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Abstract

Let G ⊂ SU(2, 1) be nonelementary and S be its minimal generating system. In this paper, we show that
if S satisfies some conditions, then S can be replaced by a minimal generating system S 1 consisting only
of loxodromic elements.
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1. Introduction

Let G be a nonelementary Möbius subgroup and S be its generating system. Whether
S can be replaced by a generating system S 1 consisting only of loxodromic elements
is an interesting problem which has been studied extensively. For instance, Doyle and
James proved in [3] that every nonelementary subgroup G of SL(2, R) has a generating
system consisting only of hyperbolic elements. In [9], Rosenberger proved further
that such a system of generators can be chosen to be minimal. Isachenko [6] and
Rosenberger [10] extended these results to the case of PSL(2, C) and obtained the
following theorem.

T 1.1. Let G be a nonelementary subgroup of PSL(2, C). Then there exists a
minimal system of generators of G consisting only of loxodromic elements.

In 2002, Wang and Yang [11] generalised Theorem 1.1 to the setting of PSL(2, Γn)
and proved the following theorem.

T 1.2. Let G be a nonelementary subgroup of PSL(2, Γn). If G contains no
elliptic element which is not strict, then there is a minimal generating system of G
consisting only of loxodromic elements.

In this note, we study the corresponding problem in the setting of SU(2, 1).
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2. Complex hyperbolic geometry

2.1. Complex hyperbolic space. Let C2,1 be the complex vector space of dimension
three equipped with a nondegenerate, indefinite Hermitian form 〈., .〉 of signature (2, 1)
defined to be

〈z, w〉 = w∗Jz = z1w3 + z2w2 + z3w1

with matrix

J =

0 0 1
0 1 0
1 0 0

 .
We consider the subspaces

V− = {z ∈ C2,1 : 〈z, z〉 < 0},

V0 = {z ∈ C2,1 − {0} : 〈z, z〉 = 0}

and the canonical projection

P : C2,1 − {0} → CP2

onto the complex projective space. The complex hyperbolic space H2
C is defined to be

P(V−) and its boundary ∂H2
C is P(V0). That is,

H2
C = {(z1, z2) ∈ C2 : 2Re(z1) + |z2|

2 < 0}

and
∂H2
C − {∞} = {(z1, z2) ∈ C2 : 2Re(z1) + |z2|

2 = 0}.

Given a point z ∈ C2 ⊂ CP2, we can lift z = (z1, z2) to a point z in C2,1, called the
standard lift of z, where

z =

z1

z2

1

 .
There are two distinguished points in V0 which are denoted by 0 and ∞, respectively.
They are

0 =

00
1

 and ∞ =

10
0

 .
2.2. Isometries. Denote by U(2, 1) the group of unitary matrices for the Hermitian
product 〈., .〉. Each such matrix A satisfies the relation A−1 = JA∗J, where A∗ is the
Hermitian transpose of A. The full group of holomorphic isometries of H2

C is the
projective unitary group PU(2, 1) = U(2, 1)/U(1), where U(1) = {eiθI : θ ∈ [0, 2π)} and
I is the 3 × 3 identity matrix. In this paper, we shall consider the group SU(2, 1) of
matrices which are unitary with respect to 〈., .〉 and have determinant 1. Following [5],
holomorphic isometries of H2

C are classified as follows.
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(1) An isometry is elliptic if it fixes at least one point of H2
C.

(2) An isometry is parabolic if it fixes exactly one point of ∂H2
C.

(3) An isometry is loxodromic if it fixes exactly two points of ∂H2
C.

L 2.1. Let

f =

a b c
d e f
g h j

 ∈ SU(2, 1).

Then:

(1) f is loxodromic if f is conjugate toreiθ 0 0
0 e−2iθ 0
0 0 r−1eiθ

 ,
where r > 1;

(2) f is elliptic if f is conjugate toe
iθ1 0 0
0 eiθ2 0
0 0 eiθ3

 or

 cos θeiθ 0 i sin θeiθ

0 eiφ 0
i sin θeiθ 0 cos θeiθ

 ;

(3) f is parabolic if f is conjugate to
1 −

√
2ζ̄ −|ζ |2 + iv

0 1
√

2ζ
0 0 1

 or

e
iθ 0 ieiθt
0 e−2iθ 0
0 0 eiθ

 ,
where ζ ∈ C, t, v ∈ R.

2.3. Totally geodesic manifolds and Fuchsian groups. Unlike real hyperbolic
space, there are two kinds of totally geodesic manifolds with codimension two in H2

C.
In the first place there are complex lines which have constant curvature −1. Every
complex line L is the image of the complex line

L0 = {(z1, z2) ∈H2
C : z2 = 0}

under some element of SU(2, 1). The subgroup of SU(2, 1) stabilising L is thus
conjugate to the subgroup S(U(1) × U(1, 1)) ⊂ SU(2, 1). Secondly, we have totally
real Lagrangian planes which have constant curvature − 1

4 . Every Lagrangian plane is
the image of the standard real Lagrangian plane

RR = {(z1, z2) ∈H2
C : zi = xi ∈ R, 2x1 + x2

2 < 0}

under some element of SU(2, 1). The group stabilising RR is denoted by SO(2, 1),
which is the subgroup of SU(2, 1) comprising elements with real entries. We say that
a group G is nonelementary if there are two loxodromic elements in G with distinct
fixed points. Following [2], for any nonelementary complex hyperbolic Kleinian group
G ⊂ SU(2, 1),
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(1) G is called C-Fuchsian if it preserves a complex line;
(2) G is called R-Fuchsian if it preserves a Lagrangian plane.

Otherwise, G is called non-Fuchsian.
We call a nonelementary Kleinian group G Fuchsian if G is either C-Fuchsian or

R-Fuchsian.
See [1, 5, 8] for more details about complex hyperbolic geometry and complex

hyperbolic isometric groups.

3. Generating systems

In order to prove our main result, we need the following lemmas.

L 3.1. Let f , g ∈ SU(2, 1) and f be loxodromic. If g does not interchange the two
fixed points of f , then there is an integer n0 ∈ N such that f mg or f −mg is loxodromic
for all m ≥ n0.

P. Without loss of generality, we assume that

f =

reiθ 0 0
0 e−2iθ 0
0 0 r−1eiθ

 , g =

a b c
d e f
g h j

 ,
where r > 1. Then

tr( f mg) = rmeimθa + e−2imθe + r−meimθ j

and
tr( f −mg) = r−me−imθa + e2imθe + rme−imθ j.

Since the fixed points of f are 0 and∞ and g does not interchange them, we know that
at least one of a or j is not zero. This implies that

max{|tr( f mg)|, |tr( f −mg)|} > 3,

when m is large enough. It follows from [2] that at least one of f mg or f −mg is
loxodromic. �

By the same method used in the proof of Lemma 3.1, we can prove the following.

L 3.2. Let f , g ∈ SU(2, 1) and f be parabolic. If g does not fix the fixed point of
f , then for all m large enough, the elements f mg are loxodromic.

T 3.3. Let G be a nonelementary subgroup of SU(2, 1) and S be a minimal
generating system of G.

(1) If S contains an element which is not elliptic, then S can be replaced by a
minimal generating system S 1 consisting only of loxodromic elements.

(2) If S contains a sub-generating system S 2 which generates a C-Fuchsian group,
then S can be replaced by a minimal generating system S 1 consisting only of
loxodromic elements.
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P. The proof of (1) can be divided into the following two cases.

Case I. S contains a loxodromic element f . We may assume that

f =

reiθ 0 0
0 e−2iθ 0
0 0 r−1eiθ

 ,
where r > 1. If every element in S \ { f } is loxodromic there is nothing to prove. Let
g ∈ S be parabolic or elliptic. If g does not interchange 0 and ∞, then by Lemma 3.1,
we can find a positive integer n such that f ng (or f −ng) is loxodromic. Replace g by
f ng (or f −ng). If g interchange 0 and∞, then

g =

0 0 u
0 v 0
s 0 0

 , uvs = −1.

Since G is nonelementary, there exists h ∈ S such that

h =

a b c
d e f
g h j


and at least three of the numbers a, c, g, j are not zero. Then

gh =

ug uh u j
vd ve v f
sa sb sc

 .
First, replace g by gh and then replace gh by f ngh (or f −ngh). Repeating the above
procedure on each nonloxodromic element in S , we can obtain a minimal generating
system S 1 consisting only of loxodromic elements.

Case II. S contains a parabolic element f .
By Lemma 3.2 and a discussion similar to Case I, we can obtain a minimal

generating system S 1 consisting only of loxodromic elements.

We now prove (2). Since S 2 generates a C-Fuchsian group, by conjugation, we may
assume that

S 2 ⊂ S(U(1) × U(1, 1)).

Because the group PU(1, 1) is isomorphic to PSL(2, R), by [9], S 2 can be replaced by
S ′2 consisting only of loxodromic elements with card[S 2] = card[S ′2], where for a set
M, card[M] denotes its cardinality. Now by arguing similarly to the proof of (1), we
can prove (2). �
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4. Two criteria for Fuchsian groups

In [7], Maskit proved that a nonelementary subgroup G of SL(2, C) is Fuchsian
if and only if each element in G has real trace. In [4], the authors considered the
corresponding problem in the setting of SU(2, 1) and obtained the following theorem.

T 4.1. Let G ⊂ SU(2, 1) be nonelementary. If each loxodromic element in G is
hyperbolic, then G is Fuchsian.

R 4.2. In [4], the authors constructed an R-Fuchsian group and a C-Fuchsian
group in which each loxodromic element is hyperbolic. Note that the converse of
Theorem 4.1 is false, that is, there exists some C-Fuchsian group in which loxodromic
elements are not hyperbolic (see [4]).

In this section, we prove two ‘if and only if’ criteria for Fuchsian groups.

T 4.3. Let G ⊂ SU(2, 1) be nonelementary and f ∈G be loxodromic. Then G
is R-Fuchsian if and only if each nonelementary subgroup 〈 f , g〉 is R-Fuchsian, where
g ∈G is loxodromic.

P. We claim that each loxodromic element in G is hyperbolic. Let g ∈G
be loxodromic. If fix( f ) ∩ fix(g) = ∅, then by the assumption, we know that g is
hyperbolic. If fix( f ) ∩ fix(g) , ∅, we can find a loxodromic element h in G such that
fix( f ) ∩ fix(hgh−1) = ∅; then the subgroup 〈 f , hgh−1〉 is R-Fuchsian. This implies that
g is hyperbolic. It follows from Theorem 4.1 that G is Fuchsian. Since G contains
two-generator R-Fuchsian subgroups, it follows that G is R-Fuchsian. �

It is known that every complex line is uniquely determined by two points in H
2
C, so

the following theorem is obvious.

T 4.4. Let G ⊂ SU(2, 1) be nonelementary and f ∈G be loxodromic. Then G
is C-Fuchsian if and only if each nonelementary subgroup 〈 f , g〉 is C-Fuchsian, where
g ∈G is loxodromic.
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