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Abstract

We study a parametric class of isotropic but not necessarily stationary Poisson hyperplane
tessellations in n-dimensional Euclidean space. Our focus is on the volume of the zero
cell, i.e. the cell containing the origin. As a main result, we obtain an explicit formula for
the variance of the volume of the zero cell in arbitrary dimensions. From this formula
we deduce the asymptotic behaviour of the volume of the zero cell as the dimension goes
to ∞.
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1. Introduction

The majority of contributions to random tessellations is devoted to investigations in low and
fixed dimensions. In particular, there exist only a few results on random tessellations in high
dimensions, that is, with focus on asymptotic aspects as the dimension goes to ∞. Recently, the
typical cell of a stationary Poisson–Voronoi tessellation in high dimensions has been studied
in [1], [14], and [27]. Alishahi and Sharifitabar [1] investigated the asymptotic behaviour of
the volume and the shape of the typical cell of a stationary Poisson–Voronoi tessellation as the
dimension n of the space goes to ∞. In particular, they showed that the variance of the volume
of the typical cell converges to 0 exponentially fast as n → ∞, whereas it is well known that
the expected volume is independent of the dimension. In the course of their investigation, they
made use of an explicit formula for the variance of the volume of the typical cell in arbitrary
dimensions. The asymptotic behaviour of the volume of the typical cell was studied earlier in
the more general context of the nearest-neighbour analysis by Newman et al. in [17] and [18].
In [18, Theorem 10], they showed that, if the intensity of the underlying Poisson process is
γ then the kth moment of the volume of the typical cell converges to γ −k as the dimension
goes to ∞ and, therefore, in particular, the volume of the typical cell converges in distribution
to γ −1.

In this work we consider a parametric class of Poisson hyperplane tessellations and focus
on the volume of the cell containing the origin (the zero cell). It is then natural to explore
whether an asymptotic behaviour similar to that of the typical cell of a stationary Poisson–
Voronoi tessellation is exhibited by the zero cell in the present more general class of random
tessellations. An interesting family of not necessarily stationary or isotropic Poisson hyperplane
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tessellations is introduced in connection with the investigation of Kendall’s conjecture in [8].
In the isotropic case, these Poisson hyperplane tessellations are completely determined by
two parameters, the intensity γ ∈ (0, ∞) and the distance exponent r ∈ (0, ∞). For a
special choice of the distance exponent and the intensity, the zero cell is equal in distribution
to the typical cell of a stationary Poisson–Voronoi tessellation (cf. [4, Sections 5.2 and 5.3.2]
and [8]). Therefore, this family of isotropic Poisson hyperplane tessellations provides a general
framework for investigating tessellations in high dimensions. Trying to extend the approach
of Alishahi and Sharifitabar [1] to the wider context of the zero cell of this family of Poisson
hyperplane tessellations, we came across the need for a formula for the variance of the volume
of the zero cell. Finding a manageable expression turned out to be a rather complex issue.
In fact, the formulae presented here mark the starting point of a more detailed study of the
asymptotic behaviour of characteristics of the zero cell as the dimension goes to ∞. Results
concerning lower-dimensional sections of the zero cell and other shape characteristics as well
as a connection to the hyperplane conjecture will be considered separately.

In the following, we give a more detailed overview of our results. A precise description
of the particular (parametric) model of a Poisson hyperplane tessellation used here is given
in Section 2. For this model, we then derive, in Section 3, an explicit expression for the
expectation and bounds for the moments of the volume of the zero cell in Proposition 1. An
explicit expression for the second moment and the variance of the volume of the zero cell
is provided in Theorem 1. These results follow from a sequence of lemmas which make
use of integral geometric transformations and the symmetries of the geometric situation. In
Theorem 2 we deduce bounds for the variance of the volume of the zero cell which involve
auxiliary quantities D(n, r) and E(n, r). These quantities have to be evaluated and bounded
from above and below for a given distance exponent r and an intensity γ . In Corollary 1 we
consider the zero cell of a Poisson hyperplane tessellation with constant distance exponent r .
The choice r = 1 corresponds to a stationary Poisson hyperplane tessellation. For constant
intensity, we then prove that all moments as well as the variance of the volume of the zero cell
go to ∞ as the dimension n goes to ∞.

In order to fix the expected volume of the zero cell, independent of the dimension, the intensity
of the underlying Poisson hyperplane process can be chosen appropriately as a function of the
dimension n. However, it follows from our bounds that, as long as the distance exponent r

is fixed, the variance of the volume of the zero cell still goes to ∞ as n goes to ∞. The
investigation in Section 4 thus suggests that in order to ensure that the variance converges to 0,
the distance exponent r has to be adjusted to the dimension n. In Corollary 2 we summarize
the case where the distance exponent r is proportional to the dimension n, i.e. r = an with a
fixed factor a ∈ (0, ∞). For constant intensity, we show that the expectation and the moments
of the volume of the zero cell now all converge to 0 as the dimension n goes to ∞.

In Theorem 3 we finally consider the situation where the distance exponent r is proportional
to the dimension, i.e. r = an with some fixed a > 0, and the intensity γ̂ (a, n) is chosen as
a function of the dimension n and the factor a in such a way that the expected volume of the
zero cell is equal to a positive constant. In this case we prove that the variance of the volume of
the zero cell converges to 0 at an exponential speed of optimal order as n → ∞. In particular,
the volume of the zero cell converges in distribution. In the special case r = n (i.e. a = 1),
we fully recover results for the typical cell of a Poisson–Voronoi tessellation obtained in [1].
The present more general approach applies to a larger class of tessellations and admits various
other extensions and variations that will be discussed in detail in subsequent work.
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2. Preliminaries

In the following, we mainly use the notation and terminology of the monograph [23]. We
work in an n-dimensional real Euclidean vector space R

n, n ≥ 2, with scalar product 〈·, ·〉
and norm ‖ · ‖. The unit ball {x ∈ R

n : ‖x‖ ≤ 1} centred at the origin o is denoted by Bn,
its boundary is the unit sphere Sn−1. For k ∈ {0, . . . , n}, the Grassmannian of k-dimensional
linear subspaces of R

n is denoted by G(n, k), and the affine Grassmannian of k-dimensional
affine subspaces (k-flats) by A(n, k); both are equipped with their standard topologies. For
u ∈ Sn−1 and t ∈ [0, ∞), we write

H(u, t) := {x ∈ R
n : 〈x, u〉 = t}, H−(u, t) := {x ∈ R

n : 〈x, u〉 ≤ t}.
The Lebesgue measure on R

n is denoted by λ. For E ∈ G(n, k), the Lebesgue measure on
E is denoted by λE . Besides, we define Sk−1

E := E ∩ Sn−1 and HE(u, t) := E ∩ H(u, t) for
u ∈ Sk−1

E and k ∈ {1, . . . , n}. The s-dimensional Hausdorff measure is denoted by H s , where
s ≥ 0. For s = n, we sometimes refer to it as the n-dimensional volume Vn. A frequently
occurring constant is the volume of the unit ball,

κk := λk(B
k) = πk/2

�(k/2 + 1)

for k ∈ N0. The surface area of the unit sphere Sk−1 for k ∈ N is given by

ωk := Hk−1(Sk−1) = kκk = 2πk/2

�(k/2)
.

We repeatedly use the fact that∫ π/2

0
(sin ϕ)α(cos ϕ)β dϕ = 1

2

�((α + 1)/2)�((β + 1)/2)

�((α + β + 2)/2)
(1)

for α, β > −1; see [2, Equation (5.6)] or [26, Equation (12.42)]. In the following, we often
use the connection between the beta and the gamma functions (see [26, Equation (12.41)]) and
the approximation of the gamma function given by

�(x) = √
2π xx−1/2 exp

(
−x + θ(x)

12x

)
, x > 0, (2)

where θ(x) ∈ (0, 1) (see [26, Equation (12.33)] or [2, p. 24]). For m ∈ N and x1, . . . , xm ∈ R
n,

we denote by [x1, . . . , xm] the convex hull and by span{x1, . . . , xm} the linear hull of x1, . . . , xm.
The family of nonempty, compact, convex subsets of R

n is denoted by Kn. For a topological
space (T , T ), a measure is always defined on the σ -algebra B(T ) of Borel sets of T , i.e. the
smallest σ -algebra containing the open sets T . We write μk := μ ⊗ · · · ⊗ μ, with k factors
μ, for the k-fold product of a measure μ. By SOn we denote the group of proper (i.e. rotation
preserving) rotations on R

n, and νn is the unique Haar probability measure on SOn.
The following setting has previously been considered in a more general, not necessarily

isotropic, framework in the context of Kendall’s problem [8] (see also [4] and [6]). Let (�, A, P)

denote the underlying probability space. Furthermore, let X be a Poisson hyperplane process
in R

n, i.e. a Poisson point process in the space A(n, n− 1). Subsequently, we identify a simple
counting measure with its support, so that, for a Borel set A ⊂ A(n, n − 1), both the notation
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X(A) and card(X ∩ A) denote the number of elements of X in A. We assume that the intensity
measure �(·) = EX(·) of X is of the form

�(·) = 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(u, t) ∈ ·}t r−1 dt Hn−1(du) (3)

with γ > 0 and r ∈ (0, ∞). We refer to γ as the intensity and to r as the distance exponent
of the hyperplane process X. Clearly, � is rotation invariant for all r > 0. Furthermore, � is
translation invariant only for r = 1. Observe that a calculation similar to that required for (5)
below implies that �({H ∈ A(n, n − 1) : H ∩ [−e, e] �= ∅}) = �({H ∈ A(n, n − 1) : H ∩
[0, 2e] �= ∅}) for e ∈ Sn−1 if and only if r = 1. (It is well known that the intensity measure is
translation invariant for r = 1; cf. [23, Equation (4.33)] and the reflection symmetry of Hn−1

on the unit sphere.) Therefore, since X is a Poisson process, X is always isotropic but stationary
only for r = 1.

The random polytope
Z0 :=

⋂
H∈X

H−

is the zero cell of the hyperplane process X, where H− denotes the (almost surely uniquely
determined) closed half-space bounded by H which contains the origin. Clearly, Z0 depends
on γ and r; although this dependence is not made explicit by our notation.

For the distance exponent r = n, the zero cell Z0 is equal in distribution to the typical
cell of a stationary Poisson–Voronoi tessellation (see [8]). More detailed information on
the topic of random tessellations is provided in, e.g. [19], [23], [24, Chapter 6], and [25].
Poisson–Voronoi tessellations have been studied extensively in the literature; see, e.g. [7], [13],
and [15]. Stationary Poisson hyperplane tessellations have been considered in, e.g. [9], [10],
[11], and [12]. Recently, nonstationary Poisson hyperplane tessellations have also attracted
some attention (cf. [8] and [21]). A review of recent results on random polytopes is given in
[3], [20], [22], [23, Chapter 8], and [24, Chapter 7].

3. A general formula for the variance

Let X be a Poisson hyperplane process in R
n with an intensity measure of the form (3). We

assume that γ > 0 and r ∈ (0, ∞). By Fubini’s theorem and basic properties of a Poisson
process, we have

E[Vn(Z0)
k] = E

[∫
Rn

1Z0(x1) dx1 · · ·
∫

Rn

1Z0(xk) dxk

]

=
∫

(Rn)k
P(x1, . . . , xk ∈ Z0) dx1 · · · dxk

=
∫

(Rn)k
exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, x1, . . . , xk] �= ∅}

× t r−1 dtHn−1( du)

]
dx1 · · · dxk. (4)

From (4) we now deduce lower and upper bounds for the moments of Vn(Z0). For e ∈ Sn−1,
we define

c(n, r) :=
∫

Sn−1
〈e, u〉r+ Hn−1(du) = π(n−1)/2 �((r + 1)/2)

�((r + n)/2)
, (5)
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which is indeed independent of the choice of the unit vector e. The explicit value is determined
by a suitable decomposition of the spherical Lebesgue measure (see [16, Equation (1.41)]) and
by an application of (1).

The following result provides bounds from above and below for the moments of the volume
of the zero cell. Note that the ratio of the upper and the lower bound is given by the ratio of the
corresponding values of the gamma functions in these bounds.

Proposition 1. For k ∈ N, we have

�

(
n

r
+ 1

)k

κk
n

(
nκnr

2γ c(n, r)

)kn/r

≤ E[Vn(Z0)
k] ≤ �

(
kn

r
+ 1

)
κk
n

(
nκnr

2γ c(n, r)

)kn/r

.

In particular, for k = 1, we obtain

E[Vn(Z0)] = �

(
n

r
+ 1

)
κn

(
nκnr

2γ c(n, r)

)n/r

.

Proof. Starting with (4), introducing polar coordinates, and by symmetry, we obtain

E[Vn(Z0)
k]

= k

∫ ∞

0

∫ s1

0
· · ·

∫ s1

0

∫
(Sn−1)k

exp

[
− 2γ

nκn

×
∫

Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, s1v1, . . . , skvk] �= ∅}

× t r−1 dt Hn−1(du)

]
sn−1

1 · · · sn−1
k

× Hn−1(dvk) · · · Hn−1(dv1) dsk · · · ds1

≤ k

∫ ∞

0

∫ s1

0
· · ·

∫ s1

0

∫
(Sn−1)k

exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, s1v1] �= ∅}

× t r−1 dt Hn−1(du)

]
sn−1

1 · · · sn−1
k

× Hn−1(dvk) · · · Hn−1(dv1) dsk · · · ds1.

Since ∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, s1v1] �= ∅}t r−1 dt Hn−1(du)

=
∫

Sn−1

∫ ∞

0
1{0 ≤ t ≤ 〈s1v1, u〉+}t r−1 dt Hn−1(du)

= 1

r
sr

1c(n, r),

the upper bound follows easily.
For the lower bound, we observe that H(u, t) ∩ [o, x1, . . . , xk] �= ∅ if and only if there is

some i ∈ {1, . . . , k} such that H(u, t)∩[o, xi] �= ∅. Hence, E[Vn(Z0)
k] can be bounded from
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below by

∫
(Rn)k

exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0

k∑
i=1

1{H(u, t) ∩ [o, xi] �= ∅}t r−1 dt Hn−1(du)

]
dx1 · · · dxk

=
(∫

Rn

exp

[
−2γ ‖x1‖r

nκnr
c(n, r)

]
dx1

)k

.

Now the assertion follows by a straightforward calculation.

Remark 1. The lower bound in Proposition 1 can also be obtained by an application of Hölder’s
inequality. Moreover, for fixed r and k, the ratio of the upper and the lower bound is of the
order n(1−k)/2kkn/r .

For the statement of Theorem 1, which provides formulae for the second moment and the
variance of Vn(Z0), we need the constant

bn,2 := ωn−1ωn

4π

and the auxiliary functions

α(t, ϕ) := arctan

(
t − cos ϕ

sin ϕ

)
∈

(
−π

2
,
π

2

)

and

Fr(t, ϕ) := 1

c(2, r)

(
t r

∫ α(t,ϕ)

−π/2
(cos θ)r dθ +

∫ π/2

α(t,ϕ)−ϕ

(cos θ)r dθ

)
for (t, ϕ) ∈ [0, 1] × (0, π). In the following, we will use the fact that

1
2 ≤ Fr(t, ϕ) ≤ t r + 1 ≤ 2 (6)

for all (t, ϕ) ∈ [0, 1] × (0, π), which follows from Remark 3(a) and (b) below.

Theorem 1. Let X be a Poisson hyperplane process in R
n with an intensity measure of the

form (3) with intensity γ > 0 and distance exponent r ∈ (0, ∞). Then

E[Vn(Z0)
2] = 8πbn,2

r
�

(
2n

r

)(
nκnr

2γ c(n, r)

)2n/r ∫ π

0

∫ 1

0

tn−1

Fr(t, ϕ)2n/r
(sin ϕ)n−2 dt dϕ

and

var[Vn(Z0)] = 8πbn,2

r
�

(
2n

r

)(
nκnr

2γ c(n, r)

)2n/r

×
∫ π

0

∫ 1

0

(
1

Fr(t, ϕ)2n/r
− 1

(tr + 1)2n/r

)
tn−1(sin ϕ)n−2 dt dϕ.

Proof. The formula for E[Vn(Z0)
2] is implied by Lemma 3 and Lemma 4 below, and

straightforward calculations. The formula for var[Vn(Z0)] then follows if we also use the
representation of (E[Vn(Z0)])2 as a double integral, i.e.

(E[Vn(Z0)])2 = 8πbn,2

r
�

(
2n

r

)(
nκnr

2γ c(n, r)

)2n/r ∫ π

0

∫ 1

0

tn−1

(tr + 1)2n/r
(sin ϕ)n−2 dt dϕ,

https://doi.org/10.1239/aap/1409319552 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1409319552


628 • SGSA J. HÖRRMANN AND D. HUG

which is a consequence of the special case k = 1 of Proposition 1 and of the fact that

∫ 1

0

tn−1

(tr + 1)2n/r
dt = 1

2r

�(n/r)2

�(2n/r)
,

which follows from the substitution z = (tr + 1)−1, the symmetry of the resulting integrand
with respect to 1

2 , and basic calculations involving beta and gamma functions. Furthermore,
we use the fact that

n2κ2
n = 4πbn,2

∫ π

0
(sin ϕ)n−2 dϕ,

which follows from the definition of κn and bn,2, and from a special case of (1).

Remark 2. In Figure 1 and Figure 2 we present the numerical results for the variance based
on Theorem 1. In small dimensions (n = 2, 3, 4) the numerical calculations of the variance
for varying r are plotted for γ = 1. In this case observe that, by Proposition 1 and (2), we have
limr→∞ E[Vn(Z0)

k] = κk
n for k ∈ N and arbitrarily fixed n ≥ 2. In addition, we study the
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Figure 1: Numerical evaluation of the formula for the variance from Theorem 1 using the numer-
ical integration functions of MATHEMATICA®. Top: we fixed γ = 1 and plotted E[Vn(Z0)] −
limr→∞ E[Vn(Z0)] = E[Vn(Z0)] − κn as a solid line for comparison. Bottom: γ was chosen in such a

way that E[Vn(Z0)] = 1.
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Figure 2: Numerical evaluation of the formula for the variance from Theorem 1 using the numerical
integration functions of MATHEMATICA. Top: we fixed γ = 1 and plotted E[Vn(Z0)] as a solid line for

comparison. Bottom: γ was chosen in such a way that E[Vn(Z0)] = 1.

choice

γ = nκnr

2c(n, r)

(
�

(
n

r
+ 1

)
κn

)r/n

,

which implies that E[Vn(Z0)] = 1 and limr→∞ E[Vn(Z0)
k] = 1 for k ∈ N and arbitrarily fixed

n ≥ 2 by Proposition 1. Theorem 2 and Lemma 5 below, which will be proved in the following
section, and (2) show that, for both choices of γ , we obtain

var[Vn(Z0)] ≤ C r−(n+1)/2,

where C > 0 is a constant depending on γ and n in the first case and only on n in the
second. On the other hand, for specific choices of r (r = 1, r = 0.5 n, r = n, r = 2n), the
numerically determined values of the variance for varying dimension n are plotted for γ = 1
and γ = nκnr(�(n/r + 1)κn)

r/n/(2c(n, r)). The high-dimensional limiting behaviour of the
moments and the variance is studied in the following section.

In the following remark we collect some facts that are helpful for a proper understanding
of the formulae for the second moment and the variance of the volume of the zero cell in
Theorem 1, which are used several times subsequently.
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Remark 3. (a) Let ϕ ∈ (0, π) and t ∈ [0, 1]. Then

−π

2
< ϕ − π

2
= α(0, ϕ) ≤ α(t, ϕ) ≤ α(1, ϕ) = ϕ

2
<

π

2
,

since t �→ α(t, ϕ) is increasing on [0, 1].
(b) A special case of (1) is ∫ π/2

−π/2
(cos θ)r dθ = c(2, r).

The following lemmas lead successively to the explicit formulae for the second moment and
the variance of the volume of the zero cell stated in Theorem 1. Lemma 1 and Lemma 2 are
needed to prove Lemma 3, whereas Lemma 3 and Lemma 4 have been used directly in the
proof of Theorem 1. In a first step, the integral representation of the second moment of Vn(Z0)

from (4) will be simplified considerably by an application of a Blaschke–Petkantschin formula
(cf. [23]). For x1, x2 ∈ R

n, let ∇2(x1, x2) denote the area of the parallelogram spanned by
these vectors. Furthermore, denote by νn

2 the unique rotation invariant probability measure on
G(n, 2). As usual, {e1, . . . , en} denotes the standard basis of R

n.

Lemma 1. We have

E[Vn(Z0)
2] = bn,2

∫
span{e1,e2}2

exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, x1, x2] �= ∅}t r−1

× dt Hn−1(du)

]
× ∇2(x1, x2)

n−2 λ2
span{e1,e2}(d(x1, x2)).

Proof. From (4), the linear Blaschke–Petkantschin formula [23, Theorem 7.2.1], the rotation
invariance of the spherical Lebesgue measure, and the invariance of ∇2(·, ·), we obtain

E[Vn(Z0)
2]

= bn,2

∫
G(n,2)

∫
L2

exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, x1, x2] �= ∅}t r−1 dt Hn−1(du)

]
× ∇2(x1, x2)

n−2 λ2
L(d(x1, x2)) νn

2 (dL)

= bn,2

∫
SOn

∫
span{e1,e2}2

exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, ϑx1, ϑx2] �= ∅}

× t r−1 dt Hn−1(du)

]
∇2(ϑx1, ϑx2)

n−2

× λ2
span{e1,e2}(d(x1, x2)) νn(dϑ)

= bn,2

∫
SOn

∫
span{e1,e2}2

exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(ϑu, t) ∩ [o, ϑx1, ϑx2] �= ∅}

× t r−1 dt Hn−1(du)

]
∇2(x1, x2)

n−2

× λ2
span{e1,e2}(d(x1, x2)) νn(dϑ)
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= bn,2

∫
span{e1,e2}2

exp

[
− 2γ

nκn

∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, x1, x2] �= ∅}

× t r−1 dt Hn−1(du)

]
∇2(x1, x2)

n−2

× λ2
span{e1,e2}(d(x1, x2)),

which yields the assertion of the lemma.

Next we simplify the inner double integral of the expression that was derived in Lemma 1
for E[Vn(Z0)

2] by exploiting further the symmetry of the situation.

Lemma 2. For x1, x2 ∈ span{e1, e2} ⊂ R
n, we have∫

Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, x1, x2] �= ∅}t r−1 dt Hn−1(du)

= c(n, r)

c(2, r)

∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩ [o, x1, x2] �= ∅

}
t r−1 dt dθ.

Proof. For n = 2, there is nothing to prove. Hence, we can assume that n ≥ 3. Let
E := span{e1, e2}. The map

F :
⎧⎨
⎩S1

E ×
(

0,
π

2

)
× Sn−3

E⊥ → Sn−1,

(u1, θ, u2) �→ cos(θ)u1 + sin(θ)u2,

is injective and its image covers Sn−1 up to a set of measure 0. Its Jacobian is

JF(u1, θ, u2) = cos(θ)(sin(θ))n−3,

and, hence, the area-coarea formula (cf. [5, Theorem 3.2.22]) yields∫
Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, x1, x2] �= ∅}t r−1 dt Hn−1(du)

=
∫

S1
E

∫ π/2

0

∫
Sn−3

E⊥

∫ ∞

0
1{H(cos(θ)u1 + sin(θ)u2, t) ∩ [o, x1, x2] �= ∅}

× cos(θ)(sin θ)n−3t r−1 dt Hn−3(du2) dθ H1(du1).

Since [o, x1, x2] ⊂ E and

H(cos(θ)u1 + sin(θ)u2, t) ∩ E = HE

(
u1,

t

cos θ

)
for θ ∈ [0, π/2), we obtain∫

Sn−1

∫ ∞

0
1{H(u, t) ∩ [o, x1, x2] �= ∅}t r−1 dt Hn−1(du)

= (n − 2)κn−2

∫
S1

E

∫ π/2

0

∫ ∞

0
1
{
HE

(
u1,

t

cos θ

)
∩ [o, x1, x2] �= ∅

}
× cos(θ)(sin θ)n−3t r−1 dt dθ H1(du1)

= (n − 2)κn−2

∫
S1

E

∫ π/2

0

∫ ∞

0
1{HE(u1, t) ∩ [o, x1, x2] �= ∅}
× (cos θ)r+1(sin θ)n−3t r−1 dt dθ H1(du1)
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= (n − 2)κn−2

∫ π/2

0
(cos θ)r+1(sin θ)n−3 dθ

×
∫

S1

∫ ∞

0
1{H(u1, t) ∩ [o, x1, x2] �= ∅}t r−1 dt H1(du1)

= c(n, r)

c(2, r)

∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩ [o, x1, x2] �= ∅

}
t r−1 dt dθ,

which completes the proof of the lemma.

Having simplified the inner integral of the expression found in Lemma 1 for E[Vn(Z0)
2],

we reduce the outer integral in the next lemma by again taking advantage of the problem’s
symmetry.

Lemma 3. We have

E[Vn(Z0)
2]

= 8πbn,2

∫ π

0

∫ ∞

0

∫ s

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
,

(
u

0

)]
�= ∅

}

× t r−1dt dθ

]
sn−1un−1(sin ϕ)n−2 du ds dϕ.

Proof. Combining Lemma 1 and Lemma 2, and introducing polar coordinates, we obtain

E[Vn(Z0)
2]

= bn,2

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
, u

(
cos ψ

sin ψ

)]
�= ∅

}
t r−1 dt dθ

]
× us| sin(ϕ − ψ)us|n−2 du ds dϕ dψ

= bn,2

∫ 2π

0

∫ 2π

0
2

∫ ∞

0

∫ s

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
, u

(
cos ψ

sin ψ

)]
�= ∅

}
t r−1 dt dθ

]
× |sin(ϕ − ψ)|n−2(us)n−1 du ds dϕ dψ,

where the symmetry in u and s is used to justify the second equality. Hence, we derive

E[Vn(Z0)
2]

= 2bn,2

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ s

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos(θ − ψ)

sin(θ − ψ)

)
, t

)

∩
[
o, s

(
cos(ϕ − ψ)

sin(ϕ − ψ)

)
,

(
u

0

)]
�= ∅

}
t r−1 dt dθ

]
× un−1sn−1|sin(ϕ − ψ)|n−2 du ds dϕ dψ
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= 4πbn,2

∫ 2π

0

∫ ∞

0

∫ s

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
,

(
u

0

)]
�= ∅

}
t r−1 dt dθ

]
× un−1sn−1|sin ϕ|n−2 du ds dϕ

= 8πbn,2

∫ π

0

∫ ∞

0

∫ s

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
,

(
u

0

)]
�= ∅

}
t r−1 dt dθ

]
× sn−1un−1(sin ϕ)n−2 du ds dϕ.

For the last equation, we used the fact that∫ 2π

π

∫ ∞

0

∫ s

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
,

(
u

0

)]
�= ∅

}
t r−1 dt dθ

]
× un−1sn−1|sin ϕ|n−2 du ds dϕ

=
∫ π

0

∫ ∞

0

∫ s

0
exp

[
− 2γ

nκn

c(n, r)

c(2, r)

×
∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
,

(
u

0

)]
�= ∅

}
t r−1 dt dθ

]
× un−1sn−1(sin ϕ)n−2 du ds dϕ,

which follows from the invariance of the inner integral under reflection of ϕ and θ with respect
to the first axis (that is, invariance with respect to replacing ϕ by −ϕ and θ by −θ ). This
completes the proof.

In the expression found in Lemma 3 the indicator function depends on θ, t, s, u, and ϕ. Its
support can be determined explicitly. This is used in the proof of the following lemma, where
it is shown how the integration with respect to t in Lemma 3 can be carried out.

Lemma 4. For u, s ∈ (0, ∞), u ≤ s, and ϕ ∈ (0, π),∫ 2π

0

∫ ∞

0
1
{
H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)
,

(
u

0

)]
�= ∅

}
t r−1 dt dθ

= src(2, r)

r
Fr

(
u

s
, ϕ

)
.

Proof. The value of the integral on the left-hand side of the asserted equation does not
change if we choose [−π/2, 3π/2] instead of [0, 2π ] as the integration domain. Thus, we have
to determine the support of the indicator function under the integral on [−π/2, 3π/2]×[0, ∞).
Let ϕ ∈ (0, π) be fixed. Then the indicator function is 1 if and only if

H

((
cos θ

sin θ

)
, t

)
∩

[
o, s

(
cos ϕ

sin ϕ

)]
�= ∅ or H

((
cos θ

sin θ

)
, t

)
∩

[
o,

(
u

0

)]
�= ∅, (7)
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s

s cos (θ�ϕ)

u cos (θ)

θ

u

t

π

2
�

π

2
π

2
ϕ �

π

2
� ϕϕu

sα (        )ϕ, 0

Figure 3: Support of the indicator function for ϕ = π/7.

which is satisfied if and only if

t ∈ [0, u(cos θ)+] ∪ [0, s(cos(θ − ϕ))+].
If θ ∈ [−π/2, ϕ − π/2], this is equivalent to t ∈ [0, u cos θ ]. If θ ∈ [ϕ − π/2, π/2], this is
equivalent to t ∈ [0, max{u cos θ, s cos(θ − ϕ)}]. If θ ∈ [π/2, ϕ + π/2], this is equivalent to
t ∈ [0, s cos(θ − ϕ)]. For all other choices of θ ∈ [−π/2, 3π/2], this is equivalent to t = 0,
and, hence, can be neglected for the integration. Since

u cos θ = s cos(θ − ϕ) ⇐⇒ θ = arctan

(
u/s − cos ϕ

sin ϕ

)
= α

(
u

s
, ϕ

)
,

we conclude that (7) is satisfied if and only if

(θ, t) ∈
([

−π

2
, α

(
u

s
, ϕ

))
× [0, u cos θ ]

)
∪

([
α

(
u

s
, ϕ

)
, ϕ + π

2

]
× [0, s cos(θ − ϕ)]

)
,

as illustrated in Figure 3. Now the integral can be easily computed.

4. Variance inequalities

In the next theorem, inequalities for var[Vn(Z0)] are provided. In these inequalities two
auxiliary quantities, D(n, r) and E(n, r), to be defined below, are involved. In Lemma 5 we
establish crucial bounds for E(n, r).

For n ∈ N with n ≥ 2 and r > 0, we define

D(n, r) := nκ2
n

r
�

(
2n

r
+ 1

) (
nκnr

4γ c(n, r)

)2n/r

and

E(n, r) := n

c(2, n − 2)

∫ π

0
(sin ϕ)n−2

∫ 1

0
tn−1(1 + t r − Fr(t, ϕ)) dt dϕ.
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Introducing for v ∈ [−π/2, π/2] and r ∈ (0, ∞) the function M(v, r) by

M(v, r) := 1

c(2, r)

∫ π/2

v

(cos θ)r dθ,

we obtain

E(n, r) = n

c(2, n − 2)

×
∫ π

0
(sin ϕ)n−2

∫ 1

0
tn−1[t rM(α(t, ϕ), r) + M(ϕ − α(t, ϕ), r)] dt dϕ, (8)

where −π/2 < α(t, ϕ) < π/2 and 0 < ϕ/2 ≤ ϕ − α(t, ϕ) ≤ π/2 for ϕ ∈ (0, π).

Theorem 2. With these definitions, we have

E(n, r) D(n, r) ≤ var[Vn(Z0)] ≤ E(n, r) D(n, r) 4(2n/r)+1.

Proof. The mean value theorem and (6) yield

∫ π

0

∫ 1

0

(
1

Fr(t, ϕ)2n/r
− 1

(tr + 1)2n/r

)
tn−1(sin ϕ)n−2 dt dϕ

≥ n

r

1

22n/r

∫ π

0

∫ 1

0
(tr + 1 − Fr(t, ϕ))tn−1(sin ϕ)n−2 dt dϕ;

hence, we deduce from Theorem 1 that

var[Vn(Z0)] ≥ E(n, r)
c(2, n − 2)

r 22n/r

8πbn,2

r
�

(
2n

r

)(
nκnr

2γ c(n, r)

)2n/r

= E(n, r) D(n, r).

Again, by the mean value theorem and (6), we have

∫ π

0

∫ 1

0

(
1

Fr(t, ϕ)2n/r
− 1

(tr + 1)2n/r

)
tn−1(sin ϕ)n−2 dt dϕ

≤ 4
n

r
22n/r

∫ π

0

∫ 1

0
(tr + 1 − Fr(t, ϕ))tn−1(sin ϕ)n−2 dt dϕ.

Now the assertion follows in a similar way as for the lower bound.

The next lemma provides upper and lower bounds for the auxiliary quantity E(n, r). In the
sequel, these bounds will then be combined with Theorem 2 to obtain further consequences
stated in Corollaries 1 and 2 and in Theorem 3.

Lemma 5. (a) For all r ∈ (0, ∞), we have

cr ≤ E(n, r) ≤ 3
2

with a constant cr > 0 which depends on r but not on n.
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(b) For all r ∈ (0, ∞) and n ≥ 3, we have

c
(1 + r/n)−1/2

√
r + 1

2n/2
(

1 + r

2n

)−n/2(
1 + n

n + r

)−(n+r)/2

≤ E(n, r)

≤ C
(1 + r/n)√

r + 1
2n/2

(
1 + r

2n

)−n/2(
1 + n

n + r

)−(n+r)/2

with constants c, C > 0 which are independent of r and n.

(c) For all r ∈ (0, ∞), we have

c
1

(r + 1)2 ≤ E(2, r) ≤ 1√
r + 1

with a constant c > 0 which is independent of r .

Proof. (a) Let r ∈ (0, ∞) be fixed. By (6) and Remark 3(b), we obtain

E(n, r) ≤ n

c(2, n − 2)

∫ π

0
(sin ϕ)n−2

∫ 1

0
tn−1 3

2
dt dϕ = 3

2
.

Next we bound E(n, r) from below. For this, we start from (8), use the facts that M is
nonnegative and decreasing with respect to its first argument, and that α(t, ϕ) ≤ ϕ/2 ≤ π/4
for ϕ ∈ (0, π/2) by Remark 3(a), and then apply Remark 3(b). This leads to

E(n, r) ≥ n

c(2, n − 2)

∫ π/2

0
(sin ϕ)n−2

∫ 1

0
tn+r−1M(α(t, ϕ), r) dt dϕ

≥ n

c(2, n − 2)

∫ π/2

0
(sin ϕ)n−2 dϕ

M(π/4, r)

n + r

≥ (2(1 + r))−1M

(
π

4
, r

)
= cr

> 0.

(b) Note that

E(n, r) = n

c(2, n − 2)c(2, r)

∫ π

0
(sin ϕ)n−2

∫ 1

0
tn−1hϕ(t) dt dϕ,

where hϕ : [0, 1] → R for ϕ ∈ (0, π) is defined by

hϕ(t) := c(2, r)(1 + t r − Fr(t, ϕ)), t ∈ [0, 1].
Observe that hϕ depends on r , although this dependence is not made explicit by our notation
(since r > 0 is arbitrary but fixed in this part of the proof). Recall that −π/2 < α(t, ϕ) < π/2
and 0 ≤ ϕ − α(t, ϕ) ≤ π/2, and note that

hϕ(t) = t r
∫ (π/2)−α(t,ϕ)

0
(sin θ)r dθ +

∫ (π/2)−(ϕ−α(t,ϕ))

0
(sin θ)r dθ.
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The function hϕ is strictly increasing on [0, 1], since

h′
ϕ(t) = rtr−1

∫ (π/2)−α(t,ϕ)

0
(sin θ)r dθ + αt (t, ϕ)((cos(α(t, ϕ) − ϕ))r − t r (cos(α(t, ϕ)))r )

= rtr−1
∫ (π/2)−α(t,ϕ)

0
(sin θ)r dθ

> 0,

where 0 < π/2 −α(t, ϕ) < π . Here αt denotes the partial derivative of α(t, ϕ) with respect to
the first argument t . For the last equality, we used the fact that cos(ϕ) + tan(α(t, ϕ)) sin ϕ = t ,
by the definition of α(t, ϕ), and, therefore,

cos(α(t, ϕ) − ϕ) = cos(α(t, ϕ)) cos(ϕ) + sin(α(t, ϕ)) sin ϕ = t cos(α(t, ϕ)).

Since α(1, ϕ) = ϕ/2, we obtain, for t ∈ [0, 1],

0 = hϕ(0) ≤ hϕ(t) ≤ hϕ(1) = 2
∫ (π−ϕ)/2

0
(sin θ)r dθ,

which implies that

E(n, r) ≤ 2

c(2, n − 2)c(2, r)

∫ π

0
(sin ϕ)n−2

∫ (π−ϕ)/2

0
(sin θ)r dθ dϕ. (9)

Reproducing the argument at the bottom of page 925 of [1], for ϕ ∈ (0, π), we obtain∫ (π−ϕ)/2

0
(sin θ)r dθ ≤

∫ (π−ϕ)/2

0

cos θ

cos((π − ϕ)/2)
(sin θ)r dθ

= (sin((π − ϕ)/2))r+1

(r + 1) sin(ϕ/2)

= (cos(ϕ/2))r+1

(r + 1) sin(ϕ/2)
. (10)

From (9) and (10), we deduce for n ≥ 3 that

E(n, r) ≤ 2

(r + 1)c(2, n − 2)c(2, r)

∫ π

0
(sin ϕ)n−2 (cos(ϕ/2))r+1

sin(ϕ/2)
dϕ

≤ 2n

(r + 1)c(2, n − 2)c(2, r)

∫ π/2

0
(sin ψ)n−3(cos ψ)n+r−1 dψ

= 2n−1�((n − 2)/2)�((n + r)/2)

(r + 1)c(2, n − 2)c(2, r)�(n + r/2 − 1)

= 1 + (r + 2)/(2(n − 2))

(r + 1)π
2n �(n/2)2�((n + r)/2)�(r/2 + 1)

�((n − 1)/2)�((2n + r)/2)�((r + 1)/2)
.

Then (2) implies the inequality

E(n, r) ≤ C
1 + r/n√

r + 1
2n/2

(
1 + n

n + r

)−(n+r)/2(
1 + r

2n

)−n/2

.
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To derive a lower bound for E(n, r) for all n ≥ 2, we start from (8) to obtain

E(n, r) ≥ n

c(2, n − 2)

∫ π

0
(sin ϕ)n−2

∫ 1

0
tn+r−1M(α(t, ϕ), r) dt dϕ,

since M is nonnegative. For ϕ ∈ (0, π), we have α(t, ϕ) ≤ ϕ/2 and ϕ/2 ∈ (0, π/2); hence,
M(ϕ/2, r) ≤ M(α(t, ϕ), r). Thus, we obtain

M(α(t, ϕ), r) ≥ M

(
ϕ

2
, r

)

= 1

c(2, r)

∫ π/2

ϕ/2
(cos θ)r dθ

≥ 1

c(2, r)

∫ π/2

ϕ/2
(cos θ)r sin θ dθ

= 1

c(2, r)

1

r + 1

(
cos

ϕ

2

)r+1

.

This implies that

E(n, r) ≥ n

n + r

1

r + 1

1

c(2, n − 2)c(2, r)

∫ π

0
(sin ϕ)n−2

(
cos

ϕ

2

)r+1

dϕ

≥ c
n

n + r

√
n

r + 1
2n−1

∫ π/2

0
(sin ψ)n−2(cos ψ)n+r−1 dψ

= c

(
1 + r

n

)−1√
n

r + 1
2n−2 �((n − 1)/2)�((n + r)/2)

�((2n + r − 1)/2)
.

The approximation (2) of the gamma function then yields

E(n, r) ≥ c
(1 + r/n)−1

√
r + 1

2n/2
(

1 + r + 1

2(n − 1)

)−(n−1)/2(
1 + n − 1

n + r

)−(n+r)/2

≥ c
(1 + r/n)−1/2

√
r + 1

2n/2
(

1 + r

2n

)−n/2(
1 + n

n + r

)−(n+r)/2

,

which gives the lower bound.
(c) Since the proof of the lower bound in (b) works also for n = 2, we immediately obtain

the lower bound.
To derive the upper bound for n = 2, we first use (9) to obtain

E(2, r) ≤ 2

π c(2, r)

∫ π

0

∫ (π−ϕ)/2

0
(sin θ)r dθ dϕ

= 4

π c(2, r)

∫ π/2

0

(
π

2
− θ

)
(sin θ)r dθ

= 2

c(2, r)

∫ π/2

0

2

π
ϑ(cos ϑ)r dϑ.
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Since 2ϑ/π ≤ sin ϑ for ϑ ∈ [0, π/2], we further deduce that

E(2, r) ≤ 2

c(2, r)

∫ π/2

0
sin ϑ(cos ϑ)r dϑ = 2

c(2, r)

1

r + 1
.

Using (2), we find that c(2, r) ≥ 2/
√

r + 1, which yields E(2, r) ≤ 1/
√

r + 1.

In the following corollary, the bounds in (11) are obtained from Proposition 1 by applying
(2); see (15), (16), and (17). For the bounds in (12), we first use Theorem 2. Then Lemma 5(a)
implies that the factor E(n, r) is bounded from above and below by constants depending only
on r , whereas the factor D(n, r) is equal to the upper bound from Proposition 1 for k = 2
multiplied with (n/r)(1/2)(2n)/r , which has already been considered to obtain (11).

Corollary 1. For k ∈ N and fixed r ∈ (0, ∞), there are constants cr , Cr > 0, depending on r

and k but not on n or γ , such that

cr

(
A(r)

n

γ

(
1+ r

n

)n/2)kn/r

≤ E[Vn(Z0)
k] ≤ Cr n(1−k)/2

(
A(r)

kn

γ

(
1+ r

n

)n/2)kn/r

, (11)

and there are constants cr , Cr > 0, depending on r but not on n or γ , such that

cr

√
n

(
A(r)

n

γ

(
1 + r

n

)n/2)2n/r

≤ var[Vn(Z0)] ≤ Cr

√
n

(
A(r)

4n

γ

(
1 + r

n

)n/2)2n/r

, (12)

where

A(r) := π(r+1)/2

e�((r + 1)/2)
.

For constant intensity γ , we infer from Corollary 1 that E[Vn(Z0)
k] and var[Vn(Z0)] go

to ∞ for fixed distance exponent r and n → ∞. Therefore, we now choose the intensity γ as
a function of n and r such that E[Vn(Z0)] is equal to a positive constant λ−1. By Proposition 1
we have

E[Vn(Z0)] = �

(
n

r
+ 1

)
κn

(
nκnr

2γ c(n, r)

)n/r

.

Therefore, if we define

γ̂ (r, n) := nκnr

2c(n, r)

(
λ�

(
n

r
+ 1

)
κn

)r/n

with λ > 0 then

E[Vn(Z0)] = 1

λ
.

If we substitute γ̂ (r, n) into the lower estimate from Theorem 2, keeping in mind that, by
Lemma 5(a), the factor E(n, r) is bounded from below by a constant depending only on r , and
if we apply (2), then it follows that there is a constant cr > 0 depending on r but not on n or λ

such that

var[Vn(Z0)] ≥ cr

1

r

n

λ2

�(2n/r + 1)

�(n/r + 1)2 2−2n/r ≥ cr λ−2√n → ∞ as n → ∞.

The preceding analysis suggests that in order to arrive at a limiting behaviour comparable
to the case of a Poisson–Voronoi tessellation, i.e. with the variance converging to 0 as n → ∞,
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we cannot choose the distance parameter r fixed but have to adjust it to the dimension. In fact,
in the following theorem we consider the case where r is proportional to n, which is the natural
choice in view of the estimates that have been obtained.

Corollary 2. Let r = an with fixed a ∈ (0, ∞) and k ∈ N. Then there are constants c, C > 0,
depending on a and k but not on n or γ , such that

cγ −k/ank/a−k/2
(

B(a)

n

)kn/2

≤ E[Vn(Z0)
k] ≤ Cγ −k/ank/a−k/2

(
B(a)

n

)kn/2

, (13)

and there are constants c, C > 0, depending on a but not on n or γ , such that

c

[
4(a + 1)a+1

(a + 2)a+2

]n/2

γ −2/a n2/a−3/2
(

B(a)

n

)n

≤ var[Vn(Z0)]

≤ C

[
4(a + 1)a+1

(a + 2)a+2

]n/2

γ −2/a n2/a−3/2
(

B(a)

n

)n

, (14)

where

B(a) := 2πe(a + 1)(a+1)/a

a
.

Hence, if the intensity γ is constant and r = an then E[Vn(Z0)
k] and var[Vn(Z0)] converge to

0 as n → ∞.

Proof. The inequalities in (13) follow from Proposition 1 by means of (2); see (15).
For the inequalities in (14), we first use Theorem 2. There is nothing to prove for n = 2.

Hence, we assume that n ≥ 3. Then E(n, an) is bounded by means of Lemma 5(b), whereas
the factor D(n, an) is equal to the upper bound from Proposition 1 for k = 2 multiplied by
(1/a)(1/2)2/a , which has already been considered to obtain (13).

Remark 4. Note that 4(a + 1)a+1/(a + 2)a+2 < 1 for a > 0.

Now we again choose r = an, with fixed a > 0, and determine the intensity γ in such a
way that the expected volume of the zero cell is equal to a positive constant. This is possible
for a special intensity function depending on a, the dimension n, and a positive constant λ that
can be prescribed arbitrarily. In the following theorem, we describe the asymptotic behaviour
of the volume of the zero cell in such a setting.

Theorem 3. Let r = an, with constant a ∈ (0, ∞), and let the intensity be chosen as

γ̂ (a, n) = an2κn

2c(n, an)

(
λ�

(
1

a
+ 1

)
κn

)a

with λ > 0. Then the following statements hold.

(a) For k ∈ N,
1

λk
≤ E[Vn(Z0)

k] ≤ �(k/a + 1)

λk�(1/a + 1)k
;

in particular,

E[Vn(Z0)] = 1

λ
.
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(b) There are constants c, C > 0, depending on a but not on n or λ, such that

c
1

λ2

1√
n

[
4(a + 1)a+1

(a + 2)a+2

]n/2

≤ var[Vn(Z0)] ≤ C
1

λ2

1√
n

[
4(a + 1)a+1

(a + 2)a+2

]n/2

;

in particular,
lim

n→∞ var[Vn(Z0)] = 0.

Proof. The inequalities in (a) follow from Proposition 1 and the special choice of the intensity
as γ̂ (a, n). In (b) there is nothing to prove for n = 2. For n ≥ 3, the inequalities follow from
Theorem 2, since D(n, an) is proportional to λ−2 for the intensity chosen as γ̂ (a, n) and by
using the bounds for E(n, an) provided by Lemma 5(b).

Remark 5. For a = 1, we have γ̂ (1, n) = nκn2n−1λ and Theorem 3 recovers the sharp bounds
obtained by Alishahi and Sharifitabar [1].

Appendix A. Auxiliary inequalities

The subsequent inequalities follow from approximation (2) of the gamma function (see [2,
p. 24] or [26, Equation (12.33)]). As before, let r ∈ (0, ∞). Then

√
πr

�((r + 1)/2)(2e)r/2

(
n + r

n

)(n−1)/2

(n + r)r/2e−1/(6n)

≤ nκnr

2c(n, r)

≤
√

πr

�((r + 1)/2)(2e)r/2

(
n + r

n

)(n−1)/2

(n + r)r/2e1/(6(n+r)). (15)

Furthermore, for k ∈ N, we have√
2π

re2

(
e2

π

)k/2 √
kn + r

(n + 2)k/2

( √
2eπ

(re/k)1/r

)nk

e−k/(6(n+2))

((
n + r

k

)1/r

(n + 2)−1/2
)nk

≤ �

(
kn

r
+ 1

)
κk
n

≤
√

2π

re2

(
e2

π

)k/2 √
kn + r

(n + 2)k/2

( √
2eπ

(re/k)1/r

)nk

er/(12(kn+r))

((
n + r

k

)1/r

(n + 2)−1/2
)nk

(16)

and

�

(
n

r
+ 1

)k

κk
n

≥
(

2

r

)k/2(
n + r

n + 2

)k/2( √
2eπ

(re)1/r

)nk

e−k/(6(n+2))((n + r)1/r (n + 2)−1/2)nk. (17)
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