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THE DEAD LEAVES MODEL: A GENERAL
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Abstract

In this article, we study a particular example of general random tessellation, the dead
leaves model. This model, first studied by the mathematical morphology school, is
defined as a sequential superimposition of random closed sets, and provides the natural
tool to study the occlusion phenomenon, an essential ingredient in the formation of
visual images. We generalize certain results of G. Matheron and, in particular, compute
the probability of n compact sets being included in visible parts. This result characterizes
the distribution of the boundary of the dead leaves tessellation.
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1. Introduction

The dead leaves model was introduced by Matheron in [18], and results from the sequential
superimposition of random sets. As such, it provides the natural tool for studying nonlinear
occlusion phenomena, which are of great importance in image modeling and processing. How-
ever, to the best of the authors’ knowledge, this model has not been systematically investigated,
and even its definition lacks some precision. Our purpose in this paper is twofold: first, to
provide a rigorous definition of the model as a random tessellation; second, to give new proofs
or extensions of Matheron’s results in the framework of Palm calculus.

A first motivation to study this model comes from applications. Among existing stochastic
models for natural images, the dead leaves model is the only one whose definition agrees with
their physical formation. Several recent studies have demonstrated the ability of specific dead
leaves models to reproduce most known statistics of natural images; see [23], [1], and [16].
The model has also been proposed as a tool to resample random fields for texture synthesis;
see [10]. Other examples of applications come from materials sciences; see [14] and [8].

As a second motivation, let us stress that the dead leaves model provides nontrivial examples
of general random tessellations, in the sense that their cells are general closed sets. In particular,
they are not necessarily polygonal, connected, or convex, as is the case for the most popular
tessellation models, such as Poisson flats or Voronoi or Delaunay tessellations. Note that
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nonconvex and nonpolygonal cells are encountered in the case of Johnson–Mehl tessellation
(see, e.g. [26, pp. 313, 333]), but that there are relatively few such examples. Therefore, there
are few studies of ‘general’ tessellations, even though classical formulae originally proved in
the convex and polygonal case have been shown to hold in more general contexts; see [25],
[27], and [6].

In Section 2 we first recall some facts on random closed sets and slightly reformulate notions
from [21] and [25] to define random tessellations and typical cell distributions. In Section 3 we
define the dead leaves model as a random tessellation obtained from an initial Poisson process,
and give some of its elementary properties. Then, in Section 4, we generalize the results of
Matheron. In order to do so in a rigorous way, we make use of point process theory through
the systematic use of Palm calculus. We first give the probability of n compact sets being
included in n different visible parts, a result that completely characterizes the distribution of the
boundary of our model as a random closed set. Then we compute the distribution of ‘objects’
that remain completely visible. Eventually, we recover, in the Palm calculus framework, a nice
result of Matheron giving the length distribution of the intersection of objects with a line of
fixed direction, stating in particular that its expectation is divided by two as a result of occlusion.

1.1. Previous work

The dead leaves model was introduced in [18], a technical report written in an informal style,
yet which contained all the relevant basic ideas. The model was defined as the superimposition
of infinitesimal Boolean models, and formulae for the probability of a compact set to be included
in a visible part and for the distribution of completely visible parts, among other things, were
derived. Most of these definitions and results are stated in the book by Serra [24]. Jeulin further
studied this model in [13], still using the same infinitesimal formalism, and gave an explicit
formula for the joint probability of two compact sets to be included in visible parts. In [12] he
generalized the model to the case of random functions and extended to this setting formulae
both for the distribution of visible parts and for inclusion probabilities. Cowan and Tsang, in
a very interesting paper [5], made use of mean value formulae for tessellations to derive the
expectations of quantities such as the number of connected components of visible parts and the
length of their boundaries per surface unit.

2. Basic definitions

2.1. Closed sets and tessellations

Let F , G, and K respectively be the sets of all closed, open, and compact sets of R
d , d ≥ 1.

For any A ⊂ R
d , we write

F A = {F ∈ F : F ∩ A = ∅} and FA = {F ∈ F : F ∩ A �= ∅}.
The Borel σ -field, BF , on F is generated by the basis of open sets {F K, K ∈ K; FG, G ∈ G}.
Borel sets are defined on G and K in a way similar to those of F ; see [19, p. 11]. A random
closed set of R

d is a measurable function from a probability space (�, S, P) into (F , BF ).
For any sets A and B, we write

A � B = {x ∈ R
d : x + B̌ ⊂ A} and A ⊕ B = {x + y : x ∈ A, y ∈ B},

where B̌ = {−x, x ∈ B}. The set A � B̌ is called the erosion of A by B, and A ⊕ B̌ the
dilation of A by B. Measurability properties of the operators ‘�’ and ‘⊕’ were established
in [19, pp. 19–20].
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A σ -finite measure on F ′ := F \{∅} (endowed with its Borel σ -algebra, BF ′ ) is a measure
taking finite values on FK for all K ∈ K; see [19, p. 57]. We denote by NF ′ the set of σ -finite
counting measures on (F ′, BF ′). For all M ∈ NF ′ , we write M = ∑

i δFi
, where δFi

is
the unit-mass measure at point Fi . The boundary of M is defined as ∂M = ⋃

i ∂Fi , where
∂Fi denotes the topological boundary of Fi . A point process on F ′ is a measurable function
from a probabilistic space to (NF ′ , BNF ′ ), where BNF ′ is the usual σ -field on NF ′ ; see,
e.g. [7, Chapter 6].

Following Stoyan [25], a tessellation of R
d is defined as follows.

Definition 1. Let T = ∑
i δFi

∈ NF ′ . We say that T is a tessellation of R
d if

(i)
⋃

i Fi = R
d and,

(ii) for all i �= j , Int Fi ∩ Fj = ∅, where Int F denotes the interior of F ,

or, equivalently, if {(Int Fi)i, ∂T } is a partition of R
d .

Note that T ∈ NF ′ implies that the number of cells Fi hitting a compact set is finite. This
condition was added in the original definition in [25], where the Fi are marks of a point process,
N = ∑

i δxi
, on R

d (where xi is called the centroid of Fi). The centroids are unimportant in
the definition of a tessellation, but they are quite useful in defining the typical cell distribution,
as we will recall below.

Let T be the set of all tessellations in NF ′ . By expressing assertions (i) and (ii) of Definition 1
as limits of the elementary set operations (F, F ′) 
→ F ∪ F ′, (F, F ′) → F ∩ F ′, and
F 
→ ∂F , which are measurable as a consequence of [19, Sections 1–2], we easily find
that T ∈ BNF ′ . A random tessellation of R

d is then defined as a point process, T , on F ′,
such that T ∈ T almost surely (a.s.). Classical examples of random tessellations (see the
references in [26, Chapter 10] and [22]) include Poisson hyperplane processes and Delaunay,
Voronoi, and Johnson–Mehl tessellations. A standard approach (see, e.g. [2], [4], [20], [21],
or [26, Chapter 10]), which applies in these examples, is to define ∂T directly as a random
closed set without considering the underlying random tessellation. However, it is not always
possible to recover the Fi from ∂T (as they may not be connected; see [6] and Remark 2, below,
for a precise example).

2.2. Typical cell distribution

In [21] a typical cell was defined using the Palm distribution of a simple marked point
process, N = ∑

i δxi ,Fi
, of points in R

n with marks in F ′ that is stationary with respect to
shifts N 
→ ∑

δxi−x,Fi−x , x ∈ R
d . More precisely, let us denote by µ the intensity of N ,

which we assume to be finite, and by P
0
N its Palm distribution. Let x0 be the point nearest to the

origin and F0 its corresponding cell. Then the typical cell distribution is defined on the σ -field,
� , of all translation-invariant events in BF ′ by χ 
→ P

0
N(F0 ∈ χ), χ ∈ � . A result of [21],

proved for tessellations whose cells are bounded polytopes, can easily be extended as follows.

Proposition 1. Let B be a Borel set in R
d such that

0 < ν(Fi ⊕ B) < ∞ for all i, a.s., (1)

where ν is the Lebesgue measure on R
n. Then µ = E[∑i 1(0 ∈ Fi ⊕ B)/ν(Fi ⊕ B)] and

P
0
N(F0 ∈ χ) = 1

µ
E

[∑
i

1(0 ∈ Fi ⊕ B) 1(Fi ∈ χ)

ν(Fi ⊕ B)

]
, χ ∈ � .
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When starting from a stationary point process, M = ∑
i δFi

, on F ′, a marked point process,
N , can be obtained by constructing points xi = �(Fi), where � is such that �(Fi − x) =
�(Fi) − x. Classical examples for � include the set-centroid, the median point, and the
extremal point in a given direction. Observe that, under condition (1), it is always possible to
define such a set-centroid by taking for each coordinate the median of the marginal measure of
ν restricted to Fi ⊕ B; for instance, the first coordinate is then defined as the smallest x such
that ν((Fi ⊕ B) ∩ (−∞, x] × R

d−1) ≥ ν(Fi ⊕ B)/2. As was noticed in [21], the typical cell
distribution should not depend on the choice of xi , which is ensured by Proposition 1, provided
that a Borel set B can be found for which (1) is fulfilled. This will be the case for the dead
leaves model considered below.

In order to define the typical cell of a tessellation, assume that

0 < ν(Fi) < ∞ and ν(∂Fi) = 0, for all i, a.s. (2)

Note that the first of these conditions is (1) with B = {0}. The second condition enables us to
define F{x} almost everywhere as the cell to which the point x belongs. By the stationarity of
N , F{0} is a.s. defined. Applying Proposition 1 then yields

µ = E

[
1

ν(F{0})

]
and P

0
N(F0 ∈ χ) := 1

µ
E

[
1(F{0} ∈ χ)

ν(F{0})

]
, χ ∈ � .

We thus obtain the formula of the typical cell distribution derived in [20], [21] (when the Fi

are bounded polytopes), and [4] (when the Fi are uniformly bounded polytopes).
We end this section with a limit theorem. Let Bn = B(0, rn) be the ball of radius rn,

rn → ∞, centered at 0. Let (An)n∈N be any increasing sequence of compact convex sets such
that, for all n, Bn ⊂ An. The individual ergodic theorem (Proposition 10.2.II of [7]) easily
yields the following result.

Proposition 2. If N is ergodic and satisfies (2), then, for all χ ∈ � ,

lim
n

∑
i 1(Fi ∈ χ)ν(Fi ∩ An)/ν(Fi)∑

i ν(Fi ∩ An)/ν(Fi)
= P

0
N(F0 ∈ χ) a.s. (3)

Equation (3) is a weighted average in which each Fi has a weight equal to its proportion
included in An. From a statistical point of view, (3) can be used in deriving a strongly consistent
estimator of P

0
N(F0 ∈ χ), for a given χ ∈ � . Under a stronger hypothesis on the cells, there may

be different sequences having the same limit as in (3). For example, if the cells are uniformly
bounded (as in [4]), (3) implies that

P
0
N(F0 ∈ χ) = lim

n

∑
i 1(Fi ∈ χ) 1(Fi ⊂ An)∑

i 1(Fi ⊂ An)
= lim

n

∑
i 1(Fi ∈ χ) 1(Fi ∩ An �= ∅)∑

i 1(Fi ∩ An �= ∅)
a.s.

Sufficient conditions under which these equalities hold were studied in [6].

3. The dead leaves model

3.1. Definition

The dead leaves model is obtained through sequential superimposition of random objects
‘falling’ on R

d . Let
∑

i∈N
δxi ,ti be a homogeneous Poisson point process on the half-space

R
d × (−∞, 0], with intensity 1. Let P be a probability measure on (F , BF ), and let (Xi)i∈N
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be independent, identically distributed random variables on F that have distribution P and are
independent of the Poisson point process above. Equivalently, � = ∑

i δxi ,ti ,Xi
is a Poisson

point process on R
d × (−∞, 0] × F with intensity measure ν(dx) dt P(dX).

We write (�, S, P) for the probabilistic space on which � is defined and E for the expectation
with respect to P. From now on, X will always denote a random variable on F that has
distribution P and is independent of all other variables, and E will denote the expectation with
respect to P.

Definition 2. For all i ∈ N, the random closed set xi + Xi is called a leaf and

Vi = (xi + Xi) \
⋃

tj ∈(ti ,0)

(xj + Int Xj) (4)

is called a visible part.

From now on we assume that X satisfies the following three conditions.

(C1) For all K ∈ K , E[ν(X ⊕ K)] < ∞.

(C2) There exists a ball, B, with strictly positive radius, such that E[ν(X � B)] > 0.

(C3) X is a regular closed set, i.e. X is the closure of its interior, P-a.s.

Proposition 3. We denote by M the point process on F ′ obtained by removing from the
collection {Vi} all sets with empty interiors, that is,

M =
∑

i

1{Int Vi �= ∅} δVi
.

Then M is a random tessellation of R
d . Moreover, N = ∑

i 1(Int Vi �= ∅)δxi ,Vi
is stationary,

mixing, and has finite intensity.

Remark 1. The condition Int Vi �= ∅ in the definitions of M and N is adopted for convenience
as it eliminates visible parts with zero d-dimensional Lebesgue measures. The question arises
as to whether M ′ := ∑

i 1(Vi �= ∅)δVi
also has such a property. For simple examples of X, it

is easily shown that M = M ′ a.s. but we do not know whether this equality is true under the
general assumptions (C1)–(C3). In any case, because (4) implies that ∂Vi ⊂ ⋃

tj >ti
∂{Int Vj },

we always have ∂M = ∂M ′.

In order to prove Proposition 3 we will make use of the following two lemmas. The first
one, which is easy to prove by referring to the definition of the intensity of the Poisson point
process �, will be needed repeatedly in the sequel.

Lemma 1. Let K be a bounded Borel set, let s1 and s2 satisfy −∞ < s1 < s2 < 0, and define

�K(s1, s2) :=
∑

i

1(ti ⊂ (s1, s2] and K ⊂ xi + Xi),

�K(s1, s2) :=
∑

i

1(ti ⊂ (s1, s2] and K ∩ xi + Xi �= ∅).

These functions are Poisson random variables with respective means (t2 − t1) E[ν(X�Ǩ)] and
(t2 − t1) E[ν(X⊕Ǩ)].
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Lemma 2. If K is a Borel set of R
d such that E[ν(X � Ǩ)] > 0, then K is almost surely

covered by some leaf xi + Xi . As a consequence, any bounded set is a.s. covered by a finite
number of leaves.

Proof. Let us fix t < 0. By Lemma 1, the probability, P(�K(t, 0) = 0), that none of the
leaves xi +Xi , with t < ti < 0, satisfies K ⊂ xi +Xi is exp(t E[ν(X � Ǩ)]), which yields the
first assertion. Now let B be a ball such that (C2) is satisfied, that is, E[ν(X � B)] > 0. Since
any bounded set K is covered by a finite number of balls with the same radius as B, it follows
that K is also covered by

⋃
ti>T (xi + Xi) for some T < 0.

Proof of Proposition 3. Let us now show that M ∈ NF ′ P-a.s. In fact, we will show that

M ′ :=
∑

i

1(Vi �= ∅)δVi
∈ NF ′ P-a.s.

(which implies that M ∈ NF ′ ), that is, that only a finite number of visible parts Vi may intersect
a given compact set K . By Lemma 2, there P-a.s. exists a negative T such that K is covered by
leaves, xi +Xi , satisfying ti > T . It follows that the visible parts intersecting K correspond to
leaves falling after time T . The number of such leaves is thus �K(T , 0), which is P-a.s. finite,
by Lemma 1 under condition (C2). To show that M is a random tessellation, we now verify that
it satisfies conditions (i) and (ii) of Definition 1. Let T < 0. Since

⋃
ti>T Vi ⊆ ⋃

ti>T (xi +Xi)

and since a point in xi + Xi either belongs to Vi or to xj + Int Xj for some tj > ti , we have⋃
ti>T (xi + Xi) = ⋃

ti>T Vi . Therefore by Lemma 2 we have
⋃

i Vi = R
d

P-a.s. We observe
from (C3) that Int Vi = (xi + Int Xi) ∩ ⋂

tj >ti
(xj + Xj)

c. It follows that Int Vi = ∅ if and
only if Vi ⊂ ⋃

tj >ti
(xj + Xj) = ⋃

tj >ti
Vj . Indeed, the ‘if’ part is obvious, while the ‘only if’

part is obtained by observing that (xi + Int Xi) ⊆ ⋂
tj >ti

(xj + Xj) implies the same inclusion
for xi + Int Xi = xi + Xi ⊇ Vi .

Finally, consider a realization of � such that M ′ ∈ NF ′ and
⋃

i Vi = R
d , which is P-

a.s. true, as we have shown above. Pick any point x ∈ R
d . Since M ′ ∈ NF ′ , there exists a

positive, finite number of indices i such that x ∈ Vi , and hence one i such that x ∈ Vi and
x /∈ Vj for all tj > ti . By the above characterization, this implies that Int Vi �= ∅. Hence,⋃

i

{Vi : Int Vi �= ∅} = R
d;

that is, M satisfies condition (i) of Definition 1. Condition (ii) of Definition 1 is easily obtained
from (4) and (C3) by considering the cases tj > ti and ti > tj successively.

Next we demonstrate stationarity and the mixing property. Define

	 :
∑

i

δxi ,ti ,Xi

→

∑
i

1(Int Vi �= ∅)δxi ,Vi
.

Recall that P denotes the distribution of the initial (homogeneous) Poisson point process �,
meaning that P	 := P ◦	−1 is the distribution of N . Furthermore, observe that translations
of the xi correspond to translations of the Vi through 	. It follows that the stationarity and
the mixing property of N (with respect to shifts N 
→ ∑

i δxi−x,Vi−x , x ∈ R
d ) are inherited

from �.
It remains to prove that the intensity, µ, of N is finite. For all T < 0, let NT :=∑
δxi ,Vi

1(ti > T , Int Vi �= ∅). Let µT denote the intensity of NT ; since

µT ≤ E

[∑
i

1(xi ∈ [0, 1]n, ti > T )

]
≤ −T ,
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µT is finite. By monotone convergence, since µT is nondecreasing as T decreases to −∞, we
have µ = limT →−∞ µT . Below we provide a uniform upper bound for µT , which will thus
apply to µ and conclude the proof. Using Proposition 1 with B given by (C2), we obtain

µT = E

[∑
i

1(0 ∈ Vi ⊕ B)

ν(Vi ⊕ B)
1(ti > T , Int Vi �= ∅)

]

≤ ν(B)−1
E

[∑
i

1
(

0 ∈ xi + Xi ⊕ B, 0 /∈
⋃
ti>t

(xi + Int Xi � B)

)]
,

where the inequality follows from both ν(Vi ⊕ B) ≥ ν(B) and

Vi ⊕ B ⊂ (xi + Xi ⊕ B) \
⋃
ti>t

(xi + Int Xi � B),

the latter of which in turn follows from (4) and standard properties of morphological operations.
Now, Campbell’s formula and Slivnyak’s theorem (see, e.g. [26, pp. 124, 125]) yield

µT ≤ 1

ν(B)

∫
[T ,0]×Rd×F

1(0 ∈ x + X ⊕ B) P

(
0 /∈

⋃
ti>t

(xi + Int Xi � B)

)
dtν(dx) P(dX).

Noticing that
⋃

ti>t (xi + Int Xi � B) is a Boolean model with intensity t , we thus obtain

µT ≤ 1

ν(B)
E[ν(X ⊕ B)]

∫ 0

T

exp(t E[ν(X � B)]) dt ≤ 1

ν(B)

E[ν(X ⊕ B)]
E[ν(X � B)] ,

which is finite under (C1) and (C2).

In the definition of M , we assume that
∑

i δxi ,ti has intensity 1. However, rescaling the xi is
equivalent, up to a global rescaling of the model, to a rescaling of X, and any order-preserving
modification of the ti is unimportant, as seen from the definition.

Definition 3. The point process M , defined in Proposition 3, is called the dead leaves tessella-
tion associated with the random closed set X.

Remark 2. The dead leaves model clearly shows the necessity of defining a tessellation through
its cells, and not only its boundary. Indeed, visible parts, as defined by (4), are not necessarily
connected; see Figure 1.

3.2. Perfect simulation

The term ‘dead leaves model’ originates from a more natural definition that consists in
putting each new leaf above the previous ones and then considering the stationary distribution
of this Markov process. Let K be a compact set of R

2. A classical ‘coupling from the past’
argument enables perfect simulation of the stationary distribution restricted to K , by putting
each new leaf below those already fallen, until K is completely covered (see the illustrative
web applet by W. S. Kendall at http://www.warwick.ac.uk/statsdpt/staff/WSK/dead.html). This
elegant argument was first introduced for the dead leaves model in [15]. In Figures 1 and 2
we show simulations of the model computed this way. To visualize the model, each grain is
allocated a random gray level.
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Figure 1: Simulations of dead leaves models. Left: the grain X is a rectangle with a direction uniformly
distributed in [0, π ]. Right: the grain is a more complicated shape, and its size distribution is uniform.

Figure 2: Left: simulation of a dead leaves model in which the grain X is a disk with constant radius.
Right: simulation of a dead leaves model in which the grain X is a disk with a uniformly distributed

radius.

3.3. Regularity properties of visible parts

Some almost-sure regularity results about visible parts are a consequence of the following
remark. From Lemma 1, a visible part Vi is P-a.s. equal to a leaf xi + Xi from which a finite
number of other leaves have been removed. Now note that if A is a closed set and B is an open
set, then ∂(A \ B) = (∂A \ B) ∪ (∂B ∩ A). It follows that ∂Vi is a finite union of sets, each
of which is included in xj + ∂Xj for some tj ≥ ti ; thus, some regularity properties of ∂X are
inherited by the ∂Vi . Note, however, that the possible convexity of the grain X is not inherited
by the Vi ; see Figure 2.

Proposition 4. We have ν(∂M) = 0 P-a.s. if and only if ν(∂X) = 0 P-a.s.

Proof. The discussion above implies that ν(∂Vi) ≤ ∑
tj ≥ti

ν(∂Xi) P-a.s. Since ∂M =⋃
i ∂Vi , if ν(∂X) = 0 P-a.s. then ν(∂M) = 0 P-a.s. Now, if ν(∂M) = 0 P-a.s. then ν(∂Vi) = 0

for all i; in particular for all cells such that Vi = xi +Xi (the so-called relief cells, to be studied
in Section 4.2). We will see in Remark 4 that this in turn implies that ν(∂X) = 0 P-a.s.

If Int Vi �= ∅ then ν(Vi) > 0. Besides, Vi ⊂ xi + Xi is P-a.s. bounded, by (C1). If, in
addition, ν(∂X) = 0 P-a.s., then we are in the tessellations framework of Section 2.2. When
ν(∂X) = 0, we say that X is ν-regular, a property that neither implies nor is implied by (C3).
It is easy to find a set X that is ν-regular but not closed regular, for instance a set containing
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isolated points. To construct a closed regular set that is not ν-regular, we can proceed as
follows (for d ≥ 2). Let ν̃ be the (d − 1)-dimensional Lebesgue measure on the hyperplane
{x = (x1, . . . , xd), x1 = 1

2 }. Then there exists a homeomorphism, h : [0, 1]d → [0, 1]d , such
that ν + ν̃ = ν ◦h; see [9]. It follows that X := h([0, 1

2 ]d) is not ν-regular, although it is closed
regular.

4. Some characteristics of the dead leaves tessellation

4.1. Inclusion probabilities and boundary distribution

The main practical result from the original paper [18] introducing the dead leaves model
is concerned with a functional that is defined on compact sets of the plane and equals the
probability that a given compact set is included in a visible part of the model. It was shown
that, for a non-empty set K ∈ K ,

P(K ⊂ Int Vi for some i ∈ N) = E[ν(Int X�Ǩ)]
E[ν(X⊕Ǩ)] . (5)

The consideration of simple examples for K , such as bipoints or segments, leads to valuable
geometric information on the model.

In what follows, we generalize this result by studying the probability that n compact sets are
included in n distinct visible parts. We define

Q(n)(K1, . . . , Kn) = P(K1 ⊂ Int Vi1 , . . . , Kn ⊂ Int Vin for some ti1 < · · · < tin < 0).

Proposition 5. Let

F (n)(K1, . . . , Kn) = E[ν(Int X � Ǩ1)]
n∏

j=2

E[ν((Int X � Ǩj ) ∩ (X ⊕ Ǩj−1)
c)], (6)

and

G(n)(K1, . . . , Kn) =
n∏

j=1

E[ν(X ⊕ Ǩj )],

where, for all j = 1, . . . , n,

Kj =
j⋃

k=1

Kk. (7)

Then

Q(n)(K1, . . . , Kn) = F (n)(K1, . . . , Kn)

G(n)(K1, . . . , Kn)
. (8)

Remark 3. Note that (C2) implies E[ν(X)] > 0 and, thus, that G(n)(K1, . . . , Kn) does not
vanish for non-empty compact sets.

Proof of Proposition 5. Here we choose n fixed, non-empty compact sets, K1, . . . , Kn, and
write Q(n) for Q(n)(K1, . . . , Kn). Summing over disjoint events yields

Q(n) = E

[∑
1(ti1 < · · · < tin < 0)

n∏
j=1

1(Kj ⊂ Int Vij )

]
, (9)
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where the sum is taken over all n-tuples of points in �. First note that only n-tuples of distinct
points may be considered in this sum and that, from the definition of visible parts in (4) and
(C3), the summand in this equation may be written as

1(ti1 < · · · < tin < 0)

n∏
j=1

1(Kj ⊂ (xij + Int Xij ))
∏

{i : ti>tij }
1(Kj ∩ (xi + Xi) = ∅). (10)

In the simplest case, n = 1, this amounts to saying that Q(1) is the probability that there exists
a leaf, Xi , such that K1 is included in Int Xi and is not hit by subsequent leaves. We will
now apply the Campbell formula to compute this expectation, and therefore need the following
notation. Let E := R

2 × (−∞, 0] × F . We write N (n) (or N for n = 1) for the space of
σ -finite counting measures on En. For all n ≥ 1, we define the point process

�(n) =
∑

i1,...,in

δzi1 ,...,zin
,

on En, where the sum is taken over all indices (i1, . . . , in) such that zi1 , . . . , zin are distinct
points of �. We define a function f from En×N (n) to R such that (10) reads f ({zij }nj=1, �

(n)).
By applying the refined Campbell theorem (see [7]) to compute the expectation in (9), we obtain

Q(n) =
∫

Z∈En

∫
φ∈N (n)

f (Z, φ) P
Z(dφ)

n∏
j=1

µ�(dz̃j ),

where Z = {z̃j }nj=1, µ� is the intensity measure of �, and P
Z is the Palm distribution of the

process �(n) at Z. Applying the generalized Slivnyak theorem (see [26, p. 124]) gives

Q(n) =
∫

Z∈En

E[f (Z, (� + δz̃1 + · · · + δz̃n
)(n))]

n∏
j=1

µ�(dz̃j ), (11)

where, as usual, E is the expectation associated to �. With z̃j = (x̃j , t̃j , X̃j ), j = 1, . . . , n,
and t̃1 < · · · < t̃n < 0, by definition of f we have

f (Z, (� + δz̃1 + · · · + δz̃n
)(n))

= f (Z, �(n))

=
( n∏

j=1

1(Kj ⊂ (x̃j + Int X̃j ))

)( n∏
j=2

1(Kj−1 ∩ (x̃j + X̃j ) = ∅)

)

×
n−1∏
j=1

∏
{i : ti∈(t̃j ,t̃j+1]}

1(Kj ∩ (xi + Xi) = ∅)
∏

{k : tk∈(t̃n,0]}
1(Kn ∩ (xk + Xk) = ∅),

(12)

with Kj as defined in (7). The expectation in (11) is computed as follows. Since � is a Poisson
process, the last line of (12) can be written as a product of independent terms whose expectations
can be computed using the fact that, for fixed s and t , s < t ≤ 0, and for K compact,

P(K ∩ (xi + Xi) = ∅ for all ti ∈ (s, t]) = exp((s − t) E[ν(X ⊕ Ǩ)])
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(see Lemma 1). Next, by integrating with respect to 1(t̃1 < · · · < t̃n < 0) dt̃1 · · · dt̃n and
making a change of variable uj = t̃j − t̃j+1, j = 1, . . . , n − 1, we obtain

Q(n) =
n∏

j=1

E[ν(X ⊕ Ǩj )]−1
∫

(R2×F )n

n∏
j=1

dx̃j P(dX̃j )

( n∏
j=1

1(Kj ⊂ (̃xj + Int X̃j ))

)

×
( n∏

j=2

1(Kj−1 ∩ (x̃j + X̃j ) = ∅)

)
.

The first factor on the right-hand side of this equation is (G(n))−1, and the integral can be written

n∏
j=1

(∫
R2×F

1(Kj ⊂ (x̃ + Int X̃)) 1(Kj−1 ∩ (x̃ + X̃) = ∅) dx̃ P(dX̃)

)
,

with the convention K0 = ∅. Now, for two compact sets, A and B, we have

∫
R2×F

1(A ⊂ (x + Int X)) 1(B ∩ (x +X) = ∅)ν(dx) P(dX) = E[ν((Int X � Ǎ)∩ (X ⊕ B̌)c)],

which, together with the last equation, yields F (n) (by 6) and, thus, (8).

For n = 1 we recover (5), the original result of Matheron. The case n = 2 was treated
in [13]. Note that, from the Q(n), we can compute the probability

P(K1 ⊂ Int Vi1 , . . . , Kn ⊂ Int Vin for some i1, . . . , in ∈ N)

and, thus, the probability of n connected compact sets, K1, . . . , Kn, avoiding the boundary of
the dead leaves tessellation. For n = 2, for instance, this is

P((K1 ∪ K2) ∩ ∂M = ∅) = Q(2)(K1, K2) + Q(2)(K2, K1) + Q(1)(K1 ∪ K2).

Moreover, it is easily seen that if we consider the random field obtained by independently
coloring each visible part, then Proposition 5 enables us to compute the finite-dimensional
distributions of this field. This is a useful result in the context of image modeling; see [11].
Next, we show that the knowledge of Q(n) for all n characterizes the distribution of ∂M in
(F , BF ).

Proposition 6. The distribution of the boundary ∂M is uniquely determined by the functionals
Q(n), n ∈ N.

Proof. The distribution of ∂M is characterized by its capacity functional, defined, for every
compact set K , by P(F ∩ K = ∅); see [19, p. 30]. Let K ∈ K , let (rn) > 0 be a sequence
converging to 0, and, for each n, let (x

(n)
i )i=1,...,Nn be a finite sequence in K such that K ⊂

Cn = ⋃
i B(xn

i , rn), where B(x, r) is the (closed) ball of radius r centered at x. Note that,
since each Cn is a finite union of connected compact sets, knowledge of the Q(i), i ∈ N,
uniquely determines P(Cn ∩ ∂M = ∅). Now, since Cn ↓ K , we have F Cn ↑ F K and, thus,
P(Cn ∩ ∂M = ∅) ↑ P(K ∩ ∂M = ∅).
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4.2. Typical relief cells

In this section, we consider the distribution of cells that remain completely visible. This
problem was first addressed in [18]; also see [17], [24], and [12].

Definition 4. A cell Vi is a relief cell if (xi + Xi) = Vi . Denote by

Nr =
∑

i

1(Vi = (xi + Xi))δxi ,Vi

the point process of relief cells.

As in the proof of Proposition 3, we can show that Nr is stationary and mixing. From
condition (C3), if Vi = (xi + Xi) then Int Vi �= ∅. It follows that Nr is a thinning of N , and
since N has finite intensity, so has Nr .

Proposition 7. The typical relief cell distribution is absolutely continuous with respect to P,
with Radon–Nikodým derivative F 
→ (µr E[ν(Int X ⊕ F̌ )])−1, where

µr :=
∫

F

P(dF)

E[ν(Int X ⊕ F̌ )]
is the intensity of Nr .

Remark 4. As a consequence of this proposition, the typical relief cell distribution and the leaf
distribution P are equivalent measures on � . This remark completes the proof of the ‘only if’
part of Proposition 4.

Proof of Proposition 7. Nr is a simple point process with finite intensity. We denote by P
0
Nr

the Palm distribution of Nr . With Nr = ∑
δxr

i ,V r
i

, for all χ ∈ � we have

P
0
Nr

(V r
0 ∈ χ) = 1

µr

E

[∑
i

1(V r
i ∈ χ) 1(xr

i ∈ [0, 1]2)

]

= 1

µr

E

[∑
i

1
(

Vi ∈ χ, xi ∈ [0, 1]2, (xi + Xi) ∩
⋃

{j : tj ∈(ti ,0]}
(xj + Int Xj) = ∅

)]
.

From Slivnyak’s theorem and Campbell’s formula, we obtain

P
0
Nr

(V r
0 ∈ χ) = 1

µr

∫
R2×R−×χ

P

(
(x + F) ∩

⋃
{j : tj ∈(t,0]}

(xj + Int Xj) = ∅

)
ν(dx) dt P(dF)

= 1

µr

∫
R−×χ

exp(t E[ν(Int X ⊕ F̌ )]) dt P(dF)

= 1

µr

∫
χ

E[ν(Int X ⊕ F̌ )]−1 P(dF),

where the second equality follows from Lemma 1. Taking χ = F ′, we also find the claimed
formula for the intensity.

As an example, let us compute the area distribution of a typical relief cell: for χs =
{F ∈ F ′ : ν(F ) > s}, we find that

E
0
Nr

[ν(Xr
0)] = 1

µr

∫
F ′

ν(F ) E[ν(Int X ⊕ F̌ )]−1 P(dF).
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Remark 5. For d = 2, if X is convex and isotropic a.s., we obtain the original result of
Matheron by applying the Steiner formula (see [26, p. 13]) to compute µr . Let l(K) denote the
length of ∂K . Then, for K convex we have

µr = E[(ν(X) + (2/π)l(X) E[l(X)] + E[ν(X)])−1].
4.3. Cells intersecting with a line

We now consider the intersection between the dead leaves model and a fixed line D. In this
section we take d ≥ 2 and assume, in addition to (C1)–(C3), that

(C4) ν(∂X) = 0 a.s. and, for any line D′, D′ ∩ ∂X is either empty, finite, or has positive
νD′ -measure a.s.

Here νD′ is the one-dimensional Lebesgue measure on D′. This assumption holds if X is a.s. a
finite union of convex sets, for instance.

We will compute the Palm distribution of the point process ∂M ∩ D and, for X convex,
prove a result of [18] in the Palm calculus framework.

Lemma 3. ∂M ∩ D is a point process on D.

Proof. Since ∂M is a.s. a locally finite union of sets ∂Vi , and since, for all i, ∂Vi is included
in a finite union of sets xj + ∂Xj , it is sufficient to show that, for any j , (xj + ∂Xj ) ∩ D is
a.s. a finite or empty set. Let us suppose that this does not hold. Then, by (C4), with positive
probability there exists a j such that νD(xj + ∂Xj ) > 0. Thus, E[νD(

⋃
j (xj + ∂Xj ))] > 0.

Without loss of generality, we let D be the first coordinate axis. By Fubini’s theorem and
translation invariance, we obtain

E

[
ν

{⋃
j

(xj + ∂Xj )

}]
=

∫
y∈Rd−1

E

[
νDy

{⋃
j

(xj + ∂Xj )

}]
dy > 0,

where, for any y = (y2, . . . , yd), Dy is the line parallel to D passing through the point
(0, y2, . . . , yd). Thus, there a.s. exists a j such that E[ν(∂Xj )] > 0, which contradicts (C4).

We let u be a unit vector collinear to D, denote by [0, xu] the segment {λxu, λ ∈ [0, 1]},
and define, for all x ≥ 0,

L(x) = P([0, xu] ⊂ Int Vi for some i ∈ N) = Q(1)([0, xu]) = E[ν(Int X�[0, −xu])]
E[ν(X ⊕ [0, −xu])] ,

(13)
where Q(1) is as defined above and the last equality follows from (5).

From now on we denote by N
 = ∑
i δyi

the simple point process defined in Lemma 3 with
points in R, and write PN


for its law and P
0
N


for its associated Palm distribution. We index N


such that {yi} is increasing and y0 < 0 < y1. The following lemma links the Palm distribution
of N
 to L.

Lemma 4. Let N
 = ∑
i δyi

be the simple stationary point process defined above. Then L(x)

is absolutely continuous, has a negative right derivative, L′(0), at x = 0, and is such that,
almost everywhere,

P
0
N


(y1 > x) = L′(x)

L′(0)
. (14)
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Proof. Observe that L(x) = PN

(y1 > x) for all nonnegative x. Let λ be the intensity of

N
. For all x ≥ 0, the inversion formula (see, e.g. [3, p. 20]) gives

L(x) = PN

(y1 > x) = λ

∫ ∞

x

P
0
N


(y1 > t) dt.

By differentiating, we find that L′(x) = −λ P
0
N


(y1 > x). Then, noting that P
0
N


(y1 = 0) = 0,
we obtain the differentiability of L at the origin and find that L′(0) = −λ < 0.

We end this section by considering the case of an a.s. convex X. First we introduce the
geometric covariogram, γX, of X, defined for x ≥ 0 by

γX(x) := ν(X ∩ (xu ⊕ X)).

Note that the covariogram is usually defined on R
d , but that here we consider it only on a

half-line. Let pu⊥ denote the orthogonal projection on the hyperplane orthogonal to u, and νu⊥
the (d − 1)-dimensional Lebesgue measure on this hyperplane. If X is convex then γX is a
convex function on [0, Wu), where Wu is the width of X in the u-direction, and is identically
0 outside this interval. Moreover, it is continuously differentiable on [0, Wu), with derivative
γ ′
X(x) = −νu⊥(pu⊥(X ∩ (xu ⊕ X))) ≥ −νu⊥(pu⊥(X)); see [19, p. 86]. From (C1) and

(C2) we have E[νu⊥(pu⊥(X))] < ∞. Hence, E[γX] is absolutely continuous with derivative
E[γ ′

X(x)] at almost every x ≥ 0. Moreover γ ′
X(x) is right continuous at x = 0 and so is

E[γ ′
X(x)], by dominated convergence; thus, E[γX(x)] has right-hand derivative E[γ ′

X(0)] =
− E[νu⊥(pu⊥(X))] at x = 0.

Definition 5. The intercept distribution of X (in the u-direction) is defined as

FX(x) = E[γX
′(x)]

E[γX
′(0)] , x ≥ 0. (15)

Remark 6. The term ‘intercept distribution’ is used because γX
′(x)/γX

′(0) is the probability
distribution of the length of the intersection of X with lines, uniformly distributed among those
hitting X, having direction u; see [24].

Proposition 8. Let M be a dead leaves model associated with a random closed set, X, which
is convex with intercept distribution FX a.s., and let P

0
N


and y1 be defined as above. Then, for
all x ≥ 0, ∫ ∞

x

P
0
N


(y1 > t) dt = 1

2
(1 + Kx)−1

∫ ∞

x

FX(t) dt, (16)

where K = − E[γ ′
X(0)]/ E[γX(0)].

Proof. It can be shown that, when X is convex, ν(X � [0, −xu]) = γX(x) and

ν(X ⊕ [0, −xu]) = γX(0) + xνu⊥(pu⊥(X)).

Since νu⊥(pu⊥(X)) = − E[γ ′
X(0)], (13) yields

L(x) = E[γX(x)]
E[γX(0)] − x E[γ ′

X(0)] ,

and the result then follows easily from (14) and (15).
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Let us finally note that P
0
N


(y1 > x) may be seen (as in Section 2.2) as the length distribution
of the ‘typical cell’ of the tessellation D ∩ M := ∑

i 1(Vi ∩ D �= ∅)δVi∩D , and thus as the
intercept distribution of the typical cell of M (which is not convex). Note also that, by setting
x = 0 in (16), we obtain

E
0
N


[y1] = 1

2

∫ ∞

0
FX(t) dt,

which show (see Remark 6) that, for X convex, the mean intercept in any direction is divided
by two as a result of occlusion.

5. Conclusion

Various generalizations of this model are possible. Inhomogeneous point processes could
be considered, or the independence assumption between time and objects could be broken
(see [12]), enabling perspective laws to be taken into account. In the homogeneous and
independent case, many open problems remain, in particular to do with computing typical
cell properties, given the distribution of the leaf X. The computation of the mean perimeter
and area of typical cells, as performed in [5] for the connected components of visible parts, is
an interesting direction for further work.
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