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Abstract

In this paper we show that, in the stable case, when m ≥ 2n − 1, the cohomology ring H∗(Repn(m)B) of
the representation variety with Borel mold Repn(m)B and H∗(Fn(Cm)) ⊗ H∗(Flag(Cn)) ⊗ Λ(s1, . . . , sn−1)
are isomorphic as algebras. Here the degree of si is 2m − 3 when 1 ≤ i < n. In the unstable cases,
when m ≤ 2n − 2, we also calculate the cohomology group H∗(Repn(m)B) when n = 3, 4. In the most
exotic case, when m = 2, Repn(2)B is homotopy equivalent to Fn(C2) × PGLn(C), where Fn(C2) is the
configuration space of n distinct points in C2. We regard Repn(2)B as a scheme over Z, and show that
the Picard group Pic(Repn(2)B) of Repn(2)B is isomorphic to Z/nZ. We give an explicit generator of the
Picard group.
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1. Introduction

Moduli spaces of representations have been investigated and applied by many
mathematicians in various subjects. For example, Fricke spaces were constructed
as Teichmüller spaces of compact Riemann surfaces of genus g (where g ≥ 2) by
using moduli spaces of discrete and faithful representations of the fundamental
groups in PSL2(R) or SL2(R) [1]. The moduli spaces of stable vector bundles on a
compact Riemann surface were described as the moduli spaces of irreducible unitary
representations of the fundamental group [10, 11]. The moduli spaces of θ-semistable
representations of quivers were constructed by King [5]. King’s construction can be
applied to developing the representation theory of wild algebras and to describing
moduli spaces of vector bundles on special projective varieties.

In this paper, we continue our work from our paper [9] to investigate the topology
of representation varieties with Borel mold more precisely. The objects with which
we deal here are not irreducible representations, but representations with Borel mold.
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56 K. Nakamoto and T. Torii [2]

By a global representation theory we mean a theory of representations parametrized
by schemes or topological spaces. Recall that a mold is a subsheaf of OX-subalgebras
of the full matrix ring Mn(OX) that is a subbundle of Mn(OX) on ringed spaces (X, OX).
Several moduli spaces of representations have been constructed for given types of
molds. For example, in [7] we treat the moduli space of absolutely irreducible
representations, and in [6] we treat the moduli space of representations with Borel
mold. We propose to construct the moduli space with any mold of degree two for
general groups and monoids in a future paper.

Recall that a representation with Borel mold for a group or a monoid is a
representation that can be normalized to a representation in upper triangular matrices
and whose image of the group or the monoid generates the algebra of upper triangular
matrices. The moduli space of representations with Borel mold is important,
since representations with Borel mold are typical examples of indecomposable
representations. This moduli space is also easy to deal with in place of the absolutely
irreducible case. In [9], we described the moduli space of representations with Borel
mold for free monoids as fibre bundles over the configuration spaces. Our description
has enabled us to determine the cohomology ring of the moduli space Chn(m)B of
representations with Borel mold of degree n for the free monoid of rank m over C. We
have also determined the cohomology rings of all of the related varieties Bn(m)B and
Repn(m)B over C except for Repn(m)B when m ≤ 1

2 (n2 − n) + 1.
In this article we deal with the variety Repn(m)B where m ≤ 1

2 (n2 − n) + 1. The
variety Repn(m)B is defined to be the scheme consisting of representations with Borel
mold of degree n for the free monoid of rank m (without taking the quotient by PGLn).
The varieties Repn(m)B behave differently when m ≥ 2n − 1 and when m ≤ 2n − 2.
We call the case where m ≥ 2n − 1 the stable case and the case where m ≤ 2n − 2
the unstable case. In the stable case, we can easily describe the cohomology ring
of Repn(m)B over C, as we see in the following theorem.

T 1.1 (Corollary 3.3). If m ≥ 2n − 1, then H∗(Repn(m)B) and

H∗(Fn(Cm)) ⊗ H∗(Flag(Cn)) ⊗ Λ(s1, . . . , sn−1)

are isomorphic as algebras. Here the degree of si is 2m − 3 when 1 ≤ i < n.

On the other hand, in the unstable case we cannot deal with the cohomology group
of Repn(m)B by a standard method. If m < 2n − 1, then the free monoid of rank m does
not have enough free elements to generate the algebra of upper triangular matrices in
Mn as algebras. Indeed, the (2n − 1)-matrices {Eii}1≤i≤n and {Ei,i+1}1≤i<n are ‘natural’
generators of the algebra of upper triangular matrices, while there are no ‘natural’
generators consisting of (2n − 2)-matrices. The smallest number of elements that
‘naturally’ generate the algebra of upper triangular matrices is 2n − 1. In the unstable
case, the cohomology of Repn(m)B has a strange aspect, since the m-matrices are not
free enough. This interpretation is not mathematical, but calculating the cohomology
seems to indicate that this is the case. In Section 2, we calculate the cohomology group
in the unstable case for small degree, namely, n = 3, 4.
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The case where m = 2 is the most exotic of the unstable cases. The variety Repn(2)B

over C is homotopy equivalent to Fn(C2) × PGLn(C) (Theorem 5.2). In particular, by
Corollary 5.3

H2(Repn(2)B; Z) � Z/nZ.

When we regard Repn(2)B as a scheme over Z, the Picard group Pic(Repn(2)B) is
isomorphic to Z/nZ (see Proposition 5.9). Further, we can describe the Picard group
more precisely, as follows.

T 1.2 (Theorem 5.12). For the universal flag

{0} ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = On
Repn(2)B

on the variety Repn(2)B over Z, we put Li :=Li/Li−1 where i = 1, 2, . . . , n. Then

L1 � L2 � · · · � Ln.

Furthermore, L1 gives a generator of

Pic(Repn(2)B) � Z/nZ.

Here we use the term universal flag to mean the unique stable flag of O⊕n
Repn(2)B

under
the action of the free monoid of rank m. As an application of this theorem we obtain
the following result of global representation theory.

C 1.3 (Corollary 5.15). Let X be an affine scheme. Let ρ be a representation
with Borel mold of degree n on X for a group or a monoid Γ generated by two elements.
Suppose that Pic X has no n-torsion elements. Then ρ has the unique Γ-stable flag

{0} ⊂ OX ⊂ O
2
X ⊂ · · · ⊂ O

n
X .

In other words, there exists a suitable matrix P ∈ GLn(R) such that P−1ρ(γ)P is an
upper triangular matrix for each γ ∈ Γ where R is the coordinate ring of X.

We also discuss conditions under which there exists a two-dimensional
representation with Borel mold for the free group of rank two over the rings of integers
of quadratic fields. For the ring R of integers of the quadratic field Q(

√
m) such a two-

dimensional representation exists if and only if m = −3, or m > 0 with m ≡ 5 mod 8
and there exists ε = 1

2 (x + y
√

m) ∈ R× for some odd integers x, y (see Corollary 5.18).
In this paper we do not discuss several topics on the moduli of representations with

Borel mold. The rational homotopy types of the moduli space Chn(m)B and the related
varieties Bn(m)B and Repn(m)B over C are discussed in [8], and we plan to discuss the
characteristic classes of representations with Borel mold in future papers.

The organization of this paper is as follows. In Section 2 we review the
representation variety with Borel mold and the results obtained in [9]. In Section 3
we deal with the stable case. In Section 4 we deal with the small degree cases. In
Section 5 we discuss the case when m = 2.

In this paper we use H∗(X) to denote the cohomology group of X with coefficients
in Z for simplicity.
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2. A survey of the representation variety with Borel mold

This section is devoted to a survey of the representation variety with Borel mold
Repn(m)B of degree n for the free monoid of rank m and the related varieties Bn(m)B

and Chn(m)B. For more precise details see [9].
The variety Repn(m)B is defined to be the subset of Mn(C)m consisting of m-tuples

(A1, . . . , Am) such that A1, . . . , Am generate a Borel mold:

Repn(m)B := {(A1, A2, . . . , Am) ∈Mn(C)m | A1, . . . , Am generate a Borel mold}.

Here we say that a subalgebra of Mn(C) is a Borel mold if it can be written in the form
P · Bn(C) · P−1 for some P ∈ GLn(C) whereBn(C) is the subalgebra of upper triangular
matrices. We also define the variety Bn(m)B by

Bn(m)B := {(A1, A2, . . . , Am) ∈ Bn(C)m | A1, . . . , Am generate a Borel mold}.

The group PGLn(C) acts on Repn(m)B by

(A1, . . . , Am) 7→ (P−1A1P, . . . , P−1AmP).

The quotient
Chn(m)B := Repn(m)B/PGLn(C)

is called the moduli space of representations with Borel mold of degree n for the free
monoid of rank m.

Let Flag(Cn) be the flag variety, which consists of complete flags in Cn. We define
the morphism Repn(m)B→ Flag(Cn) by letting (A1, . . . , Am) correspond to the unique
flag that is invariant under A1, . . . , Am. This morphism induces a fibration

Bn(m)B→ Repn(m)B→ Flag(Cn).

Hence we obtain the associated Serre spectral sequence

Ep,q
2 � Hp(Flag(Cn)) ⊗ Hq(Bn(m)B)⇒ Hp+q(Repn(m)B).

We now recall the cohomology of Bn(m)B. For (A1, . . . , Am) ∈ Bn(m)B we denote
by a(i) jk the ( j, k)-entry of Ai. Put wi = (a(1)ii, a(2)ii, . . . , a(m)ii). We obtain the
morphism Bn(m)B→ Fn(Cm) by

(A1, . . . , Am) 7→ (w1, w2, . . . , wn)

where
Fn(Cm) := {(p1, p2, . . . , pn) ∈ (Cm)n | p1, . . . , pn are distinct}

is the configuration space of n distinct points in Cm. This induces a fibration

YB→ Bn(m)B→ Fn(Cm)

with YB ' (S 2m−3)n−1. The associated Serre spectral sequence collapses from E2 term.
This leads to the following theorem.
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T 2.1 (See [9, Theorem 4.3]). The cohomology ring of Bn(m)B is an exterior
algebra generated by s1, . . . , sn−1 over H∗(Fn(Cm)). That is,

H∗(Bn(m)B) � H∗(Fn(Cm)) ⊗ Λ(s1, . . . , sn−1).

Here deg si = 2m − 3.

The cohomology of Chn(m)B is also easy to describe. There is an isomorphism
between Chn(m)B and Bn(m)B/Bn(C) where Bn(C) is the subgroup of PGLn(C)
consisting of upper triangular matrices. Then we obtain a fibration

YC → Chn(m)B→ Fn(Cm)

where YC ' (CPm−2)n−1. The associated Serre spectral sequence collapses from the E2

term.

T 2.2 (See [9, Theorem 5.2]). The cohomology ring of Chn(m)B is a truncated
polynomial algebra generated by t1, . . . , tn−1 over H∗(Fn(Cm)). That is,

H∗(Chn(m)B) � H∗(Fn(Cm)) ⊗ Z[t1, . . . , tn−1]/(tm−1
1 , . . . , tm−1

n−1 ),

where deg t j = 2.

Let us return to the cohomology of Repn(m)B. In the spectral sequence

Ep,q
2 � Hp(Flag(Cn)) ⊗ Hq(Bn(m)B)⇒ Hp+q(Repn(m)B),

the image of H∗(Fn(Cm)) in H∗(Bn(m)B) consists of permanent cycles [9, Lemma 6.3].
If m > 1

2 (n2 − n) + 1, then we obtain the following proposition.

P 2.3 (See [9, Proposition 6.5]). If m > 1
2 (n2 − n) + 1, then the spectral

sequence collapses from the E2 term. In this case,

H∗(Repn(m)B) � H∗(Fn(Cm)) ⊗ H∗(Flag(Cn)) ⊗ Λ(s1, . . . , sn−1)

where the degree of si is 2m − 3 when i = 1, . . . , n − 1.

In the general case, the spectral sequence does not always collapse. In order to
describe the E2m−1 term, we prepare the following. For positive numbers n and m we
define the differential graded algebra Cn(m) by

Cn(m) := Z[t1, t2, . . . , tn]/(c1, c2, . . . , cn) ⊗ Λ(s1, s2, . . . , sn−1)

where ci is the ith elementary symmetric polynomial in Z[t1, t2, . . . , tn], deg ti = 2,
deg si = 2m − 3 and d(s j) = (t j − t j+1)m−1 when j = 1, 2, . . . , n − 1.

L 2.4 (See [9, Lemma 6.6]). The E2m−1 term of the Serre spectral sequence of
the fibre bundle

Bn(m)B→ Repn(m)B→ Flag(Cn)

is H∗(Cn(m)) ⊗ H∗(Fn(Cm)).
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Before ending this section, we introduce the case when n = m = 2.

P 2.5 (See [9, Proposition 6.7]). If n = 2 and m = 2, then there is a
homotopy equivalence

Rep2(2)B ' F2(C2) × PU(2) ' S 3 × RP3.

Hence the cohomology ring of Rep2(2)B is given by

H∗(Rep2(2)B) � H∗(S 3) ⊗ H∗(RP3).

In particular, H∗(Rep2(2)B) has the following module structure.

i 0 1 2 3 4 5 6 ≥7
Hi(Rep2(2)B) Z {0} Z/2Z Z2 {0} Z/2Z Z {0}

3. The stable case

In this section we show that if m ≥ 2n − 1, then the spectral sequence

Ep,q
2 � Hp(Flag(Cn)) ⊗ Hq(Bn(m)B)⇒ Hp+q(Repn(m)B)

collapses. We say that the case where m ≥ 2n − 1 is stable and that the other case is
unstable. Indeed, the differentials in the spectral sequence vanish if and only if the
case is stable.

Recall that the cohomology ring of the flag variety Flag(Cn) is given by

H∗(Flag(Cn)) = Z[t1, t2, . . . , tn]/(c1, c2, . . . , cn)

where ci is the ith elementary symmetric polynomial in Z[t1, t2, . . . , tn]. Note that we
can take

{tm1
1 tm2

2 · · · t
mn
n | 0 ≤ mi ≤ n − i}

as a basis of
H∗(Flag(Cn)) = Z[t1, t2, . . . , tn]/(c1, c2, . . . , cn).

For details see [4, Section 14.2]. Let I be the ideal generated by c1, . . . , cn.

L 3.1. When 1 ≤ i ≤ n and the i indices j1, j2, . . . , ji ∈ {1, 2, . . . , n} are distinct,

tn−1
j1 tn−2

j2 tn−3
j3 · · · t

n−k
jk · · · t

n−i+1
ji−1

tn−i
ji · t ji ∈ I.

P. It suffices to prove that

tn−1
1 tn−2

2 · · · tn−k
k · · · tn−i+1

i−1 tn−i
i · ti ∈ I
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because I is invariant under the action of the symmetric group Sn on the set of indices
{1, 2, . . . , n}. We prove this statement by induction on i. First, we prove the statement
in the case when i = 1. Considering tn

1 mod I,

tn
1 = tn−1

1 · t1 ≡ tn−1
1 (−t2 − t3 − · · · − tn)

≡ −tn−2
1

(∑
1<i

t1ti
)

≡ −tn−2
1

(
−

∑
1<i< j

tit j

)
≡ tn−3

1

( ∑
1<i< j

t1tit j

)
≡ · · ·

≡ (−1)n−1t1t2t3 · · · tn ≡ 0.

This implies that the statement is true in the case when i = 1.
Now let 2 ≤ m ≤ n and suppose that the statement is true for all values of i less than

or equal to m − 1. Note that

tn−1
1 ≡ (−1)n−1

∑
1<i1<i2<···in−1

ti1 ti2 · · · tin−1 ≡ (−1)n−1t2t3 · · · tn.

In the case when i = m, we see that

tn−1
1 tn−2

2 · · · tn−k
k · · · tn−i+1

i−1 tn−i
i · ti

≡ (−1)n−1(t2t3 · · · tn) · tn−2
2 · · · tn−k

k · · · tn−i+1
i−1 tn−i

i · ti
≡ (−1)n−1tn−1

2 tn−2
3 · · · tn−k+1

k · · · tn−i+2
i−1 tn−i+1

i · ti · (ti+1 · · · tn)

≡ 0.

Our result follows by induction. �

P 3.2. If m ≥ 2n − 1, then all differentials of Cn(m) are 0. In particular,
H(Cn(m)) = Cn(m).

P. Note that d(si) = (ti − ti+1)m−1 is expressed as a linear combination tαi tβi+1 with
α + β = m − 1. If m ≥ 2n − 1, then (ti − ti+1)m−1 = 0 by Lemma 3.1. This implies that
all differentials of Cn(m) are 0. �

C 3.3. If m ≥ 2n − 1, then the cohomology ring of Repn(m)B is given by

H∗(Repn(m)B) � H∗(Fn(Cm)) ⊗ H∗(Flag(Cn)) ⊗ Λ(s1, . . . , sn−1),

where the degree of si is 2m − 3 when 1 ≤ i < n.

P. The statement follows from Proposition 3.2. �

https://doi.org/10.1017/S1446788711001418 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001418


62 K. Nakamoto and T. Torii [8]

By Corollary 3.3 we only need to consider the unstable cases in what follows. The
following table shows the bound of the unstable range m ≤ 2n − 2.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 · · ·

2n − 2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 · · ·

We show that the differentials never vanish in Cn(m) if m ≤ 2n − 2.

P 3.4. If m ≤ 2n − 2, then d(si) , 0 in Cn(m) for all 1 ≤ i < n.

P. By symmetry, it suffices to show that d(s1) , 0. Indeed, we may assume
that m = 2n − 2 for if the relation d(s1) = (t1 − t2)2n−3 , 0 holds for the case when
m = 2n − 2, then the relation d(s1) = (t1 − t2)m−1 , 0 also holds if m < 2n − 2. Since
tn
1 ≡ tn

2 ≡ 0 mod I

d(s1) = (t1 − t2)2n−3 ≡ (−1)nc(tn−1
1 tn−2

2 − tn−2
1 tn−1

2 ),

where c =
(

2n−3
n−1

)
.

Let N be the top degree (that is, n(n − 1)) component of Z[t1, . . . , tn]/I. Then
it is easy to check that N is a free module of rank one over Z generated by the
class tn−1

1 tn−2
2 · · · tn−1 and the action of the symmetric group Sn on N is the sign

representation. Let a = tn−3
3 tn−4

4 · · · tn−1. Then

d(s1)a = (−1)n2ctn−1
1 tn−2

2 a , 0.

This completes the proof. �

4. Small degree cases

In unstable cases, we need to calculate the cohomology group of Repn(m)B directly
for each case. This section is devoted to calculating the cohomology group of
Repn(m)B and its Poincaré series in small degree cases. The unstable case when
(n, m) = (2, 2) has been discussed in Proposition 2.5.

First we consider the cases when n = 3. When n = 3, there are three unstable cases,
namely, m = 2, 3, 4. We next consider the cases when n = 4 and 2 ≤ m ≤ 6.

Recall that the cohomology group of Fn(Cm) is free over any commutative ring R
and its Poincaré series is given by

PS(Fn(Cm)) :=
∑
i≥0

rankRH∗(Fn(Cm); R) · ti =

n−1∏
α=1

(1 + αt2m−1).

4.1. The space YR. Recall that there is a fibre bundle YB→ Bn(m)B→ Fn(Cm) and
Repn(m)B is isomorphic to Bn(m)B ×Bn PGLn. We set YR = YB ×Bn PGLn. Then there
is a fibre bundle YB→ YR→ Flag(Cn).
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In the case when m = 2 we can determine the homotopy type of the space YR.

L 4.1. When m = 2, we have YR ' PGLn(C).

P. Recall that Bn acts freely on YB and the quotient is YC . Thus we have a fibre
bundle PGLn→ YR→ YC . Since YC is homotopy equivalent to (CPm−2)n−1 we have that
YC is contractible if m = 2. Hence the map PGLn→ YR is a homotopy equivalence. �

In [8] we have shown that Repn(m)B is rationally homotopy equivalent to the
product Fn(Cm) × YR. If p is sufficiently large, then the similar result on the p-local
homotopy type of Repn(m)B holds.

L 4.2. Let p be a prime number such that p ≥ m. Then Repn(m)B is p-locally
homotopy equivalent to Fn(Cm) × YR.

P. In [9, Lemma 4.4], we defined a subspace Bn(m)′B of Bn(m)B such that the
inclusion Bn(m)′B ↪→ Bn(m)B is a TR-homotopy equivalence. Let Y ′B be the fibre of the
fibre bundle Bn(m)′B→ Fn(Cm) that is homotopy equivalent to the product of (n − 1)
copies of S 2m−3. Set

Repn(m)′B = Bn(m)′B ×TR PU(n)

and
Y ′R = Y ′B ×TR PU(n).

Then there is a fibre bundle

Y ′R→ Repn(m)′B→ Fn(Cm).

The canonical maps Repn(m)′B→ Repn(m)B and Y ′R→ YR are homotopy equivalences.
When i , j, we let

πi, j : Fn(Cm)→ F2(Cm)

be the map
πi, j(x1, . . . , xn) = (xi, x j).

There is a homotopy equivalence F2(Cm)
'
−−→ S 2m−1, given by (x, y) 7→ ‖x − y‖−1

(x − y).
Let E be a contractible free U(m − 1)-space and let X = E/U(m − 2). There is a fibre

bundle S 2m−3→ X→ BU(m − 1), where BU(m − 1) = E/U(m − 1). The fibre bundle

S 2m−3→ U(m)/U(m − 2)→ U(m)/U(m − 1) = S 2m−1

is the induced bundle of X→ BU(m − 1) by the map S 2m−1→ BU(m − 1) that is a
generator of

π2m−1(BU(m − 1)) � Z/(m − 1)!Z.

When 1 ≤ i < n, we let Xi be a copy of X. There is a fibre bundle

Y ′R→
(∏

i

Xi

)
×TR PU(n)→

∏
i

BU(m − 1).
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The fibre bundle Repn(m)′B→ Fn(Cm) is the induced bundle by the map

Fn(Cm)
∏

i πi,i+1
−−−−−−−→

∏
i

F2(Cm) '
∏

i

S 2m−1→
∏

i

BU(m − 1).

If p ≥ m, then π2m−1(BU(m − 1))(p) = {0}. Hence the fibration

Repn(m)′B(p)→ Fn(Cm)(p)

is induced by the trivial map to
∏

BU(m − 1)(p). Therefore

Repn(m)′B(p) ' Fn(Cm)(p) × Y ′R(p).

This completes the proof. �

C 4.3. Let p be a prime number such that p ≥ m and let R be a commutative
Z(p)-algebra. Then there is an isomorphism of graded algebras:

H∗(Repn(m)B; R) � H∗(Fn(Cm); R) ⊗R H∗(YR; R).

Let R be a commutative ring. We denote by E∗,∗r (C) the Serre spectral sequence
associated to the fibre bundle YR→ Repn(m)B→ Fn(Cm) with coefficients in R. That is,

E∗,∗2 (C) � H∗(Fn(Cm); R) ⊗R H∗(YR; R) =⇒ H∗(Repn(m)B; R).

P 4.4. Suppose that H∗(Repn(m)B; R)→ H∗(YR; R) is a split surjection of
R-modules (or R-algebras). Then there is an isomorphism of H∗(Fn(Cm); R)-modules
(or R-algebras respectively), namely

H∗(Repn(m)B; R) � H∗(Fn(Cm); R) ⊗R H∗(YR; R).

P. By the assumption, E∗,∗r (C) collapses from the E2 term. The splitting map
H∗(YR)→ H∗(Repn(m)B) extends to a homomorphism of H∗(Fn(Cm))-modules

H∗(Fn(Cm)) ⊗ H∗(YR)→ H∗(Repn(m)B).

This map is an isomorphism since the map of associated graded modules is an
isomorphism. �

Recall that the differential graded algebra Cn(m) is defined to be

Cn(m) = Z[t1, . . . , tn]/(c1, . . . , cn) ⊗ Λ(s1, . . . , sn−1)

with d(ti) = 0 and d(si) = (ti − ti+1)m−1. We give a bigrading on Cn(m) by |ti| = (2, 0)
and |si| = (0, 2m − 3) and let Cn(m)p,q denote the degree (p, q)-component of Cn(m).

Let
ω = tn−1

1 tn−2
2 · · · tn−1 ⊗ s1 · · · sn−1 ∈Cn(m).
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When i + p = n(n − 1) and j + q = (2m − 3)(n − 1), we define a pairing

〈−, −〉 : Cn(m)i, j ⊗Cn(m)p,q→ Z

by 〈x, y〉 = α if xy = αω. Since Cn(m) is isomorphic to the cohomology ring of the
orientable compact manifold Flag(Cn) × (S 2m−3)n−1, it is a Poincaré duality algebra.
Hence the pairing 〈−, −〉 is perfect; that is, the pairing induces an isomorphism

Cn(m)i, j �
−−→ (Cp,q

n (m))∨,

where (Cp,q)∨ = HomZ(Cp,q, Z). We denote by d∨ : Cn(m)∨→Cn(m)∨ the dual of
d : Cn(m)→Cn(m).

L 4.5. The following diagram commutes up to sign,

Cn(m)i, j d //

�

��

Cn(m)i+(2m−2), j−(2m−3)

�

��
(Cn(m)p,q)∨

d∨ // (Cn(m)p−(2m−2),q+(2m−3))∨

where i + p = n(n − 1) and j + q = (2m − 3)(n − 1).

P. It is sufficient to show that d(x) · y = (−1)i+ j+1x · d(y) whenever |x| = (i, j) and
|y| = (p − (2m − 2), q + (2m − 3)). For reasons of degree, x · y = 0. Thus we have

0 = d(x · y) = d(x) · y + (−1)i+ jx · d(y).

This implies that d(x) · y = (−1)i+ j+1x · d(y), as required. �

Let E∗,∗r (Y) be the Serre spectral sequence associated to the fibre bundle

YB→ YR→ Flag(Cn)

with coefficients in a commutative ring R:

E∗,∗2 (Y) = H∗(Flag(Cn); R) ⊗R H∗(YB; R) =⇒ H∗(YR; R).

The first possible nontrivial differential is d2m−2 and there is an isomorphism of
differential graded algebras

(E2m−2(Y), d2m−2) � (Cn(m; R), dR),

where Cn(m; R) = Cn(m) ⊗ R and dR = d ⊗ 1R.
We let E∗,∗r (P) denote the Serre spectral sequence associated to the fibre bundle

Bn(m)B→ Repn(m)B→ Flag(Cn)
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with coefficients in a commutative ring R:

E∗,∗2 (P) � H∗(Flag(Cn); R) ⊗R H∗(Bn(m)B; R) =⇒ H∗(Repn(m)B; R).

There is a map of fibre bundles,

YB
//

��

YR
//

��

Flag(Cn)

Bn(m)B
// Repn(m)B // Flag(Cn)

which induces a map of spectral sequences

E∗,∗r (P)→ E∗,∗r (Y).

4.2. The cases when n = 3. In this subsection we consider the unstable cases where
(n, m) is one of (3, 2), (3, 3) and (3, 4). We study the cohomology of Rep3(m)B when
m = 2, 3, 4, and its Poincaré series.

If m = 2, then the following proposition follows from Theorem 5.2 below.

P 4.6. In the case when (n, m) = (3, 2), there is an isomorphism of
R-algebras:

H∗(Rep3(2)B; R) � H∗(F3(C2); R) ⊗R H∗(PGL3(C); R)

for any commutative ring R. The Poincaré series of Rep3(2)B is given by

PS(Rep3(2)B; k) = PS(F3(C2)) · PS(PGL3(C); k)

for any field k.

R 4.7. In this case, YR ' PGL3(C) by Lemma 4.1.

If p is a prime number other than 3, then PGL3(C) is p-locally homotopy equivalent
to SU(3). The modulo 3 cohomology ring of PGL3(C) is

H∗(PGL3(C); Z/3Z) = (Z/3Z)[y]/(y3) ⊗ Λ(e1, e3),

where |y| = 2 and |ei| = i. Hence the Poincaré series of YR ' PGL3(C) is given as
follows.

PS(YR; Z/pZ) =

(1 + t3)(1 + t5) if p , 3,

(1 + t)(1 + t2 + t4)(1 + t3) if p = 3.

Next we study the cohomology group of YR in the case when (n, m) = (3, 3). In a
chart of spectral sequences we represent the group Z by � and the group Z/kZ by k©.
We also abbreviate Z⊕r and (Z/kZ)⊕r to �r and k©r, respectively.
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L 4.8. When (n, m) = (3, 3), the spectral sequence E∗,∗r (Y) collapses from the E5

term for any R. If R = Z, then the E∞ term H∗,∗(C3(3)) =
⊕

p,q H(C3(3))p,q is given as
follows.

6 0 0 �2 �

3 0 �3 �3 ⊕ 3© 3©2

0 � �2 3©2 3©

q�p 0 2 4 6

The additive generators are

1, t1, t2, t2
1, t1t2, t2

1t2, (q = 0),

a, b, c, at1, bt1, bt2, ct1, bt2
1, ct2

1, (q = 3),

ab, ac, abt1 (q = 6),

where |t1| = |t2| = (2, 0), |a| = |b| = |c| = (2, 3). The relations are

t2
2 = −t2

1 − t1t2, t3
1 = 0, 3t2

1 = 3t1t2 = 0,

a2 = 0, b2 = 0, c2 = 0,

bc = −ac, at2 = −bt2 + ct1, ct2 = −at1 − bt1 − ct1,

3ct1 = 0, at2
1 = 0, bt1t2 = 0,

abt2 = 0, act1 = 0.

The cohomology ring H∗(YR; Z) and H∗(C3(3)) are isomorphic as graded commutative
algebras.

P. For reasons of degree, the spectral sequence collapses from the E5 term for
any R. Hence E∞ = E5 = H(C3(3; R)).

We shall compute H(C3(3)) where R = Z. We write C = C3(3) and H = H(C3(3)),
and take the following basis of C∗,0 : 1, t1, t2, t2

1, t1t2, t2
1t2.

For reasons of degree, Hp,q = Cp,q when (p, q) = (0, 0), (2, 0), (4, 6), (6, 6). With
respect to the above basis, d(s1) = −3t1t2 and d(s2) = −3t2

1. Hence H4,0 = Z/(3){t2
1, t1t2}

and H0,3 = {0}. If we set a = s2t1, b = s1t1 + s1t2 and c = s2t2 − s1t1, then one checks
that a, b and c are cycles. We take a basis of C2,3 to be s1t1, a, b, c. Then d(s1t1) =

−3t2
1t2 and hence H2,3 = Z{a, b, c} and H6,0 = Z/(3){t2

1t2}.
We can now take a basis of C4,3 to be at1, bt1, bt2, ct1. Since

d(s1s2) = 3s1t2
1 − 3s2t1t2 = −3ct1

we obtain
H4,3 = Z{at1, bt1, bt2} ⊕ Z/(3){ct1}

and H0,6 = {0}.
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Since bt2
1 = s1t2

1t2 and ct2
1 = s2t2

1t2 we can take a basis of C6,3 to be bt2
1, ct2

1.
Since d(s1s2t1) = −3ct2

1 and d(s1s2t2) = 3bt2
1 + 3ct2

1 we obtain H6,3 = Z/(3){bt2
1, ct2

1}

and H2,6 = {0}. A tedious, but straightforward, computation verifies the relations. By
sparseness, for every n there is only one nontrivial Hp,q whose total degree is given
by p + q = n. Hence H∗(YR; Z) � H as graded modules. Furthermore, we see that
there are no multiplicative extensions. Hence H∗(YR; Z) � H as graded commutative
algebras. This completes the proof. �

C 4.9. When (n, m) = (3, 3), the Poincaré series of YR is given as follows:

PS(YR; Z/pZ) = 1 + 2t2 + 3t5 + 3t7 + 2t10 + t12 if p , 3,

PS(YR; Z/3Z) = (1 + t2)(1 + t2 + t4)(1 + t3)2.

In the case when (n, m) = (3, 4), we have the following lemma.

L 4.10. When (n, m) = (3, 4), the spectral sequence E∗,∗r (Y) collapses from the
E7 term for any R. If R = Z, the E∞ term H∗,∗(C3(4)) =

⊕
p,q H(C3(4))p,q is given as

follows.
10 0 �2 �2 �

5 � �4 �4 � ⊕ 6©

0 � �2 �2 6©

q�p 0 2 4 6

The additive generators are

1, t1, t2, t2
1, t1t2, t2

1t2, (q = 0),

a, at1, at2, b, c, at2
1, at1t2, bt1, bt2, bt1t2, at2

1t2 (q = 5),

ab, ac, abt1, abt2, abt1t2 (q = 10),

where |t1| = |t2| = (2, 0), |a| = (0, 5) and |b| = |c| = (2, 5). The relations are

t3
1 = 0, t2

2 = −t2
1 − t1t2, 6t2

1t2 = 0,

a2 = b2 = c2 = bc = 0,

ct1 = bt2, ct2 = −bt1 − bt2,

bt2
1 = 0.

The cohomology ring H∗(YR; Z) is isomorphic to H∗(C3(4)) as graded commutative
algebras.

P. For reasons of degree, E∗,∗r (Y) collapses from the E7 term for any R. Hence
E∞ = E7 = H(C3(4; R)).

We shall compute H(C3(4)) where R = Z. We write C = C3(4) and H = H(C3(4)),
and take the basis of C∗,0 given by 1, t1, t2, t2

1, t1t2, t2
1t2.
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For reasons of degree, Hp,q = Cp,q unless (p, q) = (6, 0), (0, 5), (6, 5), (0, 10). With
respect to the basis above, d(s1) = d(s2) = −6t2

1t2 and so a = s1 − s2 is a cycle. We
take a basis of C0,5 given by s1, a. Then H6,0 = Z/(6){t2

1t2} and H0,5 = Z{a}. We
set b = s2t1 and c = s2t2. We can take the basis of C6,5 given by bt1t2, at2

1t2. Since
d(s1s2) = 6at2

1t2,
H6,5 = Z{bt1t2} ⊕ Z/6{at2

1t2},

and H0,10 = {0}. A tedious, but straightforward, computation verifies the relations.
By sparseness, for every n there is only one nontrivial Hp,q whose total degree is

given by p + q = n. Hence H∗(YR; Z) � H as graded modules. Furthermore, we see that
there are no multiplicative extensions. Hence H∗(YR; Z) � H as graded commutative
algebras. This completes the proof. �

C 4.11. When (n, m) = (3, 4), the Poincaré series of YR is given as follows:

PS(YR; Z/pZ) = (1 + 2t2 + 2t4 + 2t7 + 2t9 + t11)(1 + t5) if p , 2, 3,

PS(YR; Z/pZ) = (1 + t2)(1 + t2 + t4)(1 + t5)2 if p = 2, 3.

T 4.12. When n = 3 and m ≥ 2, there is an isomorphism of H∗(F3(Cm); R)-
modules:

H∗(Rep3(m)B; R) � H∗(F3(Cm); R) ⊗R H∗(YR; R)

for any commutative ring R. If R = Z, then this is an isomorphism of algebras. The
Poincaré series of Rep3(m)B is given by

PS(Rep3(m)B; k) = PS(F3(Cm)) · PS(YR; k)

for any field k.

P. We may assume that m ≥ 3 by Lemma 4.1 and Proposition 4.6. We have the
map of spectral sequences E∗,∗r (P)→ E∗,∗r (Y). By comparing the E∞ terms, we see
that H∗(Repn(m)B; R)→ H∗(YR; R) is a split surjection of R-modules. If R = Z, then
the map H∗(Repn(m)B; R)→ H∗(YR; R) is also a split surjection of Z-algebras. The
theorem now follows by Proposition 4.4. �

4.3. The cases when n = 4. In this subsection we deal with the unstable cases where
n = 4 and 2 ≤ m ≤ 6. We study the cohomology of Rep4(m)B and its Poincaré series.

If m = 2, then the following proposition follows from Theorem 5.2 below.

P 4.13. When (n, m) = (4, 2), there is an isomorphism of R-algebras:

H∗(Rep4(2)B; R) � H∗(F4(C2); R) ⊗R H∗(PGL4(C); R)

for any commutative ring R. The Poincaré series of Rep4(2)B is given by

PS(Rep4(2)B; k) = PS(F4(C2)) · PS(PGL4(C); k)

for any field k.
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R 4.14. In this case, YR ' PGL4(C) by Lemma 4.1.

If p is an odd prime, then PGL4(C) is p-locally homotopy equivalent to SU(4). The
modulo 2 cohomology ring of PGL4(C) is given by

H∗(PGL4(C); Z/2Z) � (Z/2Z)[y]/(y4) ⊗ Λ(e1, e3, e5),

where |y| = 2 and |ei| = i. Hence the Poincaré series of YR ' PGL4(C) is given as
follows:

PS(YR; Z/pZ) = (1 + t3)(1 + t5)(1 + t7) if p , 2,

PS(YR; Z/2Z) =
1 − t8

1 − t2
(1 + t)(1 + t3)(1 + t5).

We next consider the case when (n, m) = (4, 3). Recall that in a chart of the
spectral sequence we represent the group Z by � and the group Z/kZ by k©. We
represent Z⊕r and (Z/kZ)⊕r by �r and k©r, respectively. We can take a basis of
Z[t1, t2, t3, t4]/(c1, c2, c3, c4) to be {tm1

1 tm2
2 tm3

3 | 0 ≤ mi ≤ 4 − i}.

P 4.15. When (n, m) = (4, 3), the spectral sequence E∗,∗r (Y) collapses from
the E5 term for any R. If R = Z, then the E∞ term H∗,∗(C4(3)) is given as follows.

9 0 0 0 0 �2 �3 �

6 0 0 �2 �6 �7 ⊕ 2©2 �3 ⊕ 2©2 ⊕ 4© 8©

3 0 �3 �7 �6 ⊕ 2©2 ⊕ 4© �2 ⊕ 2©4 ⊕ 8©2 2©2 ⊕ 4© 0

0 � �3 �2 ⊕ 8© 2©2 ⊕ 4© 2©2 0 0
q�p 0 2 4 6 8 10 12

The cohomology group H∗(YR) is isomorphic to H∗(C4(3)) as a graded module.

P. We write C = C4(4) and H = H(C4(4)), and set

a = t2
1 − 2t1t2 + t2

2, b = −t2
1 − t1t2 − t1t3 − 3t2t3, c = −3t2

1 − 2t1t2 − 3t2
2.

Then d(s1) = a, d(s2) = b and d(s3) = c. Now we see easily that C0,3 = Z{s1, s2, s3} and
C4,0 = Z{t2

1, t1t2, t1t3, t2
2, t2t3}, and we can verify that d is injective and the cokernel of

d : C0,3→C4,0 is isomorphic to Z⊕2 ⊕ Z/(8) by using elementary transformations of
matrices. Hence H0,3 = {0} and H4,0 � Z⊕2 ⊕ Z/(8).

We have
C2,3 = Z{s1, s2, s3} ⊗ Z{t1, t2, t2}

and
C6,0 = Z{t3

1, t2
1t2, t2

1t3, t1t2
2, t1t2t3, t2

2t3}.
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The differential d : C2,3→C6,0 is given by d(s1ti) = ati, d(s2ti) = bti and d(s3ti) = cti
when i = 1, 2, 3. We calculate that

at1 = t3
1 − 2t2

1t2 + t1t2
2, at2 = −t3

1 − 3t1t2
2, at3 = t2

1t3 − 2t1t2t3 + t2
2t3,

bt1 = −t3
1 − t2

1t2 − t2
1t3 − 3t1t2t3, bt2 = −t2

1t2 − t1t2
2 − t1t2t3 − 3t2

2t3,

bt3 = −2t3
1 + t2

1t2 + t1t2
2 + 3t1t2t3 + 3t2

2t3,

ct1 = −3t3
1 − 2t2

1t2 − 3t1t2
2, ct2 = 3t3

1 + t1t2
2, ct3 = −3t2

1t3 − 2t1t2t3 − 3t2
2t3.

We can see that the kernel of d is free and of rank 3, and the cokernel of d is isomorphic
to Z/(2)⊕2 ⊕ Z/(4) by using elementary transformations of matrices. Hence H2,3 � Z⊕3

and H6,0 � Z/(2)⊕2 ⊕ Z/(4).
We also have C0,6 = Z{s1s2, s1s3, s2s3} and

C4,3 = Z{s1, s2, s3} ⊗ Z{t
2
1, t1t2, t1t3, t2

2, t2t3}.

The differential d : C0,6→C4,3 is given by d(s1s2) = as2 − bs1, d(s1s3) = as3 − cs1 and
d(s2s3) = bs3 − cs2. It is easy to see that d is injective and the image of d is a direct
summand of C4,3. Hence H0,6 = {0}.

We have
C8,0 = Z{t3

1t2, t3
1t3, t2

1t2
2, t2

1t2t3, t1t2
2t3}.

The differential d : C4,3→C8,0 is given by d(s1tit j) = atit j, d(s2tit j) = btit j and
d(s3tit j) = ctit j when i, j = 1, 2, 3. We calculate that

at2
1 = −2t3

1t2 + t2
1t2

2, at1t2 = −3t2
1t2

2, at1t3 = t3
1t3 − 2t2

1t2t3 + t1t2
2t3,

at2
2 = 2t3

1t2 + 3t2
1t2

2, at2t3 = −t3
1t3 − 3t1t2

2t3,

bt2
1 = −t3

1t2 − t3
1t3 − 3t2

1t2t3, bt1t2 = −t3
1t2 − t2

1t2
2 − t2

1t2t3 − 3t1t2
2t3,

bt1t3 = t3
1t2 + t2

1t2
2 + 3t2

1t2t3 + 3t1t2
2t3, bt2

2 = t3
1t2 + 3t3

1t3 + 3t2
1t2t3 + 2t1t2

2t3,

bt2t3 = −3t3
1t2 − 3t3

1t3 − 3t2
1t2t3,

ct2
1 = −2t3

1t2 − 3t2
1t2

2, ct1t2 = t2
1t2

2, ct1t3 = −3t3
1t3 − 2t2

1t2t3 − 3t1t2
2t3,

ct2
2 = 2t3

1t2 − t2
1t2

2, ct2t3 = 3t3
1t3 + t1t2

2t3.

We can see that the kernel of d is free and of rank 10, and the cokernel of d
is isomorphic to Z/(2)⊕2 by using elementary transformations of matrices. Hence
H8,0 � Z/(2)⊕2 and H4,3 � Z⊕7.

We have
C2,9 = Z{s1s2s3} ⊗ Z{t1, t2, t3}

and
C6,6 = Z{s1s2, s1s3, s2s3} ⊗ Z{t

3
1, t2

1t2, t2
1t3, t1t2

2, t1t2t3, t2
2t3}.

The differential d : C2,9→C6,6 is given by

d(s1s2s3ti) = (as2s3 − bs1s3 + cs1s2)ti
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when i = 1, 2, 3. We can easily see that d is injective and the image of d is a direct
summand of C6,6. Hence H2,9 = {0}.

We have
C10,3 = Z{s1, s2, s3} ⊗ Z{t

3
1t2

2, t3
1t2t3, t2

1t2
2t3}.

The differential d : C6,6→C10,3 is given by

d(s1s2tit jtk) = (as2 − bs1)tit jtk,

d(s1s3tit jtk) = (as3 − cs1)tit jtk,

d(s2s3tit jtk) = (bs3 − cs2)tit jtk

when i, j, k = 1, 2, 3. We calculate that

at3
1 = t3

1t2
2, at2

1t2 = −3t3
1t2

2, at2
1t3 = −2t3

1t2t3 + t2
1t2

2t3,

at1t2
2 = 3t3

1t2
2, at1t2t3 = −3t2

1t2
2t3, at2

2t3 = 2t3
1t2t3 + 3t2

1t2
2t3,

bt3
1 = −3t3

1t2t3, bt2
1t2 = −t3

1t2
2 − t3

1t2t3 − 3t2
1t2

2t3, bt2
1t3 = t3

1t2
2 + 3t3

1t2t3 + 3t2
1t2

2t3,

bt1t2
2 = 3t3

1t2t3 + 2t2
1t2

2t3, bt1t2t3 = −3t3
1t2t3, bt2

2t3 = −3t3
1t2

2 − 3t3
1t2t3 − 3t2

1t2
2t3,

ct3
1 = −3t3

1t2
2, ct2

1t2 = t3
1t2

2, ct2
1t3 = −2t3

1t2t3 − 3t2
1t2

2t3, ct1t2
2 = −t3

1t2
2,

ct1t2t3 = t2
1t2

2t3, ct2
2t3 = 2t3

1t2t3 − t2
1t2

2t3.

Then we can verify that the kernel of d is free and of rank 9, and the cokernel of
d is isomorphic to Z/(2)⊕2 ⊕ Z/(4) by using elementary transformations of matrices.
Hence

H10,3 � Z/(2)⊕2 ⊕ Z/(4)

and H6,6 � Z⊕6.
We have

C0,9 = Z{s1s2s3}

and
C4,6 = Z{s1s2, s1s3, s2s3} ⊗ Z{t

2
1, t1t2, t1t3, t2

2, t2t3}.

The differential d : C0,9→C4,6 is given by

d(s1s2s3) = as2s3 − bs1s3 + cs1s2.

We can easily see that d is injective and the image of d is a direct summand of C4,6.
Hence H0,9 = {0}.

We have
C8,3 = Z{s1, s2, s3} ⊗ Z{t

3
1t2, t3

1t3, t2
1t2

2, t2
1t2t3, t1t2

2t3}.

The differential d : C4,6→C8,3 is given by

d(s1s2tit j) = (as2 − bs1)tit j,

d(s1s3tit j) = (as3 − cs1)tit j,

d(s2s3tit j) = (bs3 − cs2)tit j
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when i, j = 1, 2, 3. We can verify that the kernel of d is free and of rank 3, and the
cokernel of d is isomorphic to

Z⊕3 ⊕ Z/(2)⊕4 ⊕ Z/(8)⊕2

by using elementary transformations of matrices. Hence H4,6 � Z⊕2. By Lemma 4.5
we see that d : C8,3→C12,0 is surjective and its kernel is free and of rank 14. Hence

H8,3 � Z⊕2 ⊕ Z/(2)⊕4 ⊕ Z/(8)⊕2.

Other groups Hp,q can be computed by Lemma 4.5. By the universal coefficient
theorem, E10,0

5 = E12,0
5 = {0} for any R, and we see that the spectral sequence collapses

from the E5 term for any R for reasons of degree. By sparseness, for every n
there is only one nontrivial Hp,q whose total degree is given by p + q = n. Hence
H∗(YR; Z) � H as a graded module. This completes the proof. �

P 4.16. When (n, m) = (4, 4), the spectral sequence E∗,∗r (Y) collapses from
the E7 term for any R. If R = Z, then the E∞ term H∗,∗(C4(4)) is given as follows.

15 0 0 0 �3 �5 �3 �

10 0 0 �6 �14 ⊕ 2© �12 ⊕ 2©3 �4 ⊕ 2©5 2©3

5 0 �4 �12 �14 ⊕ 2©3 �6 ⊕ 2©7 ⊕ 4©2 2©7 ⊕ 4©2 2©3

0 � �3 �5 �3 ⊕ 2©3 2©5 2©3 2©

q�p 0 2 4 6 8 10 12

The cohomology group H∗(YR) is isomorphic to H∗(C4(4)) as a graded module.

P. For reasons of degree, the spectral sequence collapses from the E7 term for
any R. We write C = C4(4) and H = H(C4(4)), and set

a = t3
1 − t2

1t2 + 2t1t2
2,

b = t3
1 − t2

1t2 − t1t2
2 − 2t1t2t3 − 3t2

2t3,

c = −t2
1t2 − 3t2

1t3 − t1t2
2 − 2t1t2t3 − 3t2

2t3.

Then the submodule of C6,0 generated by a, b and c is a direct summand of rank
three. The differential d : C0,5→C6,0 is given by d(s1) = 2a, d(s2) = 2b and d(s3) = 2c.
Hence H6,0 � Z⊕3 ⊕ Z/(2)⊕3 and H0,5 = {0}.

We have
C2,5 = Z{s1, s2, s3} ⊗ Z{t1, t2, t3}

and
C8,0 = Z{t3

1t2, t3
1t3, t2

1t2
2, t2

1t2t3, t1t2
2t3}.
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We can calculate that

at1 = −t3
1t2 + 2t2

1t2
2, at2 = −t3

1t2 − 3t2
1t2

2, at3 = t3
1t3 − t2

1t2t3 + 2t1t2
2t3,

bt1 = −t3
1t2 − t2

1t2
2 − 2t2

1t2t3 − 3t1t2
2t3, bt2 = 2t3

1t2 + 3t3
1t3 + 3t2

1t2t3 + t1t2
2t3,

bt3 = −3t3
1t2 − 2t3

1t3 − 2t2
1t2t3 + t1t2

2t3,

ct1 = −t3
1t2 − 3t3

1t3 − t2
1t2

2 − 2t2
1t2t3 − 3t1t2

2t3, ct2 = t3
1t2 + 3t3

1t3 + t1t2
2t3,

ct3 = 3t2
1t2

2 + t2
1t2t3 + t1t2

2t3.

Then C8,0 is generated by ati, bti and cti, where i = 1, 2, 3. Furthermore, the differential
d : C2,5→C8,0 is given by d(s1ti) = 2ati, d(s2ti) = 2bti and d(s3ti) = 2cti when i =

1, 2, 3. Hence H8,0 � Z/(2)⊕5 and H2,5 � Z⊕4.
We also have

C4,5 = Z{s1, s2, s3} ⊗ Z{t
2
1, t1t2, t1t3, t2

2, t2t3}

and
C10,0 = Z{t3

1t2
2, t3

1t2t3, t2
1t2t3}.

The differential d : C4,5→C10,0 is given by d(s1tit j) = 2atit j, d(s2tit j) = 2btit j and
d(s3tit j) = 2ctit j when i, j = 1, 2, 3. We can calculate that

at2
1 = 2t3

1t2
2, at1t2 = −3t3

1t2
2, at1t3 = −t3

1t2t3 + 2t2
1t2

2t3,

at2
2 = 2t3

1t2
2, at2t3 = −t3

1t2t3 − 3t2
1t2

2t3,

bt2
1 = −t3

1t2
2 − 2t3

1t2t3 − 3t2
1t2

2t3, bt1t2 = 3t3
1t2t3 + t2

1t2
2t3,

bt1t3 = −2t3
1t2t3 + t2

1t2
2t3, bt2

2 = 2t3
1t2

2 + 2t3
1t2t3 + 2t2

1t2
2t3,

bt2t3 = −3t3
1t2

2 − 3t3
1t2t3 − 3t2

1t2
2t3,

ct2
1 = −t3

1t2
2 − 2t3

1t2t3 − 3t2
1t2

2t3, ct1t2 = t2
1t2

2t3,

ct1t3 = 3t3
1t2

2 + t3
1t2t3 + t2

1t2
2t3, ct2

2 = t3
1t2

2 + 2t3
1t2t3 − t2

1t2
2t3, ct2t3 = −3t3

1t2
2 − t3

1t2t3.

Then we can see that C10,0 is generated by atit j, btit j and ctit j, where i, j = 1, 2, 3.
Hence H4,5 � Z⊕12 and H10,0 � Z/(2)⊕3.

Now note that C12,0 � Z{t3
1t2

2t3}. It is easy to see that the image of the differential
d : C6,5→C12,0 is generated by 2t3

1t2
2t3. Hence H12,0 � Z/(2). Note that the differential

d : C0,10→C6,5 is given by

d(s1s2) = 2(s2a − s1b), d(s1s3) = 2(s3a − s1c), d(s2s3) = 2(s3b − s2c).

We can easily see that d is injective and so H0,10 = {0}. We can verify that the
submodule of C6,5 generated by s2a − s1b, s3a − s1c and s3b − s2c is a direct summand
of the group of cycles by using elementary transformations of matrices. Hence
H6,5 � Z⊕14 ⊕ Z/(2)⊕3.

Finally
C4,10 = Z{s1s2, s1s3, s2s3} ⊗ Z{t

2
1, t1t2, t1t3, t2

2, t2t3}
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and
C10,5 = Z{s1, s2, s3} ⊗ Z{t

3
1t2

2, t3
1t2t3, t2

2t2
2t3}.

The differential d : C4,10→C10,5 is given by

d(s1s2tit j) = 2(s2a − s1b)tit j, d(s1s3tit j) = 2(s3a − s1c)tit j,

d(s2s3tit j) = 2(s3b − s2c)tit j

where i, j = 1, 2, 3. We can verify that the cokernel of d is isomorphic to

Z/(2)7 ⊕ Z/(4)⊕2

using elementary matrix transformations. Hence H4,10 � Z⊕6 and

H10,5 � Z/(2)7 ⊕ Z/(4)⊕2.

Other groups Hp,q can be computed by Lemma 4.5. By sparseness, for every n
there is only one nontrivial Hp,q whose total degree is given by p + q = n. Hence
H∗(YR; Z) � H as a graded module. This completes the proof. �

P 4.17. When (n, m) = (4, 5), the spectral sequence E∗,∗r (Y) collapses from
the E9 term for any R. If R = Z, then the E∞ term H∗,∗(C4(5)) is given as follows.

21 0 0 �3 �6 �5 �3 �

14 0 �3 �12 �18 �14 ⊕ 10© �6 ⊕ 10©3 � ⊕ 10©2

7 � �6 �14 �18 �12 ⊕ 10©3 �3 ⊕ 10©6 10©3

0 � �3 �5 �6 �3 ⊕ 10©2 10©3 10©

q�p 0 2 4 6 8 10 12

The cohomology group H∗(YR) is isomorphic to H∗(C4(5)) as a graded module.

P. For reasons of degree, the spectral sequence collapses from the E9 term
for any choice of R. We write C = C4(5) and H = H(C4(5)), and set a = t2

1t2
2 and

b = t3
1t2 + t3

1t3 + t2
1t2t3. We have C0,7 = Z{s1, s2, s3} and C8,0 = Z{a, b, t3

1t2, t3
1t3, t1t2

2t3}.
The differential d : C0,7→C8,0 is given by d(s1) = 10a, d(s2) = 10b and d(s3) = 10a.
Hence H0,7 = Z{s1 − s3} and H8,0 � Z⊕3 ⊕ Z/(10)⊕2.

Now set c = t3
1t2

2, d = t3
1t2t3 and e = t2

1t2
2t3. We have

C2,7 = Z{s1, s2, s3} ⊗ Z{t1, t2, t3}

and C10,0 = Z{c, d, e}. The differential d : C2,7→C10,0 is given by

d(s1t1) = −d(s1t2) = d(s3t1) = −d(s3t2) = 10c,

d(s1t3) = d(s3t3) = 10e, d(s2t1) = 10d,

d(s2t2) = −d(s2t3) = 10(c + d + e).

Hence H2,7 � Z⊕6 and H10,0 � Z/(10)⊕3.
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Next set f = t3
1t2

2t3. Then we have

C4,7 = Z{t2
1, t1t2, t1t3, t2

2, t2t3} ⊗ Z{s1, s2, s3}

and C12,0 = Z{ f }. The differential d : C4,7→C12,0 is given by

d(s1t2
1) = d(s1t1t2) = d(s1t2

2) = d(s2t2
1) = d(s2t2

2)

= d(s2t2t3) = d(s3t2
1) = d(s3t1t2) = d(s3t2

2)

= 0

and

d(s1t1t3) = −d(s1t2t3) = d(s2t1t2) = −d(s2t1t3) = d(s3t1t3) = −d(s3t2t3) = 10 f .

Hence H4,7 � Z⊕14 and H12,0 = Z/(10){ f }.
We have C0,14 = Z{s1s2, s1s3, s2s3} and

C8,7 = Z{s1, s2, s3} ⊗ Z{a, b, t3
1t2, t3

1t3, t1t2
2t3}.

The differential d : C0,14→C8,7 is given by

d(s1s2) = 10(s2a − s1b), d(s1s3) = 10(s3 − s1)a, d(s2s3) = 10(s3b − s2a).

Hence H0,14 = {0} and H8,7 � Z⊕12 ⊕ Z/(10)⊕3.
We also have

C2,14 = Z{s1s2, s1s3, s2s3} ⊗ Z{t1, t2, t3}

and
C10,7 = Z{s1, s2, s3} ⊗ Z{c, d, e}.

The differential d : C2,14→C10,7 is given by

d(s1s2t1) = 10(s2c − s1d), d(s1s2t2) = −10(s2c + s1(c + d + e)),

d(s1s2t3) = 10(s2e + s1(c + d + e)), d(s1s3t1) = 10(s3 − s1)c,

d(s1s3t2) = −10(s3 − s1)c, d(s1s3t3) = 10(s3 − s1)e,

d(s2s3t1) = 10(s3d − s2c), d(s2s3t2) = 10(s3(c + d + e) + s2c),

d(s2s3t3) = −10(s3(c + d + e) + s2e).

Then the image of d is given by

Z{10(s3 − s1)c, 10(s3 − s1)e, 10(s2c − s1d),

10s2(e − c), 10(s3d − s2c), 10(s1(c + d + e) + s2c)}.

Hence H2,14 � Z⊕3 and
H10,7 � Z⊕3 ⊕ Z/(10)⊕6.

Other groups Hp,q can be computed by Lemma 4.5. By sparseness, for every n
there is only one nontrivial Hp,q whose total degree is given by p + q = n. Hence
H∗(YR; Z) � H as a graded module. This completes the proof. �
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P 4.18. When (n, m) = (4, 6), the spectral sequence E∗,∗r (Y) collapses from
the E11 term for any R. If R = Z, then the E∞ term H∗,∗(C4(6)) is given as follows.

27 0 0 �5 �6 �5 �3 �

18 0 �6 �15 �18 �15 �8 ⊕ 20© 20©3

9 0 �8 �15 �18 �15 �6 ⊕ 20©3
20©3

0 � �3 �5 �6 �5
20©3

20©

q�p 0 2 4 6 8 10 12

The cohomology groups H∗(YR) and H∗(C4(6)) are isomorphic as graded modules.

P. For reasons of degree, the spectral sequence collapses from the E11 term for
any R. We write C = C4(6) and H = H(C4(6)), and set a = t3

1t2
2, b = t3

1t2
2 + t3

1t2t3 + t2
1t2

2t3,
c = t2

1t2
2t3 and d = t3

1t2
2t3. Then C10,0 = Z{a, b, c} and C12,0 = Z{d}. With respect to

this basis, d(s1) = 20a, d(s2) = 20b and d(s3) = 20c. Hence H10,0 = Z/(20){a, b, c} and
H0,9 = {0}.

We also have

C2,9 = Z{s1, s2, s3} ⊗ Z{t1, t2, t3}.

Then
d(s1t1) = d(s1t2) = d(s2t2) = d(s2t3) = d(s3t3) = 0

and
d(s1t3) = d(s2t1) = d(s3t1) = −d(s3t2) = 20d.

Hence H12,0 = Z/(20){d} and H2,9 � Z⊕8.
Now note that C0,18 = Z{s1s2, s1s3, s2s3} and

C10,9 = Z{s1, s2, s3} ⊗ Z{a, b, c}.

The differential d : C0,18→C10,9 is given by

d(s1s2) = 20(s2a − s1b), d(s1s3) = 20(s3a − s1c), d(s2s3) = 20(s3b − s2c).

Hence
H10,9 � Z⊕6 ⊕ Z/(20)⊕3

and H0,18 = {0}.
Other groups Hp,q can be computed by Lemma 4.5. By sparseness, for every n

there is only one nontrivial Hp,q whose total degree is given by p + q = n. Hence
H∗(YR; Z) � H as a graded module. This completes the proof. �

When (n, m) = (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) and k is any field, we can obtain the
Poincaré series of YR from Remark 4.14, Propositions 4.15–4.18 and the universal
coefficient theorem.
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Next we compare the spectral sequences for E∗,∗r (Y) and E∗,∗r (P).

L 4.19. Let m ≥ 3. For any commutative ring R if E∗,∗r (Y) collapses from the
E2m−1 term, then E∗,∗r (P) also collapses from the E2m−1 term.

P. We have the map of spectral sequences E∗,∗r (P)→ E∗,∗r (Y). On the E2m−1 terms
this map is given by

ε ⊗ 1 : H∗(F4(Cm); R) ⊗R H∗(C4(m); R) −→ H∗(C4(m); R),

where ε is the obvious augmentation. The next possible nontrivial differential in
E∗,∗r (P) is d3(2m−3)+1. Since E∗,02m−1(P)→ E∗,02m−1(Y) is an isomorphism, the fact that
E∗,∗r (Y) collapses from the E2m−1 term implies that E∗,∗r (P) also collapses from the
E2m−1 term. �

C 4.20. When n = 4 and m ≥ 3, the sequence E∗,∗r (P) collapses from the
E2m−1 term.

P. This follows from Propositions 4.15–4.18 and Lemma 4.19. �

T 4.21. Let R be a principal ideal domain. When n = 4 and m ≥ 2, there is an
isomorphism of H∗(F4(Cm); R)-modules:

H∗(Rep4(m)B; R) � H∗(F4(Cm); R) ⊗R H∗(YR; R).

The Poincaré series of Rep4(m)B is given by

PS(Rep4(m)B; k) = PS(F4(Cm)) · PS(YR; k)

for any field k.

P. We may assume that m ≥ 3 by Lemma 4.1 and Proposition 4.13. We have
the map of spectral sequences E∗,∗r (P)→ E∗,∗r (Y). By Propositions 4.15–4.18, E∗,∗r (Y)
collapses from the E2m−1 term. By Corollary 4.20, E∗,∗r (P) also collapses from the
E2m−1 term. Note that E∗,3(2m−3)

2m−1 (P) is free over R since R is a principal ideal domain.
By comparing the E∞ terms we see that

H∗(Repn(m)B; R)→ H∗(YR; R)

is a split surjection of R-modules by Lemma 4.22 below. The theorem now follows by
Proposition 4.4. �

L 4.22. Consider the following commutative diagram of R-modules:

0 // A
i //

f
��

B
q //

g

��

C

h
��

// 0

0 // A′
i′ // B′

q′ // C′ // 0

where the horizontal sequences are exact. If f , h and q are split surjective, then so is g.
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P. Let a, c and s be splitting maps of f , h and q, respectively. Then gscq′ is an
endomorphism of B′ and q′ = q′gscq′. Thus there is a homomorphism k′ : B′→ A′

such that i′k′ = 1B′ − gscq′. We set b = iak′ + scq′. Then b is a homomorphism from
B′ to B such that gb = 1B′ . �

5. The case when m = 2

In this section we deal with the case when m = 2. The variety Repn(2)B is in the
unstable range and has different properties from Repn(m)B when m ≥ 3. For example,
H2(Repn(2)B) = Z/nZ by Corollary 5.3 and Pic(Repn(2)B) = Z/nZ by Proposition 5.9.
However, H2(Repn(m)B) = Zn−1 if m ≥ 3 by Proposition 5.5.

L 5.1. The space of C-valued points of the character variety Chn(2)B with
classical topology is homotopy equivalent to Fn(C2).

P. The lemma follows from the fact that there is a fibre bundle Chn(2)B→ Fn(A2
Z)

with fibre A(n−2)(n−1)/2
Z by [9, Proposition 3.8]. �

T 5.2. The space of C-valued points of the representation variety Repn(2)B

with the classical topology is homotopy equivalent to Fn(C2) × PGLn(C).

P. For simplicity, let Repn(2)B, Bn(2)B, Chn(2)B, PGLn and Bn denote the spaces
of C-valued points of Repn(2)B, Bn(2)B, Chn(2)B, PGLn and Bn with the classical
topology, respectively. Recall that

Repn(2)B = Bn(2)B ×Bn PGLn

and there is a fibre bundle

PGLn→ Repn(2)B→ Chn(2)B.

This is a fibre bundle associated to the principal Bn-bundle Bn(2)B→ Chn(2)B with
fibre PGLn.

The principal Bn-bundle Bn(2)B→ Chn(2)B is induced by a map Chn(2)B→ BBn,
where BBn is the classifying space of Bn. By Lemma 5.1, Chn(2)B ' Fn(C2), which
is 2-connected. The classifying space BBn is homotopy equivalent to the (n − 1)-fold
product of the Eilenberg–MacLane space K(Z, 2). Hence the map Chn(2)B→ BBn is
homotopic to a constant map. This implies that the fibre bundle

PGLn→ Repn(2)B→ Chn(2)B

is trivial and
Repn(2)B ' Fn(C2) × PGLn,

as required. �
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C 5.3. We have H2(Repn(2)B) � Z/nZ.

P. This corollary follows from the facts that H2(PGLn(C)) = Z/nZ and Fn(C2) is
2-connected. �

P 5.4. The rational cohomology ring of Repn(2)B is given as follows:

H∗(Repn(2)B; Q) � H∗(Fn(C2); Q) ⊗ Λ(e3, . . . , e2n−1),

where |ei| = i.

P. By Theorem 5.2, Repn(2)B is homotopy equivalent to Fn(C2) × PGLn. The
proposition now follows from the fact that the homomorphism SU(n)→ PGLn induces
an isomorphism on rational cohomology rings and H∗(SU(n)) � Λ(e3, . . . , e2n−1). �

On the other hand, the cohomology group H2(Repn(m)B) is different when m ≥ 3
from when m = 2.

P 5.5. If m ≥ 3, then H2(Repn(m)B) = Zn−1.

P. There is a fibration

Bn(m)B→ Repn(m)B→ Flag(Cn).

If m ≥ 3, then Bn(m)B is 2-connected [9, Lemma 4.2]. Hence the map

H2(Flag(Cn))→ H2(Repn(m)B)

is an isomorphism. Since

H2(Flag(Cn)) = Z{t1, . . . , tn}/Z{c1} � Z
n−1,

the proposition now follows. �

From now on, until the end of this section, we shall assume that all varieties are
defined over Z. The following results show that Pic(Repn(2)B) = Z/nZ.

L 5.6. Let Y be a noetherian separated integral scheme that is regular in
codimension one. Let f : X→ Y be an An

Z-fibre bundle with a local trivialization with
respect to the Zariski topology. Then X is also a noetherian separated integral scheme
that is regular in codimension one. Furthermore, there is an isomorphism between

divisor class groups f ∗ : Cl(Y)
�
−−→ Cl(X).

P. This lemma can be proved in a similar way to [3, Ch. II, Proposition 6.6].
It is easy to see that X is a noetherian separated integral scheme that is regular in
codimension one.

The scheme X has two types of codimension one points. If the image of a
codimension one point by f also has codimension one in Y , then call it type 1. If
the image is a generic point of Y , then call it type 2. Note that any type 1 point can be
expressed as f −1(D) for some prime divisor D in Y .
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We define a homomorphism f ∗ : Cl(Y)→ Cl(X) by

D =
∑

niDi 7→ f ∗D =
∑

ni f −1(Di).

We can easily check that f ∗ is well-defined. To show that f ∗ is injective, suppose that
f ∗D = (ϕ) in DivX for some divisor D in Y and some rational function ϕ on X. Take a
nonempty open subset U of Y such that f −1(U) � U × An

Z. The rational function ϕ is
expressed as a quotient ψ/ξ on f −1(U) where

ψ, ξ ∈ KU ⊗OU OU×An
Z
�KU[x1, . . . , xn].

If ϕ|U is not contained in KU , then (ϕ) contains a divisor of type 2. However, f ∗D
contains only divisors of type 1. This is a contradiction. Thus ϕ|U ∈ KU and hence
ϕ ∈ KY . This implies that D = (ϕ) as a divisor on Y and therefore f ∗ is injective.

To show that f ∗ is surjective, it suffices to prove that each prime divisor D of type 2
is linearly equivalent to a sum of divisors of type 1 on X. Let η be a generic point of D
and take U as before. The point

η ∈ f −1(U) � U × An
Z

corresponds to a principal ideal (ϕ) ⊆ KU[x1, . . . , xn]. The rational function ϕ ∈ KX

defines a divisor D +
∑

miDi with prime divisors Di of type 1. This implies that D is
linearly equivalent to a sum of divisors of type 1, and hence f ∗ is an isomorphism, as
required. �

By [9, Proposition 3.8], there is a fibre bundle Chn(m)B→ Fn(Am
Z ) with fibre

(Pm−2
Z )n−1 × (Am−1

Z )(n−2)(n−1)/2.

If m = 2, then Chn(2)B→ Fn(A2
Z) is an (A1

Z)(n−2)(n−1)/2-fibre bundle. The next corollary
follows from Lemma 5.6.

C 5.7. We have Cl(Chn(2)B) = Pic(Chn(2)B) = {0}.

P. Lemma 5.6 implies that the map

Cl(Fn(Am
Z ))→ Cl(Chn(2)B)

is an isomorphism. The configuration space Fn(Am
Z ) is an open subscheme of the affine

space (Am
Z )n and hence Cl(Fn(Am

Z )) = {0}. Therefore

Cl(Chn(2)B) = Pic(Chn(2)B) = {0},

as required. �

L 5.8. Let Y be a noetherian separated integral scheme that is regular in
codimension one. Let f : X→ Y be a PGLn-fibre bundle with a local trivialization with
respect to the Zariski topology. Then X is also a noetherian separated integral scheme
that is regular in codimension one. Furthermore, if Cl(Y) = {0}, then Cl(X) = Z/nZ.
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P. In the same way as Lemma 5.6 we can prove that X is a noetherian separated
integral scheme that is regular in codimension one. In the present proof we also use
the notion of divisors of types 1 and 2 on X as in the proof of Lemma 5.6.

Let us prove that Cl(X) = Z/nZ if Cl(Y) = {0}. Recall that Cl(PGLn) = Z/nZ
because PGLn is isomorphic to the complement of a closed subscheme of degree
n of Pn2−1. First we assume that X � Y × PGLn. The scheme Y × PGLn is the
complement of a closed subscheme of degree n of Y × Pn2−1. The surjective
homomorphism

Cl(Y × Pn2−1) = Cl(Y) × Z = Z→ Cl(Y × PGLn)

induces an isomorphism Cl(Y × PGLn) � Z/nZ.
Next we deal with general PGLn-fibre bundles. Let H be a prime divisor of

PGLn that is a generator of Cl(PGLn) = Z/nZ. We take a nonempty open subset U
of Y such that f −1(U) � U × PGLn and define a homomorphism ϕ : Z/nZ→ Cl(X)
by ϕ([1]) = U × H, where U × H denotes the closure of U × H ⊆ f −1(U) in X.
In order to verify that ϕ is well-defined, it suffices to prove that n(U × H) is linearly
equivalent to 0. Since the divisor nH on PGLn is linearly equivalent to 0, we have that
n(U × H) = (g) for some rational function g on f −1(U). The divisor (g) on X is equal
to n(U × H) +

∑
niDi, where the Di are divisors of type 1. Each divisor Di of type 1

can be written in the form f −1(Ei) for some divisor Ei on Y . By the hypothesis that
Cl(Y) = {0} we have Di = f −1(Ei) ∼ 0. Hence n(U × H) ∼ 0.

We now show that ϕ is an isomorphism. Any divisors of type 1 on X are linearly
equivalent to 0 because Cl(Y) = {0}. Let D be a prime divisor of type 2. The divisor
D | f −1(U) on f −1(U) is linearly equivalent to m(U × H) for some m since Cl(U) = {0}
implies that

Cl( f −1(U)) � Cl(U × PGLn) � Z/nZ.

Hence the divisor class [D] is contained in Image ϕ. Therefore ϕ is surjective. The
inclusion f −1(U) ⊆ X induces a surjection

Cl(X)→ Cl( f −1(U)) � Z/nZ,

which implies that ϕ is injective. We have thus proved that ϕ is an isomorphism. �

The quotient morphism Repn(2)B→ Chn(2)B is a PGLn-fibre bundle that has a
local trivialization with respect to the Zariski topology. We can deduce the following
proposition from Corollary 5.7 and Lemma 5.8.

P 5.9. We have

Cl(Repn(2)B) = Pic(Repn(2)B) = Z/nZ.

There is a universal action of the free monoid Υ2 of rank two on the trivial bundle
On

Repn(2)B
on Repn(2)B. There exists a universal Υ2-stable flag

{0} =L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = On
Repn(2)B

.
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We shall determine the isomorphism classes of L1, L2/L1, . . . , and Ln/Ln−1 in
Pic(Repn(2)B) = Z/nZ. We set Li :=Li/Li−1 when i = 1, 2, . . . , n.

L 5.10. We have

Cl(Bn(m)B) = Pic(Bn(m)B) = {0}.

P. The scheme Bn(m)B represents the m upper triangular matrices that generate
the algebra of upper triangular matrices. Hence Bn(m)B is isomorphic to an open
subscheme of (An(n+1)/2

Z )m. Since Cl((An(n+1)/2
Z )m) = {0} we have Cl(Bn(m)B) = {0}. �

C 5.11. We have

Cl(Bn(m)B × PGLn) = Pic(Bn(m)B × PGLn) = Z/nZ.

P. The statement follows from Lemmas 5.10 and 5.8. �

By [9, Section 2.2], there is a Bn-bundle

Bn(2)B × PGLn→ Repn(2)B.

This morphism induces a map

ψ : Cl(Repn(2)B) = Z/nZ→ Cl(Bn(2)B × PGLn) = Z/nZ.

We show that ψ is an isomorphism. In order to prove this, we assume that each
variety is defined over C for a while. By considering the universal flag we have
Repn(2)B→ Flag(Cn).

The composition of morphisms

h : PGLn = {∗} × PGLn→ Bn(2)B × PGLn→ Repn(2)B→ Flag(Cn)

is the quotient morphism

PGLn→ PGLn/Bn = Flag(Cn).

Let
{0} ⊂ L′1 ⊂ L

′
2 ⊂ · · · ⊂ L

′
n = Cn

denote the universal flag on Flag(Cn) and let ti = c1(L′i/L
′
i−1). In H2(PGLn) � Z/nZ

we see that
h∗(t1) = h∗(t2) = · · · = h∗(tn)

and that h∗(t1) is a generator of H2(PGLn). Hence ψ(L1), ψ(L⊗2
1 ), . . . , ψ(L⊗(n−1)

1 ) and
OPGLn give us distinct isomorphism classes of topological line bundles. This implies
that ψ is surjective and that ψ is an isomorphism. Moreover,

ψ(L1) � ψ(L2) � · · · � ψ(Ln)

since their pull-backs are not topologically isomorphic to any of the pull-backs of
ψ(L⊗2

1 ), . . . , ψ(L⊗(n−1)
1 ) and OPGLn on PGLn. Therefore we have the following theorem.

T 5.12. For the universal flag

{0} ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln = On
Repn(2)B
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on the variety Repn(2)B over Z, we set Li :=Li/Li−1 when i = 1, 2, . . . , n. Then
L1 � L2 � · · · � Ln. Furthermore, L1 gives a generator of Pic(Repn(2)B) � Z/nZ.

We also obtain the same theorem for groups or monoids generated by two elements.

L 5.13. Let Γ = 〈a, b〉 be a group generated by two elements a and b. Let
ϕ : Υ2 = 〈α, β〉 → Γ be the monoid homomorphism defined by α 7→ a and β 7→ b. For a
representation ρ of Γ on a scheme X, we denote by ρ ◦ ϕ the representation of Υ2 on X
obtained by taking the composition of ρ and ϕ. Then ρ is a representation with Borel
mold if and only if ρ ◦ ϕ is also a representation with Borel mold.

P. By the Cayley–Hamilton theorem, the statement follows from the fact that
ρ(a)−1 and ρ(b)−1 are expressed by polynomials of ρ(a) and ρ(b) respectively. �

T 5.14. Let Γ be a group or a monoid generated by two elements. Let

{0} ⊂ L(Γ)1 ⊂ L(Γ)2 ⊂ · · · ⊂ L(Γ)n = On
Repn(Γ)B

be the universal flag on the representation variety Repn(Γ)B with Borel mold over Z.
Then

L(Γ)1 �L(Γ)2/L(Γ)1 �L(Γ)3/L(Γ)2 � · · · �L(Γ)n/L(Γ)n−1

and L(Γ)⊗n
1 � OX .

P. Let
ϕ : Υ2 = 〈α, β〉 → Γ = 〈a, b〉

be the monoid homomorphism defined by α 7→ a, β 7→ b. The homomorphism ϕ
induces a morphism

ϕ̂ : Repn(Γ)B→ Repm(2)B

by Lemma 5.13. Then ϕ̂∗(Li) =L(Γ)i. The result follows, by Theorem 5.12. �

C 5.15. Let X be an affine scheme. Let ρ be a representation with Borel mold
of degree n on X for a group or a monoid Γ generated by two elements. Suppose that
Pic X has no nontrivial n-torsion elements. Then ρ has the unique Γ-stable flag

{0} ⊂ OX ⊂ O
2
X ⊂ · · · ⊂ O

n
X .

In other words, there exists a suitable matrix P ∈ GLn(R) such that P−1ρ(γ)P is an
upper triangular matrix for each γ ∈ Γ, where R is the coordinate ring of X.

P. Let
{0} ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn = On

X

be the Γ-stable flag on X. By Theorem 5.14

M1 � M2/M1 � M3/M2 � · · · � Mn/Mn−1

and M⊗n
1 � OX . Since Pic X has no nontrivial n-torsion elements, M1 � OX . The

hypothesis that X is affine implies that M2, M3, . . . , Mn are trivial. This completes
the proof. �
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We now discuss the relationship between representations with Borel mold and the
ring of integers of quadratic fields. We can see some elementary number theory results
from a different viewpoint as an application of representations with Borel mold.

P 5.16. Let R be a commutative ring. There exists a two-dimensional
representation with Borel mold over R for the free group F2 of rank two if and only if
there exist a, b ∈ R× such that R(a − 1) + R(b − 1) = R. If it holds, then there is no ring
homomorphism from R to the field F2 = {0, 1}.

P. Suppose that there exist a, b ∈ R× such that the condition

R(a − 1) + R(b − 1) = R (5.1)

holds. We take u, v ∈ R such that (a − 1)v − (b − 1)u = 1 and define the two-
dimensional representation ρ over R for the free group F2 = 〈α, β〉 of rank two by

ρ(α) =

(
a u
0 1

)
, ρ(β) =

(
b v
0 1

)
.

It is easy to check that ρ is a representation with Borel mold.
Assume that there exists a two-dimensional representation ρ with Borel mold over

R for the free group F2 of rank two. Let L ⊂ R2 be the ρ-invariant line subbundle of R2.
Setting M := R2/L, we have R2 � L ⊕ M. By Theorem 5.14 we see that L⊗2 � M⊗2 � R
and that L � M. Then we can regard ρ as

ρ(γ) =

(
ρ11(γ) ρ12(γ)

0 ρ22(γ)

)
∈

(
Hom(L, L) Hom(M, L)
Hom(L, M) Hom(M, M)

)
=

(
R R
R R

)
where γ ∈ F2. We see that there exists a two-dimensional representation ρ with Borel
mold over R if and only if there exists a two-dimensional representation ρ′ : F2→

B2(R) with Borel mold. Here B2(R) is the subalgebra of upper triangular matrices of
M2(R). Hence we may begin by assuming that L � R and that ρ : F2→B2(R).

Let

ρ(α) =

(
a1 a3

0 a2

)
and ρ(β) =

(
b1 b3

0 b2

)
.

Since we have assumed that ρ is a representation with Borel mold, we obtain
(a1 − a2)b3 − (b1 − b2)a3 ∈ R×. This implies that R(a1 − a2) + R(b1 − b2) = R. Since

R(a1a−1
2 − 1) + R(b1b−1

2 − 1) = R

condition (5.1) holds.
Assume that condition (5.1) holds. Suppose that there exists a ring homomorphism

R→ F2. The reduction ρ ⊗R F2 is also a representation with Borel mold. However, no
representation with Borel mold over F2 exists because there is no a, b ∈ (F2)× such that

F2(a − 1) + F2(b − 1) = F2.

This is a contradiction. Hence there is no ring homomorphism R→ F2. �
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C 5.17. Let R be the ring of integers of the quadratic field Q(
√

m). Assume
that there exist a, b ∈ R× such that R(a − 1) + R(b − 1) = R. Then 2 is prime in R.
Moreover, m ≡ 5 mod 8.

P. Under the assumption, there is no ring homomorphism R→ F2. It follows that
2R is a prime ideal of R. Hence m ≡ 5 mod 8 by elementary number theory (see [2,
Ch. III, (2.29)], [12, Theorem 5.17]). �

Let R be the ring of integers of the quadratic field Q(
√

m). We investigate the case
for which there exist a, b ∈ R× such that

R(a − 1) + R(b − 1) = R. (5.2)

By Corollary 5.17 we may assume that m ≡ 5 mod 8. Hence R = Z[ 1
2 (1 +

√
m)] (see [2,

Ch. II, (1.33)], [12, Theorem 5.1]).
If m = −3, then (−ω) − 1 = ω2 in R = Z[ω], where ω = 1

2 (−1 ±
√
−3) and we can

choose a = −ω and b = 1. If m < −3, then condition (5.2) does not hold since
R× = {±1}.

Assume now that m > 0. Then there exists a fundamental unit ε ∈ R× such that R× =

{±εn | n ∈ Z} (see [2, Theorem 37], [12, Theorem 5.25]). Since R(εn − 1) ⊆ R(ε − 1)
when n , 0 and

R(εn + 1) + R(εm + 1) = R(εn + 1) + R(εm − εn) ⊆ R(εn + 1) + R(ε − 1)

where m , n, we only need to consider the case when a = −εn(n > 0) and b = ε.
Suppose that ε = 1

2 (x + y
√

m) for some odd integers x, y. Then

(ε + 1)(ε − 1 − x) = −
x2 − y2m

4
− x − 1 = ±1 − x − 1

is an odd integer. Since (ε + 1) − (ε − 1) = 2, we have R(ε + 1) + R(ε − 1) = R.
For example, when m = 5 we can take ε = 1

2 (1 +
√

5) and hence condition (5.2)
holds.

Suppose that ε = x + y
√

m for some integers x and y. Put εn = x′ + y′
√

m for some
integers x′, y′. Since x2 − y2m = ±1 and x′2 − y′2m = ±1, we have x − 1 ≡ y mod 2 and
x′ + 1 ≡ y′ mod 2. Then

εn + 1 = x′ + 1 + y′
√

m = 2 ·
x′ + 1 + y′

√
m

2

and

ε − 1 = x − 1 + y
√

m = 2 ·
x − 1 + y

√
m

2
.

Since R(εn + 1) + R(ε − 1) = 2R , R condition (5.2) does not hold. For example, when
m = 37 we can take ε = 6 +

√
37 and hence condition (5.2) does not hold.
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Therefore we have the following corollary.

C 5.18. Let R be the ring of integers of the quadratic fieldQ(
√

m). Then there
exists a two-dimensional representation with Borel mold over R for the free group F2

of rank two if and only if one of the following conditions is satisfied:

(1) m = −3; or
(2) m > 0, m ≡ 5 mod 8 and ε = 1

2 (x + y
√

m) ∈ R× for some odd integers x and y.
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