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Abstract It is shown that given a uniform algebra A and a peak point x0 for A, every function in A

can be expressed as a linear combination of two functions in A that peak at x0.

Keywords: uniform algebra; peak point; linear combination

2000 Mathematics subject classification: Primary 46J10; 46J15; 30H05

In their work on contractive actions on a kernel Hilbert space [1], Davidson and Douglas
were led to the following question: is the linear span of the functions in the ball algebra
A(B2) that peak at the point (1, 0) uniformly dense in the ball algebra A(B2)? (The ball
algebra A(B2) consists of the continuous functions on the closed unit ball B̄2 in C

2 that
are holomorphic on the open unit ball B2. A function f is said to peak at a point x0 if
f(x0) = 1 and |f(x)| < 1 for all other points x in the domain of f .) It turns out that
the answer is affirmative. Moreover, the linear span is not only dense in the ball algebra,
it is equal to the ball algebra, and in fact every function in the ball algebra can be
expressed as a linear combination of two functions in the ball algebra that peak at (1, 0).
Furthermore, this fact carries over to arbitrary uniform algebras. After this information
was communicated to Douglas and Davidson, they found an entirely different proof of
the density of the linear span of peak functions in the ball algebra. See [1] for their proof
and applications.

Here now is the precise statement of our result. (A point x0 is a peak point for a
uniform algebra if there is a function in the algebra that peaks at x0.)

Theorem 1. Let A be a uniform algebra on a compact Hausdorff space X, and let x0

be a peak point for A. Then every function in A can be expressed as a linear combination
of two functions in A that peak at x0.

We will establish this theorem using the following result.

Proposition 2. Let A be a uniform algebra on a compact Hausdorff space X, and let
x0 be a peak point for A. Let p be a positive continuous function on X. Then there is a
function g in A such that g(x0) = p(x0) and |g(x)| � p(x) for all x ∈ X.
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This proposition is a special case of the following standard fact from uniform algebra
theory, which appears as Theorem II.12.5 in [2].

Theorem 3. Let B be a closed subspace of C(X) (X a compact Hausdorff space). Let
E be a closed subset of X such that, for every measure µ that annihilates B, the restriction
µE of µ to E also annihilates B. Let f ∈ B|E , and let p be a positive continuous function
on X such that |f(y)| � p(y) for all y ∈ E. Then there is g ∈ B such that g|E = f and
|g(x)| � p(x) for all x ∈ X.

To see that Proposition 2 is a special case of Theorem 3 note that if B is a uniform
algebra, x0 is a peak point for B, the function h ∈ B peaks at x0, and µ annihilates B,
then

µ({x0}) = lim
n→∞

∫
hn dµ = 0,

so the singleton set {x0} satisfies the hypothesis on the set E above. On the other hand,
the use of Theorem 3 can be avoided, for, as pointed out by the referee, there is a
completely elementary proof of Proposition 2 which we now present.

Proof of Proposition 2. Let h ∈ A peak at x0. We can suppose that p(x0) = h(x0) =
1 and that for all x ∈ X we have p(x) � δ > 0 and |h(x)| < 3

2p(x). For each positive
integer n, set

Sn =
{

x ∈ X :
|h(x)|
p(x)

∈
(

1 +
1

2n+1 , 1 +
1
2n

]}
.

Note that each Sn is disjoint from a neighbourhood of x0, and hence for each n there is
an ηn such that |h(x)| < ηn < 1 for all x ∈ Sn. Hence for each n we can choose a positive
integer kn such that |h(x)|kn < δ/3n for all x ∈ Sn. Now define

g =
∞∑

n=1

hkn

2n

so that g is in A. Note that for every m and n and x ∈ Sm we have

|h(x)|kn � |h(x)| �
(

1 +
1

2m

)
p(x)

(as |h(x)| � 1). Thus, for x ∈ Sm, we have

|g(x)| �
∑

n

{(
1
2n

)(
1 +

1
2m

)
p(x) : n �= m

}
+

(
1

2m

)(
1

3m

)
p(x) < p(x).

Also, for x ∈ X\ ∪ Sn, it is clear that |g(x)| � p(x). Finally, g(x0) = 1. �

Proof of Theorem 1. Let f be a function in A. Consider first the case when
f(x0) = 0. Choose a continuous function ϕ that peaks at x0, and set α(x) = 1 − |ϕ(x)|.
Then α is a non-negative continuous function on X that vanishes only at x0. Now choose
M > ‖α‖∞ + ‖f‖∞ and set

p(x) = M − α(x) − |f(x)|.

Then p is a positive continuous function on X, and p has a strict maximum at x0.
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By Proposition 2, there is a function g in A such that g(x0) = p(x0) and |g(x)| � p(x)
for all x ∈ X. Then |g(x)| < g(x0) for all x �= x0, so some scalar multiple of g peaks
at x0.

Now set h = g + f . Then h ∈ A and

h(x0) = g(x0) + f(x0) = g(x0) = M.

For all x ∈ X,

|h(x)| � |g(x)| + |f(x)|
� p(x) + |f(x)|
= M − α(x).

Thus |h(x)| < h(x0) for all x �= x0, so some scalar multiple of h peaks at x0. Since
f = h − g, this completes the proof in the case when f(x0) = 0.

For the general case, note that we may assume without loss of generality that f(x0) � 0.
From the case already considered we have

f − f(x0) = h − g

with g and h scalar multiples of functions that peak at x0 and with h(x0) = g(x0) =
M > 0. Now h + f(x0) takes a strict maximum at x0 and hence is a scalar multiple of a
function that peaks at x0. Since f = (h + f(x0)) − g, this completes the proof. �

Remark 4. A slight modification of the above argument shows that when f(x0) = 0
and ‖f‖∞ < 1, then f = h − g, where each of g and h peaks at x0. We simply replace α

by εα, where ε > 0 is a number small enough that ‖εα‖∞ + ‖f‖∞ < 1, and set M = 1.
The last part of the above argument can then be arranged to show that more generally
whenever f(x0) is real, f = h−g with g and h positive scalar multiples of peak functions.

Remark 5. If the space X is not metrizable, then the algebra A may not have any peak
points, but it will still have p-points (see [2, § II.12]). A version of Theorem 1 remains
true for p-points. Omitting ϕ and α from the proof of Theorem 1, we see that every
function in A is a difference of two functions g and h in A each attaining its maximum
modulus at x0, but these maxima may not be strict. Taking ϕ to be a function that
peaks only ‘near’ x0, one can arrange to have the maxima of g and h attained only in an
arbitrarily (small) prescribed neighbourhood of x0.

Remark 6. It is well known that Theorem 3 (together with the F. and M. Riesz
theorem) yields the Rudin–Carleson theorem that every closed subset E of the unit circle
with linear measure zero is a peak-interpolation set for the disc algebra. It is interesting
to note that Theorem 3 also implies that the interpolating function can be required to
decrease arbitrarily fast off of E. In particular, it shows that there are functions in the
disc algebra that peak arbitrarily steeply at the point 1.
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