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Abstract

Suppose that kg > 3.5 X 10% and H = {h,,.. ., hi,} is admissible. Then, for any m > 1, the set {m(h; — h;) :
h; < h;} contains at least one Polignac number.
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1. Introduction

A recent huge breakthrough in prime number theory is Zhang’s brilliant work (see [4]),
which asserts that
liminf(p,,, — pp) <7 x 107,

where p, denotes the nth prime. For a set H = {hy, ha, ..., h} of positive integers,

we say that H is admissible if v,(H) < p for every prime p, where v,(H) denotes the

number of distinct residue classes occupied by those 4; modulo p. Zhang proved that if

ko>3.5x10° and H = {hy,..., h,} is admissible, then, for sufficiently large x, there

exists n € [x,2x] such that {n + hy,n + hy,...,n + h,} contains at least two primes. He

also constructed an admissible H = {hy, ..., h,} such that max; j |h; — hi| <7 X 107.
In fact, one may have the following ‘cheap’ extension of Zhang’s theorem.

TuroreM 1.1. Let kg > 3.5 x 10° and A > 0. Suppose that x is sufficiently large and
1<g<(ogx) IfH={h,... , hy,} is admissible and (q, hihy - - - hy,) = 1, there
exists n € [x,2x] such that {gn + hy,qn + hy, . .., qn + hy,} contains at least two primes.

The proof of Theorem 1.1 is just a copy of Zhang’s original one. The only
modification is to set

P(n):lk—ol(qn+h,~) and ©= [] (1_fo{)). [ (1_11))_k0.

i=1 p prime p prime
rtq
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As an immediate consequence of Theorem 1.1, for 0 < b < g with (b,q) =1,

b.q) _ (b.q)
timinf 2l — P g 407, (1.1)
n—eo q
where pflb’q) denotes the nth prime of the form gm + b. In fact, suppose that
prime p 1 q and {hy, ..., h,} does not cover the residue class ¢ modulo p. Then
{b+qhi,...,b+ qh,} does not cover (b + cq) modulo p, as well. And if p | g, then
evidently {b + ghy, ..., b + ghy,} does not cover 0 modulo p. That is, the admissibility

of {hy,..., )} always implies that of {b + gh;,...,b + ghy,}). Thus (1.1) easily
follows from Theorem 1.1.

However, the main purpose of this short note is to give another application of
Theorem 1.1, concerning Polignac numbers [3]. A positive even number d is called a
Polignac number if there exist infinitely many » such that p,.; — p, = d. Of course,
it is believed that every positive even number is a Polignac number. And Zhang’s
theorem shows that the smallest Polignac number is not greater than 7 x 107.

Recently, combining Zhang’s techniques with some lemmas from [1], Pintz [2]
proved that the set of all Polignac numbers has a positive lower density. We shall
now show that this lower density is at least 2 x 107!, In fact, we have the following
theorem.

Tueorem 1.2. Suppose that ko > 3.5 x 10® and H = {hi, . .. ,hy,} is admissible. Let
o(H) =1{hj = h; - hj < hj}. Then, for any m > 1, the set m - o(H) = {md : d € o(H)}
contains at least one Polignac number.

Evidently, by taking kg = 3.5 x 10° and max; jlh; — hjl <7 X 107 in Theorem 1.2,
we can get that the lower density of all Polignac numbers is at least
2

5 >2x 107
kO - max; ; |hj - h,l

2. Proof of Theorem 1.2
Without loss of generality, assume that 4y < hy <--- < hy,. Let
X ={a € [mhy,mhy,] : a = mh; (mod 2),a & {mhy, ..., mh}}.

Assume that X = {ay, ay,...,a;}. Arbitrarily choose distinct primes py, ps, ..., p; >
mhy,. Let b >0 be an integer such that b =1 (mod m) and b = —a; (mod p;) for
1<j<l Letg=mpip,---p;. Since (b,m) = 1,{b+ mh;,...,b + mhy,} is admissible.
And for each j, noting that p; | b + a; and p; > mhy,, we must have

ko
l_[(b +mhy) # 0 (mod p)).
i=1
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That is, g is coprime to (b + mh;)(b + mhy) - - - (b + mhy,). By Theorem 1.1, there exist
infinitely many » such that {gn + b + mh;,gn + b + mhs, ..., qn + b + mh,} contains
at least two primes.

Let ny, np, n3, ... be all such positive integers n. For each s > 1, noting that
{gns + b+ mhy, ..., qn; + b + mhy} contains at least two primes, we may choose a
pair (i, j;) with iy < j such that both gng + b + mh;_and gng + b + mh;_are prime, but
gns + b + mhy is composite for all iy < k < j. Since 1 <i; < j; < ko, clearly there exists
a pair (i, j.) such that the set {s : (i, j;) = (i, j.)} is infinite. That is, gn + b + mh;,
and gn + b + mh;, are prime for infinitely many n. But according to the definition of
q, for any a; € (mh;,,mh; ), qgn + b +a; =0 (mod p;), that is, gn + b + a; cannot be
prime. So gn + b + mh;_and gn + b + mh; must be two consecutive primes, that is,
m(h;, — h;) is a Polignac number. We are done.
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