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DIRECTION OF VORTICITY AND A NEW REGULARITY
CRITERION FOR THE NAVIER-STOKES EQUATIONS
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Abstract

In this paper, we prove a new regularity criterion in terms of the direction of vorticity for
the weak solution to 3-D incompressible Navier-Stokes equations. Under the framework
of Constantin and Fefferman, a more relaxed regularity criterion in terms of the direction
of vorticity is established.

1. Introduction

We consider the following Cauchy problem for the incompressible Navier-Stokes
equations in R3 x [0, 7*]:

du
\-u • Vu + Vp = AM,

at

divM = 0, ( 1 1 )

u(x,0) = uo(x),

whereu — (u^x, t), u2(x, t), u3(x, t)) is the velocity field, p(x, t) is a scalar pressure,
and KoC*) with div u0 = 0 in the sense of distribution is the initial velocity field.

The study of the incompressible Navier-Stokes equations in three space dimensions
has a long history. In the pioneering works [4] and [3], Leray and Hopf proved the
existence of weak solutions u(x, t) e L°°(0, T; L2(K3)) D L2(0, 7; W'(K3)) for any
given MoQO 6 L2(K3). But the uniqueness and regularity of the Leray-Hopf weak
solutions are still big open problems. In [2], they considered the direction of vorticity
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and proved that the solution of the Navier-Stokes equations (1.1) corresponding to
Mo, which is divergence-free, smooth and has compact support, is strong and hence
smooth (C°°) on the time interval [0, T) if the following assumption holds.

Assumption (A). There exist constants K > 0 and p(t) > 0 such that

^ n e L'(0, 7) (1.3)

holds if both \co(x,t)\ > K and \co(x + y,t)\ > K, and 0 < t < T, where
^Vu t)(%(x + y< r)) denotes the projection of £(x + >>, f) orthogonal to £(*, r).

In this paper, we want to prove regularity under a more relaxed assumption than
(1.3). Our assumption reads as follows.

(H) There exist 0 e [1/2, 3/2), a positive constant K, and g(x, t) e La-Y =
La(0, T; L^K3)) such that

l n i o | (1 .4)
holds in the region both \u>(x, t)\ > K and \co(x + y, t)\ > K, and 0 < t < T, with

l + 2 < ^ _ i f 0 r a 6 [ _ l _ i O O ] . (L5)

The main result of this paper is given in the following theorem.

THEOREM 1.1. Let u0 e // '(K3) with div u0 = 0. Suppose u is a Leray-Hopfweak
solution to (1.1) corresponding to u0. If (H) is satisfied, then u is a strong solution
on [0, 71

REMARK 1.1. We explain the motivation for establishing (1.4) as follows. First,
from a mathematical viewpoint, P^x ;)(f (x + y, t)) is a function which depends on
x, y and t, so it is reasonable to find a condition in terms of x, y and t also to control
it; that is, g(x, t) should depend on both x and t. In this sense, (1.4) is a more natural
(and relaxed) condition than (1.3). Secondly, it is well known that if u solves the
Navier-Stokes equations, then so does uk for all X > 0, where uk(x, t) = ku(Xx, X2t).
So the ratio of the dimension of space to time is 3/2 [1]. So the condition on g{x, t) is
g e Lay with 2/a 4- 3/y. Finally, there is a balance between g(x, t) and y3. When /?
is bigger, the condition on g{x, t) is more relaxed. Hence we let fi e [1/2, 3/2).

REMARK 1.2. One can find that even for p = 1, assumption (H) is weaker than
assumption (A). When /3 = 1/2, (1.5) implies that g{x, t) e JL0C(K3 X (0, T)).

REMARK 1.3. For recent progress on regularity criteria in terms of velocity and
pressure, see [6-8] and references therein.
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Before going to the proof, let us recall the definition of Leray-Hopf weak solutions.

DEFINITION. A measurable vector u is called a Leray-Hopf weak solution to the
Navier-Stokes equations (1.1), if u satisfies the following properties:

(i) u is weakly continuous from [0, oo) to L2(K3).
(ii) u verifies (1.1) in the sense of distribution, that is,

/ [ (— + (uV)<t>)udxdt+ f uo<i>(x,O)dx = I I Vu.Vcpdxdt

for all 0 e Q°(K3 x [0, oo)) with div0 = 0. Here A : B = J^lj aijbu> A = (fly
and B = (by) are 3 x 3 matrices and

for every <t> € C0°°(K
3 x [0, oo)).

(iii) The energy inequality holds, that is,

ll«0,01122 + 2 / \\Vu(;s)\\z
L2ds<\\Uo\\ti, t>0.

Jo

By a strong solution we mean a weak solution u such that

u € L°°(0, T; Hl) n L2(0, 7; H2).

It is well known that strong solutions are regular (say, classical) and unique in the
class of weak solutions.

2. Proof of Theorem 1.1

Since the theorem is proved under the framework of [2], let us recall a few obser-
vations regarding the relationship between divergence-free velocities, the associated
vorticities and strain matrices in [2].

Let co be the vorticity, w = curl u. The strain matrix S(x) in terms of a; is given by

S(x) = S[co](x) = i (V« + (VM)r) = 1- P. V. / M (y, co(x + y)) - ^ ,

where M(y, co) = [y <S> (y x co) + (y x co) <8> y]/2 and y = y/\y\. Let
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where £ is the direction of the vorticity defined by (1.2). Both r\ and £ are defined in
the region {JC : |OJ(JC)| > 0}. It was derived in [2] that

= ^-P.V. f D(y,Hx+y),Hx))\co(x+y)\^,
4* JW \y\3

where D is given by D(elt e2, e3) = (ex • e3)(Dct(ei, e2, e{)). The Det in D is the
determinant of the matrix whose columns are the three unit column vectors e\, e2

and e3. The geometric significance of D is that it is a multiple of the volume of the
prism of edges equal to y, %(x + y), t-(x). In particular, it depends on £(x + y) only
through P£x)Hx + y), thus

For solutions of the Navier-Stokes equations the dynamical significance of the
expression

(S(x, t)co{x, t)) • co(x, t) = r](x, t)\co(x, t)\2

is that it presents the stretching term in evolution of the vorticity magnitude:

(3, + u • V - A)M2 + \Va>\2 = r)\co\2. (2.2)

Equation (2.2) allows one to understand how local alignment of the vorticity direction
depletes the nonlinearity.

After this review of important formulas we turn our attention to the proof. As in
the argument in [7], one must have an a priori estimate for the strong solution under
the assumption (H). The key lemma reads as follows.

LEMMA 2.1. Let u0 e / / ' (0£3) with div u0 = 0. Suppose that u is a strong solution
on (0, T). If (H) is satisfied, then for allO<t<T,

\H\2
L, + f \\Vco\\2

Ll d < IKI& exp \A T + BT*'5 +

x ( l + A T + Z?73'5 + C\\g\d(a+2)) , (2.3)

where the constant A depends on K, B depends on K and \\ u01| L2, while C depends
on a, y and ||«olk2-

PROOF. The vorticity field satisfies

— + (u • V)o> = (co • V)M + Aco,
at
div u = 0, (2.4)

curl u = to,

, 0) =
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Multiplying the first equation of (2.4) by OJ, and integrating on R3, after suitable
integration by parts, we obtain

~TVlco(;tn2
LI + \\Veo(;t)\\2

Ll= (S(x,t)(o(x,t))co(x,t)dx = I. (2.5)
2. at Jfri

Let AT be the positive constant in (H) and split co(x, t) as

o{x, t)=X ( 1 co(x, t) + 11 - x I ) 1 a>(x, t)

where the smooth bump function x (A.) e [0, 1] is identically equal to one for 0 < k < 1
and identically equal to zero for A. > 2 or A. < — 1.

So we can decompose / into

/ = I (S(x,t)co(x,t))-co(x,t)dx

2 r *

,=1 •'K3 k=\

,_ , JR3

, t) dx

/ , t)) • CO2(X, t) dx =

where 5,(x) = 5[iy,](^), for i = 1, 2. We will estimate the above terms one by one:

2 r. 2

, /) rfx
,=1

2 2

(2.6)

where C\ is a constant depending only on K, and we used Holder's inequality
|CL>I I < 2K and the Calderon-Zygmund inequality

IIS,(JC, 0II i . .<C21| 10,||t, (2.7)

with 1 < q < oo and / = 1, 2, with C2 a constant depending only on q.
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The term I2 can be treated similarly as I\, so that

l'2l S (-l||<U||t2. (^-O)

Also /3 is not a difficult term, and it can be treated as

:,t))co2{x,t)dx

< C2||<u, ||L4 \\co\\L* \\<o\\L2 (Holder's inequality and (2.7) )

< Cj\\cot ||£.4 ||o>||[j41| Vct)||/2
4||(y||z.2 (the Gagliardo-Nirenberg inequality)

< —IIVwllti + C4||ct>i Ilt45||o)||^ (Young's inequality)

< ^IIVcuHl, + C5|Mll25IMl£2- (2.9)

In the last inequality, we used the L°°-bound of \a>i\. We note that C5 depends only
on K.

Actually, as one can see, 74 is the crucial term. First, note that

just as was done in [2, pp. 785]. Then

\(S2(x,t)co2(x,t))-co2(x,t)\

= \a>2(x,t)\2\S2(x,t)l;2(x,t)-l;2(x,t)\

3 2 , f / .
= —|o>2(x,')l P-V. / D(y,b(x +

4n Ja3 V \y\

<-L\a>(x,t)\2\g(x,t)\f(x,t), (by (1.4) and (2.1)), (2.10)
47T

where / (x, t) = /a., (\a>(x + y, t)\/\y\3~fi) dy. Therefore, due to (2.10), h can be
estimated as

<^~ f co{x,t)\2\g{x\t)\f(x,t)dx

(Holder's inequality)

(the Hardy-Littlewood-Sobolev inequality)

(the Gagliardo-Nirenberg inequality for \\O)\\L' and IMIf, repectively)
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< Jy V < < + QHcoW2*-2*-™2-26-1 ) | |g| |2^-2f l- i ) (Young's inequality)

Ji ^ * « 2 P » « J , (2.11)
where C8 depends on a and y, and in the above inequality (2.11) we have used the
following identities:

l/b = l/p - 0/3,
(2.12)

I/a = (1 - 0)/2 + 0 (1/2 - 1/3), l/p = (1 - «5)/2 + 8 (1/2 - 1/3).

Actually, we can solve (2.12) with

p = 3+2\2~3)' a = 2 ~ 2 y ~ 4\2~ 3 j ' (2 U)

b ~ 2 \2 3 / ~ 2 \ y 2 \ 2 3/) ~ 4 2 '

where a and y satisfy (1.5). And from (2.12), one has

0/3 < \/b + p/3 = l/p = 1/2 - .5/3 < 1/2,

which implies f} < 3/2.
Substituting (2.13) into (2.11), we obtain

(2.14)

where Cg is a constant depending only on a and y.
Putting (2.6), (2.8), (2.9) and (2.14) into (2.5), we have

/ (2.15)

So we can use Gronwall's inequality on \\co\\L2 and it follows from (2.15) that

IM|2
L2 <

i|2o/(o+2)l4C, T + C9T
3/5 + Cl0\\gCT+2) j , (2.16)

where C\ depends on K, Cg depends on K and ||MOIL2> while do depends on a, y and
IIMOIIL2- In (2.16), we have used the energy inequality for u, and Holder's inequality
with

1 2 1 2
2 p + 1/2 - 3/y + a 0 + 1/2 - 3/y ~ *'
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for 2/or + 3/y < £ - 1/2 and 1/2 < >3 < 3/2.
Finally (2.3) follows from (2.15) and (2.16). This completes the proof.

After we have an a priori estimate for a>, the proof of Theorem 1.1 follows from
the standard continuation principle, which can be stated as follows.

It is well known [5] that there is a unique strong solution u e L°°(0, To; // '(R3)) n
L2(0, T0;H

2(R3)) to (1.1), for some 0 < To, for any given u0 6 Hl(R3) with
div M0 = 0. Since u is a Leray-Hopf weak solution which satisfies the energy in-
equality, we have according to the uniqueness result, « = u on [0, To). By the a priori
estimate (2.3) and the standard continuation argument, the local strong solution u can
be extended to time T. So we have proved u actually is a strong solution on [0, T].
This completes the proof of Theorem 1.1.
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