwards et al. 2000; Kawano 2003). Peroxidases play an
important role in the plant’s defense against stress, including
herbicide exposure. These enzymes are involved in the detoxifi-
cation of ROS, which can damage cellular components and act as
signalingmolecules in response to stress (Murgia et al. 2004). GSTs
catalyze the conjugation of the tripeptide glutathione (GSH) to
various hydrophobic, electrophilic, and often cytotoxic substrates.
Plant and animal GSTs conjugate GSH with such endogenously
produced electrophiles, which results in their detoxification. Some
GSTs also function as glutathione peroxidases to detoxify such
products directly (Edwards et al. 2000; Hatton et al. 1998; Reade
et al. 2004)

Peroxisome-related genes were also identified (Supplementary
Tables 2 and 3). In plant cells, peroxisomes are highly dynamic
compartments with subcellular movement and distribution that
generally depend upon the actin cytoskeleton rather than the
microtubules. Peroxisomes are also involved in hormone

Figure 6. Differentially expressed (DE) genes’ regulatory prediction analysis results: (A) total number of transcription factors (TFs) enriched per family; (B) number of DE genes
with motifs specific for each enriched TF family. TF family names in the x axis are according to the nomenclature in the Plant Transcription Factor Database (PlantTFDB).
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(A) (B)

(C) (D)

Figure 7. Temporal quantitative PCR results for (A) GST-nt, (B) ABC10, (C) PEROX12, and (D) GST-ct before and at multiple time points after dicamba treatment. Asterisks (*)
indicate comparisons that were significant (t-test P-value < 0.05), with error bars indicating variability across replicates.

Figure 8. Proposed dicamba resistance mechanisms in the CHR population. Currently, knowledge about the synthetic auxin effect on plants indicates an overproduction of
abscisic acid (ABA), leading to a large production of reactive oxygen species (ROS) and plant death (Christoffoleti et al. 2015; Gaines 2020). The proposed resistance mechanism is
that enhanced response to oxidative stress via peroxidases and glutathione S-transferases alleviates dicamba toxicity. Other putative resistance mechanisms, such as
glycosylation of dicamba and ABA, are also proposed with transport via ATP-binding cassette (ABC) transporters for further degradation. Overproduction of salicylic acid is also
proposed as a potential tool for alleviating oxidative stress. Created with BioRender.com.
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production, including auxin. These subcellular organelles have an
oxidative type of metabolism and are considered one of the major
ROS formation sites in plant cells (Pan et al. 2020). Peroxisome-
generated ROS are involved in diverse cellular and physiological
functions (Sandalio and Romero-Puertas 2015). For instance, the
overproduction of ROS in the peroxisomes in response to
metabolic or environmental changes was reportedly involved in
stress-induced oxidative damage in the plant (Pan et al. 2020).
Other studies have shown that peroxisomes’ ROS metabolism acts
as an oxidant signaling source that can participate in plant cell
metabolism under both physiological and stress conditions
(Reumann et al. 2009). Another association with oxidative
stress–enhanced response is based on DE genes related to salicylic
acid production. Previous studies showed that salicylic acid could
alleviate herbicide-induced oxidative stress (Ghahremani et al.
2022; Radwan et al. 2019).

A DE gene encoding an aminocyclopropane-1-carboxylic acid
synthase (ACS) also could be related to dicamba resistance.
Auxinic herbicides mimic endogenous auxins in plants and are
known to upregulate the synthesis of ACS, which carries out the
rate-limiting step in the biosynthesis of ethylene via the production
of the intermediate 1-aminocyclopropane-1-carboxylic acid.
Previous studies in Palmer amaranth (Amaranthus palmeri S.
Watson) indicated that dicamba increased ACS expression, leading
to ethylene biosynthesis (Johnston et al. 2019, 2020). The
constitutive upregulation of this gene in resistant plants may
indicate that such plants are predisposed to deal with upregulation
of the ethylene biosynthesis pathway.

The potential for detoxification of ROS and oxidative stress
alleviation is a clear pattern observed; however, detoxification via
the metabolism of dicamba molecules could also be possible. The
metabolism of different herbicides, including synthetic auxins, can
be specific, as different molecules may require specific enzymes for
detoxification or modification (Gaines et al. 2020). In addition,
some enzymes may show broad substrate specificity and can
metabolize multiple types of molecules (Han et al. 2021; Huang
et al. 2021; Mateo-Bonmatí et al. 2021). Direct conjugation of
dicamba by GST was not tested. However, studies previously
showed that some GSTs in Arabidopsis thaliana show interaction
with natural IAA and some synthetic auxins (Smith et al. 2003).

Many DE UGTs, which are known to play a role in the
metabolism of both endogenous and synthetic auxins in plants,
were also identified (Jin et al. 2013; Mateo-Bonmatí et al. 2021).
Even though UDP85A qPCR validation did not corroborate RNA-
seq results (Table 2), other UGTs were also identified, indicating
that glycosylation of dicamba molecules could be happening.
UGTs are a large and diverse family of enzymes that catalyze the
transfer of a glycosyl group from a nucleotide diphosphate sugar
donor to an acceptor molecule, such as a plant hormone or
xenobiotic compound. UGTs are involved in the biosynthesis,
storage, and detoxification of various plant metabolites, including
flavonoids, alkaloids, and phytohormones (Huang et al. 2018; Jin
et al. 2013; Mateo-Bonmatí et al. 2021; Meech et al. 2012; Priest
et al. 2006; Šmehilová et al. 2016). Glycosylation plays an
important role in the changes in solubility and activity of acceptor
molecules, regulation of metabolic homeostasis, and detoxification
of xenobiotics. Several UGTs associated with metabolites of
herbicides/pesticides have been isolated and characterized for their
enzyme activity (Meech et al. 2012).

ABC10 was identified as a potentially key gene both from
differential expression and co-expression analyses. This gene could
play a role in the compartmentalization of dicamba or its

metabolites into vacuoles or the apoplast. ABC transporters are
also known to have a function in ABA transport (Do et al. 2018).
Synthetic auxins are known to lead to an increase in ABA
production, and through this, ROS production leading to plant
death (Gaines 2020). ABC transporters also play a role in transport
of auxin and other phytohormones, indicating a potential direct
effect on the transport of synthetic auxin molecules in the plant
(Do et al. 2018). It is important to mention that the same ABC
transporter from Family 10 (ABC10) was identified as DE in a
subpopulation derived from CHR when conducting a differential
expression analysis for 2,4-D and HPPD-inhibitor resistance
(Giacomini et al. 2020). Interestingly, some genomic regions where
DE genes were identified overlap with some previously identified
genomics hot spots in the CHR population. This scenario supports
the previously proposed hypothesis by Giacomini et al. (2020) that
selection pressure over genomic regions can lead to the selection of
cross-resistance. There is still a need to better understand this
phenomenon whereby a large region can have multiple genes with
altered expression. However, the presence of cis-regulatory
elements can play an important role in altering the expression
of multiple, proximal genes (Bobadilla and Tranel 2023).

NTS resistance is known to often affect multiple herbicides
(Rigon et al. 2020). A commonly shared effect of herbicides is
oxidative stress, which will eventually lead to plant death. Evolving
a system to deal with ROS overproduction quickly is fundamental
for dealing with herbicide stress. Because there was no history of
dicamba application on the CHR field population, this scenario
indicates a case of cross-resistance wherein the selection pressure
of one herbicide led to dicamba resistance. Results suggest that
oxidative stress regulation is a primary dicamba resistance
mechanism in the CHR population. The observed phenotype
correlates well with this hypothesis. Classic synthetic auxin
symptoms (e.g., epinasty, leaf curling) are still noticeable after
dicamba application, indicating that dicamba molecules can still
bind with their respective receptors. However, even with dicamba
binding, the further oxidative stress effect that would lead to plant
death is not going forward. Many herbicides induce oxidative
stress; the hypothesized cross-resistance mechanism selected in
CHR could result in reduced sensitivity across all of them.

The putative multiple fronts to reduce dicamba toxicity
illustrate the complexity of NTS resistance and its multi-genetic
nature, as previously predicted (Bobadilla et al. 2022). Dose–
response data from previous work showed a 5-fold dicamba
resistance level and a 9-fold 2,4-D resistance in CHR, indicating
higher resistance to 2,4-D (Bobadilla et al. 2022; Evans et al. 2019).
These previous results, in conjunction with RNA-seq results, are
consistent with dicamba resistance in the CHR population
resulting from cross-resistance rather than direct selection.

In summary, our results provide the first glimpse into
transcriptomics changes on the first reported case of dicamba
resistance in A. tuberculatus. Although further validation is
needed, our results suggest that an enhanced response to oxidative
stress caused by dicamba is reducing dicamba toxicity. Two GST-
encoding genes and one peroxidase-encoding gene were identified
as the putative major contributors to reducing herbicide oxidative
stress. Dicamba metabolism could also happen, as genes such as
UGTs were also identified as DE, indicating putative glycosylation
of herbicide molecules or their by-products. Genes encoding ABC
transporters were also implicated as potential players in trans-
porting metabolites and other molecules to vacuoles for further
degradation. Future studies should focus on functional validation
of the putative resistance genes, as well as understanding their
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regulatory nature, and on the contribution of major QTLs to
multiple herbicide resistance in the CHR population.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/wsc.2023.73
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