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On semi-ampleness of the moduli part

StefanoFilipazzi and CalumSpicer

Abstract

We discuss a conjecture of Shokurov on the semi-ampleness of the moduli part of a
general fibration.
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1. Introduction

In [Sho23], the notion of the moduli and discriminant parts of a generically log canonical (GLC)
fibration (X/Z, B) is defined. By a GLC fibration we mean the data of a log pair (X,B) and
a contraction f : X→Z, i.e., a projective surjective morphism with connected fibres, between
normal quasi-projective varieties, such that (X,B) is log canonical above the generic point of Z.
We may define a discriminant divisor BZ on Z which (roughly) measures the singularities of the
fibres of (X,B) over Z, and the moduli part is then defined asMX := (KX +B)− f∗(KZ +BZ),
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we refer to § 2.2 for precise definitions. These definitions are straightforward extensions of the
corresponding notions for LC trivial fibrations.

For GLC fibrations, it is known that, after passing to a sufficiently high model, the moduli part
of the fibration is compatible with pullbacks. Moreover, in the case of an LC trivial fibration, it
is expected that the moduli part becomes semi-ample on such a model. This conjecture is known
as the b-semi-ampleness conjecture, see [PS09, Conjecture 7.13.1]. Analogously, one might hope
that a similar statement holds for a general GLC fibration, namely, after replacing (X/Z, B)
by a birationally equivalent pair (X ′/Z ′, B′), the moduli part MX′ of (X ′/Z ′, B′) becomes
semi-ample.

However, as observed by Keel, see [ACSS21, § 5.4], the example of f : (C ×C,Δ)→C, where
C is a curve of genus� 2 and Δ is the diagonal, shows that such a statement does not hold. In light
of this and other examples, Shokurov conjectured ([Sho23, Conjecture 1]) that up to replacing
(X/Z, B) by an appropriate model, MX becomes semi-ample after any small perturbation by an
ample divisor coming from the moduli space of fibres. We consider here a variant on Shokurov’s
conjecture, where, by analogy with the moduli space of stable pairs, we encode the notion of
polarisation on a suitable moduli space of the fibres into the determinant of a twisted version of
the Hodge bundle.

Conjecture 1.1. Suppose that (X,B) is log canonical, B � 0, (X/Z, B) has maximal moduli
(see [ACSS21, Definition 2.20]),MX is f -nef and BP stable (see [ACSS21, Definition 2.5]). Then
the following hold:

(i) for all m� 0, det f∗OX(mMX) is semi-ample;

(ii) for all m� 0 and any ε∈Q>0, MX + εf∗c1(det f∗OX(mMX)) is semi-ample;

(iii) κ(MX)� κ(X/Z, B) + var(X/Z, B).

We note that, if B = 0, X has canonical singularities and f : X→B is a family of good
minimal models, then item (iii) was proven in [Kaw85]. In [KP17], Kovács and Patakfalvi settled
item (ii) when KX +B is f -big and the generic fibre has klt singularities. In the same work, en
route to proving the projectivity of the moduli space of stable pairs, they settled item (i) when
f is a family of stable varieties.

We observe that the hypotheses of Conjecture 1.1 are natural. Indeed, under the assump-
tion of the standard MMP conjectures (which are settled in relative dimension at most three),
given any fibration f : (X,B)→Z whose generic fibre is log canonical and has non-negative
Kodaira dimension, f can then be birationally modified to satisfy the hypotheses of Conjecture
1.1. Therefore, a fibration as in Conjecture 1.1 should be thought as a distinguished preferred
birational model of an arbitrary fibration.

Our first main theorem partially settles Conjecture 1.1 over one-dimesional bases by using
ideas from foliation theory, from [CH19] and the Simpson correspondence. The following is proven
in Theorem 5.6.

Theorem 1.2. Let f : (X,B)→Z be a GLC fibration between projective varieties with B � 0,
dimX = n and dimZ = 1. Suppose that (X,B) is klt over the generic point of Z and the generic
fibre of f admits a good minimal model.

Then we may find a birationally equivalent GLC fibration f ′ : (X ′, B′)→Z with moduli part
M ′ such that KX′ +B′ is nef over Z and:

(i) κ(M ′)� κ(X ′/Z, B′) + var(X ′/Z, B′);
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(ii) if, in addition, f : (X,Bh)→Z is locally stable, then for all m� 0, λ′m := det f ′∗OX′(mM ′)
is semi-ample; and

(iii) if, in addition, f : (X,Bh)→Z is locally stable, M ′ + εf ′ ∗c1(λ′m) is semi-ample for m� 0
and any ε∈Q>0.

Our next theorem is that items (i) and (ii) of Conjecture 1.1 hold for locally stable morphisms
whenever dimX − dimZ � 2.

Theorem 1.3. Let f : (X,B)→Z be a GLC fibration between projective varieties which is also
a locally stable family with B � 0, dimX = n and dimZ � n− 2. Suppose that a general fibre of
f has non-negative Kodaira dimension.

Then we may find a birationally equivalent GLC fibration f ′ : (X ′, B′)→Z ′ such that KX′ +
B′ is nef over Z ′ and:

(i) λ′m is semi-ample for m� 0, where M ′ is the moduli part of (X ′, B′)→Z ′ and λ′m :=
det f ′∗OX′(mM ′); and

(ii) M ′ + εf ′∗c1(λ′m) is semi-ample for m� 0 and any ε∈Q>0.

Remark 1.4. More generally, Theorem 1.3 holds true for fibrations whose general fibre has
Kodaira dimension at least dimX − dimZ − 2.

In fact, Theorem 1.3 and Remark 1.4 follow from a more general statement, together with the
proof of the b-semi-ampleness conjecture in relative dimension at most two, see [PS09, Fuj03,
Fil20, ABB+23]. In the case of an LC trivial fibration, items (i) and (ii) of Conjecture 1.1
reduce to the b-semi-ampleness conjecture. Our next theorem, which then specialises to
Theorem 1.3, shows that, for locally stable families, the general case is implied by the b-semi-
ampleness conjecture. We refer to [PS09, Conjecture 7.13.1] for a precise statement of the
b-semi-ampleness conjecture.

Theorem 1.5 (= Theorem 4.7). Assume the b-semi-ampleness conjecture holds for LC trivial
fibrations of relative dimension at most n− 1. Let f : (X,B)→Z be a GLC fibration between
projective varieties which is also a locally stable family with B � 0 and dimX = n. Suppose that
a general fibre of f admits a good minimal model.

Then we may find a birationally equivalent GLC fibration f ′ : (X ′, B′)→Z ′ fitting into the
following commutative diagram

(X ′, B′) (X, B)

Z ′ Z

α

f ′ f

β

such that the following hold, where M ′ is the moduli part of (X ′/Z ′, B′):

(i) (X ′/Z ′, B′) is BP stable and has maximal moduli;

(ii) λ′m is semi-ample for m� 0, where λ′m =det f ′∗OX′(mM ′);
(iii) M ′ + εf ′∗c1(λ′m) is semi-ample for m� 0 and any ε∈Q>0; and

(iv) M ′ and λ′m are compatible with base change in an appropriate sense.

We refer to Theorem 4.7 for a precise (and slightly more general) statement. We remark that
Shokurov has shown a related statement, cf. [Sho23, Corollary 2].
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2. Preliminaries

We work over C. We refer to [KM98] for the standard terminology in birational geometry. For
the language of generalised pairs and b-divisors, we refer to [FS23].

Our varieties are connected and quasi-projective unless otherwise stated. Given a normal
variety X and an open subset U ⊂X, we say that U is big if codimX(X \U)� 2.

All divisors have coefficients in Q. Unless otherwise stated, a divisor means a Weil Q-divisor.
Given a dominant morphism f : X→ Y and a divisor D=

∑
aiPi, we define its horizontal part

Dh and its vertical part Dv as

Dh :=
∑

i|Pi dominates Y

aiPi, Dv :=D−Dh.

A log pair (X,B) consists in a normal variety X and a divisor B such that KX +B is
Q-Cartier.

Given a coherent sheaf F of rank r on a normal variety we define detF := (
∧r F)∗∗.

2.1 (Locally) stable families

We recall the definition of locally stable family of pairs over a reduced base as in [Kol23,
Definition-Theorem 4.7].

Definition 2.1. Let S be a reduced scheme, f : X→ S a flat morphism of finite type and
f : (X,Δ)→ S a well-defined family of pairs (see [Kol23], Definition-Theorem 4.7). Assume that
(Xs,Δs) is slc for every s∈ S. Then f : (X,Δ)→ S is locally stable if the following equivalent
conditions holds.

(1) KX/S +Δ is R-Cartier.

(2) fT : (XT ,ΔT )→ T is locally stable whenever T is the spectrum of a DVR and q : T → S is
a morphism (see [Kol23, Definition-Theorem 2.3] for the notion of a locally stable family
over a DVR).

(3) There is a closed subset Z ⊂X such that codim(Z ∩Xs, Xs)� 3 for all s∈ S and fX\Z : (X \
Z)→ S satisfies the above (i–ii).

Such a family is called stable if, in addition, KX/S +Δ is f -ample.

By [Kol23, Theorem 4.8] if f : (X,Δ)→ S is a (locally) stable family over a reduced base S
and φ : W → S is a morphism withW reduced, then the family overW obtained by fibre product
is again a (locally) stable family.

We recall the following criterion for local stability.

Proposition 2.2. Let S be a smooth variety and p : (X,Δ)→ S a projective morphism with
Δ� 0. Then p : (X,Δ)→ S is locally stable if and only if the pair (X,Δ+ p∗D) is semi-log
canonical for every reduced simple normal crossing divisor D⊂ S.

Proof. This follows directly from [Kol23, Corollary 4.55]. �

2.2 Property (∗), BP stable and all that

We recall some definitions from [ACSS21].
Let f : X→Z be a projective morphism between normal varieties and let (X,B) be a log

pair. We say that f : (X,B)→Z (or (X/Z, B) when the morphism f is understood) is GLC if
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Z is irreducible and (X,B) is log canonical over the generic point of Z. In this case, we say
that (X/Z, B) is a GLC pair induced by the morphism f . When f : X→Z is a contraction,
i.e., f∗OX =OZ , we will refer to f as a GLC contraction. When f is a GLC contraction and
dimX > dimZ, we will refer to f as a GLC fibration.

Let f : (X,B)→Z be GLC. For any prime divisor P ⊂ Y , we define

γP := sup{t∈R | (X,B + tf∗P ) is log canonical over the generic point of P}.
The discriminant of (X/Z, B) is the R-divisor

BZ :=
∑
P

(1− γP )P.

We now recall the definition of the moduli part of a GLC fibration f : (X,B)→Z. We first
assume that f is equidimensional and KZ +BZ is R-Cartier. In this case, we define the moduli
part MX to be

MX :=KX +B − f∗(KZ +BZ).

Consider now any GLC fibration f : (X,B)→Z. By [AK00, Theorem 2.1], there exists an
equidimensional contraction f ′ : X ′ →Z ′ which is birationally equivalent to f , such that Z ′ is
smooth and the induced maps α : Z ′ →Z and β : X ′ →X are birational morphisms. Let MX′

be the moduli part of the induced morphism (X ′, B′)→Z ′. We then define the moduli part of
f : (X,B)→Z as

MX := α∗MX′ .

It is easy to check that MX does not depend on the choice of f ′.
We refer to [ACSS21, Definition 2.5] for the notion of BP stability and to [ACSS21, Definition

2.20] for the definition of maximal moduli.

Definition 2.3. Let (X/Z, B) be a GLC pair induced by a morphism f : X→Z. We say that
(X/Z, B) satisfies Property (∗) if f is a projective contraction and the following hold:

(i) there exists a reduced divisor ΣZ on Z such that (Z,ΣZ) is log smooth and the vertical part
of B is a reduced divisor that coincides with f−1(ΣZ); and

(ii) for any closed point z ∈Z and for any Σ�ΣZ reduced divisor on Z such that (Z,Σ) is log
smooth around z, we have that (X,B + f∗(Σ−ΣZ)) is log canonical around f−1(z).

Given a generalised pair (X,B,M) and a contraction f : X→Z such that (X,B,M) is
generalised log canonical above the generic point of Z we say that (X/Z, B,M) is a generalised
GLC pair. If a generalised GLC pair satisfies the conditions of Definition 2.3 for a generalised
pair, mutatis mutandis , we will say that (X/Z, B,M) satisfies generalised Property (∗).
Lemma 2.4. Let f : (X,B,M)→Z be a generalised GLC contraction which satisfies generalised
Property (∗) and let (Z,ΣZ) be the associated log smooth pair. LetW a generalised log canonical
centre of (X,B,M). Then f(W ) is a log canonical centre of (Z,ΣZ).

Proof. Follows directly from the definition of generalised Property (∗). �

We recall that given a generalised pair (X,B,M) that X itself is a log canonical centre.

Lemma 2.5. Let f : (X,B)→Z be a GLC contraction where B � 0. Assume that (X,B) is log
canonical and that every log canonical centre of (X,B) dominates Z. Then, if a general fibre of
f has a good minimal model, then (X,B) has a good minimal model over Z.
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Proof. By [LT22, Theorem 2.9], we may show the claim up to extracting some log canonical places
of (X,B). Therefore, we are free to replace (X,B) by a dlt modification, which is guaranteed to
exist by [KK10, Theorem 3.1], and so we may assume that (X,B) is dlt. Furthermore, since all
log canonical places are horizontal over Z, by [HX13, Theorem 1.1], it suffices to show the claim
over a non-empty open subset of Z. Therefore, throughout the proof we are free to shrink Z as
needed.

Let π : X ′ →X be a log resolution of (X,B) that only extracts valuations with positive log
discrepancy, which exists by [KM98, Theorem 2.44]. We denote the strict transform of B by B′,
and we let E′ be the reduced π-exceptional divisor. Up to shrinking Z, we may assume that
(X ′, B′ +E′)→Z is log smooth. By construction, a good minimal model for (X,B) over Z is
also a good minimal model for (X ′, B′ +E′) over Z, and vice versa.

By assumption, for z ∈Z general, (Xz, Bz) has a good minimal model. Since π is a fibrewise
log resolution that only extracts valuations of positive log discrepancy, this good minimal model
is also a good minimal model for (X ′

z, B
′
z +E′

z). Then, by [HMX18, Theorem 1.2], (X ′, B′ +E′)
has a good minimal over Z. In turn, this is a good minimal model for (X,B) over Z, and the
claim follows. �

Lemma 2.6. Let f : (X,B)→Z be a GLC contraction where B � 0 and which satisfies Property
(∗). Suppose that a general fibre of (X,B)→Z admits a good minimal model. Then (X,B) has
a good minimal model over Z.

Proof. By Lemma 2.4, we see that for 0< t� 1 every log canonical centre of (X,B − tf∗Σ)
dominates Z and B − tf∗Σ� 0. Then, by Lemma 2.5, (X,B − tf∗Σ) admits a good minimal
model over Z. Since KX +B ∼QKX +B − tf∗Σ we see that this is a good minimal model for
(X,B) over Z as well. �

Lemma 2.7. Let f : (X,B)→Z be a GLC contraction which satisfies Property (∗) and such
that B =Bh � 0. Then f : (X,B)→Z is a locally stable family. Conversely, any locally stable
family over a smooth base satisfies Property (∗).
Proof. From the equality B =Bh we see that if ΣZ is the reduced divisor associated with
(X/Z, B) then ΣZ = 0. The definition of Property (∗) together with Proposition 2.2 immediately
implies our claim. �

2.3 Preliminaries on foliations

We will need some ideas from the theory of foliations during our analysis of the variation of a
family of varieties. For completeness, we provide a brief summary of some relevant definitions
and results from the study of foliations on algebraic varieties.

Given a normal variety X, we define a foliation F to be the datum of a saturated subsheaf
TF ⊂ TX , called the tangent sheaf of the foliation, such that TF is closed under Lie bracket.
The rank of F is defined to be the rank of TF as a sheaf. We define the normal sheaf to be
NF := (TX/TF )∗∗ and the cotangent sheaf to be Ω1

F := T ∗
F .

We refer to [Bru00] for basic notions and definitions regarding foliations. We recall that,
given a smooth foliation F on a smooth variety X, at any point x∈X there is an analytic
neighbourhood U and a holomorphic submersion F : U → V such that TF |U = TU/V . The leaves
of F are locally given by the fibres of this submersion.

We refer to [CS21, § 2.3] for the notion of the transform of a foliation under a birational map.
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Given a variety, a foliation F and a sheaf E, we say that E admits a partial F-connection
provided there exists a C-linear map ∇ : E→E ⊗Ω1

F which satisfies the Leibniz rule. We recall
that the normal sheaf of a foliation NF is always equipped with a partial F-connection, called
the Bott connection.

Lemma 2.8. Let X be a normal variety, let F be a foliation on X and let L be a line bun-
dle equipped with a partial F-connection, ∇ : L→L⊗Ω1

F . Let s∈H0(X, L) and suppose that
∇(s) = 0. Then D= (s= 0) is F-invariant.

Proof. The invariance of a divisor may be checked on a big open subset and so we may freely
assume that X and F are smooth.

Let {Ui} be a trivialising open cover for L and let ti be local generators for L. Write s= fiti,
where fi = 0 is a local equation for D. We may compute

0 =∇(s) =∇(fiti) = dfi ⊗ ti + fi∇(ti) mod L⊗N∗
F .

Since ∇(ti) = ω⊗ ti for a holomorphic one form ω, we see that dfi + fiω= 0 mod N∗
F , from

which we may conclude that after restricting to D we have dfi|D = 0 mod N∗
F |D. This implies

that {fi = 0} is F-invariant, as required. �

Let X be a smooth variety, let X0 ⊂X be a local complete intersection (l.c.i.) subvariety and
let F be a smooth foliation on X. We say that X0 is everywhere transverse to F provided the
natural map TF |X0

→NX0/X is an isomorphism.

Lemma 2.9. Let f : P →Z be a proper fibration between complex manifolds, let F be a smooth
foliation on P with rkF =dimZ and let Y be a F-invariant subvariety. Let z ∈Z be a closed
point and let Pz and Yz be the fibre over z of P and Y , respectively.

If Pz is everywhere transverse to F (in particular Pz is l.c.i.) then there exists an open
Euclidean neighbourhood U ⊂Z of z such that (f−1(U), Y ∩ f−1(U))∼= (Pz, Yz)×U as analytic
spaces and F|f−1(U) is given by projection onto the first coordinate.

Proof. Since Pz is everywhere transverse to F , by definition, the natural map TP |Pz
→NPz/P is

surjective, in particular, Pz is smooth.
We recall the graphic neighbourhood construction of [BM16, § 2.1]. We remark that [BM16]

only considers the graphical neighbourhood in the case where Pz is a curve, but the construction
works for general smooth varieties just as well. Let δ : Pz → Pz × P be the diagonal embedding.
We may find a germ Γ of an analytic variety containing δ(Pz) so that for all t∈ Pz we have
that q(p−1(t))⊂ P is a germ of the leaf of F through t, where p : Γ→ Pz and q : Γ→ P are the
projections.

Observe dimΓ= dimP and so in fact q gives an isomorphism between an open neighbourhood
V of Pz and Γ. By the properness of the fibration, perhaps shrinking this neighbourhood, we
may assume that V = f−1(U) for some open Euclidean neighbourhood of z and so we get a
morphism (p ◦ q−1, f) : V → Pz ×U which is easily seen to be an isomorphism.

Since the fibres of p ◦ q−1 are exactly the leaves of F we see that if Y is an invariant subvariety,
then (p ◦ q−1)(Y ) = Yz, and we may conclude. �

We also recall some well-known properties relating holomorphic connections and foliations.

Lemma 2.10. Let X be a smooth variety and let E be a vector bundle on X which admits a flat
holomorphic connection ∇ : E→E ⊗Ω1

X . Let p : P := P(E)→X be the associated projective
space bundle. Then:
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(i) ∇ gives a splitting p∗TX → TP whose image defines a smooth foliation F on P ;

(ii) OP (1) admits a partial F-connection; and

(iii) if E′ is a vector bundle on P and admits a partial F-connection, then p∗E′ is locally free
and admits a holomorphic connection.

Proof. Item (i) is a standard fact and we omit the proof.
To prove item (ii) let U ⊂X be a small open subset such that TX is generated by

∂/∂x1, . . . , ∂/∂xn and let si be a basis of flat sections of E. Let ∂i be the lift of ∂/∂xi to a
vector field on P given by ∇.

Write p−1(U) =∪iUi where Ui = {si �= 0}, where we denote by si the section of OP (1)
corresponding to si.

We define a partial connection ∇ on OP (1) by requiring∇(si) = 0 for all i. This is well defined
because dgij = 0 mod N∗

F where gij = si/sj .
The existence of a connection on p∗E is a straightforward consequence of the fact that

p∗Ω1
F =Ω1

X . The fact that p∗E is locally free follows from [And01, Corollaire 2.5.2.2]. �

We remark that under the correspondence in item (i) of Lemma 2.10 the leaves of F are
exactly the flat sections of ∇.

Given a normal variety X we say a resolution of singularities p : X ′ →X is equivariant pro-
vided p∗TX′ = TX . Such resolutions exist by [Kol07, Theorem 3.26]. We remark that if F is
a foliation on X such that TF is locally free, then there exists a foliation on X ′ such that
p∗TF ′ = TF .

2.4 Numerical flatness to isotriviality

We recall that a vector bundle E on a smooth variety is said to be numerically flat provided E
is nef and −c1(E) is nef.

Lemma 2.11. Let f : (X,B)→Z be a projective fibration over a smooth projective curve Z,
where B � 0, (X,B) is klt and KX +B is f -semi-ample.

Suppose that for all m� 0 sufficiently divisible we have that the sheaf Em :=
f∗OX(ml(KX/Z +B)) is locally free and numerically flat.

Let h : X→ Y be the relatively ample model of (X,B) over Z, and let (Y, BY ,M) be the
generalised pair induced by the LC trivial fibration h.

(i) There exists a foliation FY on Y everywhere transverse to the fibres of Y →Z, such that if
0�D is any divisor such that D∼Q MY , then Supp(BY +D) is FY invariant.

(ii) In particular, (Y, BY +D)→Z is a locally trivial family.

(iii) If (Y0, (BY +D)0) denotes a general fibre of (Y, BY +D)→Z, then there exists a finite
étale cover Z ′ →Z such that (Y, BY +D)×Z Z

′ ∼= (Y0, (BY +D)0)×Z ′.

Proof. Step 1. In this step we construct a foliation.
For m� 0 and sufficiently divisible, we have an embedding Y → P

p−→Z, where P := P(Em).
Set L=OP (1)|Y . The connection ∇m on Em guaranteed to exist by [Sim92, § 3] is in fact a
holomorphic connection (see [Den21] or [Ou24, Theorem 3.5]) and therefore by Lemma 2.10
gives a smooth foliation H on P such that TH ∼= p∗TZ , in particular TH is locally free. Observe
that KH ∼= p∗KZ . Moreover, H is everywhere transverse to the fibres of P →Z.
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It follows from [Ou24, Corollary 3.10] that for all k > 0 the kernel of Symk Em→Emk → 0 is
a Symk ∇m-invariant subbundle, and therefore Y is invariant by H. We may then restrict H to
Y to get a foliation FY on Y .

Step 2. In this step we show local triviality of (Y, BY +D)→Z.
By considering Y as a subscheme of P which is invariant under H and applying Lemma 2.9

we see that Y →Z is locally trivial. It remains to show that (Y, BY +D) is locally trivial. This
will follow by another application of Lemma 2.9 by considering Supp(BY +D) as a subscheme
of P if we can show Supp(BY +D) is FY -invariant (and therefore H invariant as a subscheme
of P ).

We may find D̃∼QD such that Supp(D)⊂ Supp(D̃) and such that (Y, BY + D̃) is klt. It suf-
fices to prove all the claims of the lemma for (Y, BY + D̃), so without loss of generality we may
freely replace D by D̃ and so may assume that (Y, BY +D) is klt. Let s : (Y ′, B′

Y +D′)→
(Y, BY +D) be a small Q-factorialisation, which exists by [BCHM10, Corollary 1.4.4], and
let σ : (Y , BY +D)→ (Y, BY +D) be the ample model of KY ′ + (1+ η)(B′

Y +D′) over Y for
0< η� 1, which exists by [BCHM10, Theorem 1.2]. Note that BY +D is σ-ample by
construction.

Set FY = σ−1FY and note that since σ is small, KFY
= σ∗KFY

. By Lemma 2.10

OY (m(KY /Z +BY +D)) admits a partial FY -connection.
By the Bott partial connection we know that detN∗

FY

∼=KY −KFY
=KY /Z also admits a

partial connection. It follows that OY (m(BY +D)) admits a partial FY -connection, and so
OY (m(KY /Z +BY +D) + k(BY +D)) admits a partial FY -connection for all m� k� 0.

By Lemma 2.10, Ẽm := p∗OY (m(KY /Z +BY +D) + k(BY +D)) is a vector bundle which

admits a holomorphic connection. It follows that det Ẽm admits a holomorphic connection and
so c1(Ẽm) = 0. By [Pat14, Corollary 4.5] (see also [Fuj18, Theorem 1.11]) Ẽm is nef. Since Ẽm
is nef and −c1(Ẽm) is nef we conclude that Ẽm numerically flat. Let ∇̃m be the connection
guaranteed to exist by [Sim92, § 3]. Let s∈H0(Y ,OY (k(BY +D)) be a global section such that

{s= 0}= k(BY +D), and let ϕ : Em→ Ẽm be the morphism induced by multiplication by s. By
the proof of [Ou24, Corollary 3.10] we see that ϕ is a morphism of vector bundles equipped with
connections, i.e., if t is any flat local section of Em, we see that t⊗ s is a flat local section of Ẽm.

Without loss of generality we may assume that m� k� 0 are sufficiently large so that
m(KY /Z +BY +D) + k(BY +D) is p̄-very ample. Let P̃ := P(Ẽm) and by repeating the con-

struction of Step 1, we produce a foliation F̃ on Y which is everywhere transverse to the fibres
of Y →Z. Let us continue to denote by ∇̃m the F̃-partial connection on m(KY /Z +BY +D) +

k(BY +D) guaranteed by Lemma 2.10. As noted, if t is any flat local section of Em, then
∇̃m(t⊗ s) = 0, and so by Lemma 2.8 it follows that {t⊗ s= 0} is invariant, from which we may
conclude that Supp(BY +D) = Supp({s= 0}) is invariant.

Since ϕ was a morphism of vector bundles equipped with connections it follows that
FY = σ∗F̃ , and so FY leaves BY +D invariant.

Our final claim follows by first observing that (Y0, (BY +D)0) is klt. We then recall that the
automorphism group of a log canonical pair of general type is finite, and so our locally trivial
family is in fact trivial after a finite étale base change. �

We remark that the use of [Sim92] in the above proof is closely related to a similar application
in [CH19]. The use of [Sim92] to produce a foliation transverse to a fibration was also considered
in [Ou24].
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Proposition 2.12. Let f : (X,B)→Z be a projective fibration over a smooth projective curve
Z, where B � 0, (X,B) is klt and KX +B is f -semi-ample.

Suppose that for all m� 0 sufficiently divisible Em := f∗OX(ml(KX/Z +B)) is locally free
and numerically flat.

Let notation be as in Lemma 2.11.

(i) There exists a resolution of singularities (X,B)→ (X,B) such that the foliation FY lifts to
a foliation FX on X. Moreover, there is a Zariski open subset U ⊂ Y such that for y ∈U

TFX
|Xy

→NXy/X

is a subbundle and FX leaves B ∩ V invariant.

(ii) For general t, t′ ∈Z, there exists an isomorphism ψ : Yt→ Yt′ such that if (Xs, Bs) denotes
the fibre of (X,B)→ Y over s, then for general s∈ Yt, (Xs, Bs)∼= (Xψ(s), Bψ(s)).

(iii) For general t, t′ ∈Z the geometric generic fibres of (Xt, Bt)→ Yt ∼= Y0 and (Xt′ , Bt′)→ Yt′ ∼=
Y0 are isomorphic, in particular, there exists a finite cover Ỹ0 → Y0 (perhaps depending on
t and t′) such that (Xt, Bt)×Y0

Ỹ0 and (Xt′ , Bt′)×Y0
Ỹ0 are birational.

(iv) If y ∈ Y is a general point and L is the leaf of FY passing through y, then the family
(X,B)×Y L→L is isotrivial.

Proof. Following [Amb05, § 2], we may find a generically finite morphism σ : Ỹ → Y , a morphism
τ : Ỹ → Y ! and a big and nef divisor MY such that τ∗MY ! = σ∗M as equality of b-divisors.
Notice that we use b-divisors to express this identity, since M may not descend onto Y , and so
M may not agree with the Cartier closure of MY . It follows that for some k� 0 some sublinear
system of |kMY | defines a rational map φ : Y ���W such that, at the generic point η of Y ,
Ker dφη agrees with Ker κ. Here, dφη is the differential TY,η → (f∗TW )η restricted to the generic
fibre, κ : TY,η →H1(TXη

(− logB)) is the Kodaira–Spencer map, see [Amb05, Theorem 2.2] and

(X,B)→ (X,B) is a log smooth model as guaranteed by [Amb05, Lemma 1.1]. Observe that we
may not take the full linear series |kMY | , since M may not descend onto Y . Let h̄ : X→ Y be
the natural morphism.

The general fibre of Y ���W is generically an intersection of divisors D∼ kMY . By Lemma
2.11, these divisors are all FY invariant, and so the general fibre is FY invariant. It follows that,
at the generic point of Y , TFY

is contained in the kernel of the Kodaira–Spencer morphism
TY →R1h̄∗TX/Y (− logB), as the latter generically coincides with Ker dφ. Thus, at the generic

point of Y we have a lift ρ : h∗TFY
→ TX(− logB), which induces a foliation FX on X. Let U

be the largest open subset over which we have a lift h∗TFY
→ TX(− logB).

By construction TFX
|Xy

→NXy/X
is a subbundle where Xy is a fibre of X→ Y over U . Since

ρ takes values in TX(− logB) we see that FX leaves the support of B invariant. This proves
item (i).

We now prove item (ii). Fix a general point t∈Z, and let t′ ∈Z be a nearby point. By Lemma
2.11, we have isomorphisms ψ : Yt→ Yt′ given by the flows of the foliation FY . Perhaps shrinking
U , we may assume this gives an isomorphism ψ : Ut→Ut′ .

For any closed point s∈Ut, let L denote a germ of a leaf of FY through s, which up
to shrinking, we may assume is contained in U . By construction, we have L∩Ut′ =ψ(s).
Consider the family (XL, BL) := (X,B)×Y L. By construction, XL is FX -invariant, and so
we have a restricted foliation FXL

which is everywhere transverse to the fibres of X→L

and leaves B invariant. Applying Lemma 2.9 to FXL
and (XL, BL)→L, it follows that

(Xs, Bs)∼= (Xψ(s), Bψ(s)), as required.
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By considering the relative Isom functor IsomY0
((Xt, Bt), (Xt′ , Bt′)) for general t, t′, we see

that standard arguments imply the geometric generic fibres (Xt, Bt)→ Y0 and (Xt′ , Bt′)→ Y0
are isomorphic, from which we may conclude item (iii).

Item (iv) is a direct consequence of the previous arguments. We remark that by the last point
in Lemma 2.11 the leaves of FY are all algebraic. �

2.5 Harder–Narasimhan filtrations

Given a vector bundle E on a smooth projective curve we define its slope to be μ(E) :=
(degE/rkE). We define μmax(E) to be the largest slope μ(F ) among all non-zero subbun-
dles 0→ F →E, and we define μmin(E) to be the smallest slope μ(Q) among non-zero quotient
bundles E→Q→ 0.

Definition 2.13. Let f : (X,B)→Z be a projective fibration to a smooth projective curve,
where B � 0, (X,B) is log canonical. Let l be a positive integer such that l(KX/Z +B) is Cartier.
Let P ∈Z be a closed point. We define

λ−(X/Z, B) := sup{t : l(KX/Z +B)− tf∗P is nef}
and

λ+(X/Z, B) := sup{t : l(KX/Z +B)− tf∗P is pseudo-effective}.
When clear from context we will write λ− = λ−(X/Z, B) and λ+ = λ+(X/Z, B).

We remark that λ− and λ+ depend on the choice of l. We feel this is unlikely to cause
confusion and so do not include the choice of l in our notation.

Proposition 2.14. Let f : (X,B)→Z be a GLC fibration where B � 0, (X,B) is log canonical
and klt over the generic point of Z, Z is a projective curve and B � 0. Let l > 0 be a sufficiently
divisible integer such that L := l(KX/Z +B) is Cartier and suppose that for all m� 0 we have
that Em := f∗OX(ml(KX/Z +B)) is locally free. Suppose in addition that KX/Z +B is relatively
semi-ample. Then, for m� 0, we have

λ− � 1

m
μmin(Em)�

1

m
μmax(Em)� λ+.

Proof. Suppose first that KX/Z +B is relatively ample. In this case the result follows from
[XZ20, Lemma-Definition 2.26] (see also [CP21, Proposition 5.4] and [CP21, Proposition 6.4])
by taking L= l(KX/Z +B).

In general, let g : X→ Y be the ample model ofKX/Z +B over Z, and, perhaps replacing l by
a multiple we may find a Cartier divisor L′ be such that g∗L′ ∼L. By [Amb05, Theorem 0.2], we
may write L′ ∼QKY/Z +BY where (Y, BY ) is klt over the generic point of Z. We have equalities
λ+(X/Z, B) = λ+(Y/Z, BY ) and λ−(X/Z, B) = λ−(Y/Z, BY ) and so we may freely reduce to the
previous case in order to conclude. �

3. Property (∗) pairs and locally stable families

Lemma 3.1. Let f : (X,B)→Z be a GLC contraction which is also a locally stable family of
log varieties. The moduli part of (X/Z, B) is KX/Z +B.

Proof. By Proposition 2.2 it follows that the discriminant BZ of (X/Z, B) is zero, and we may
conclude. �
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The following openness property of Property (∗) morphisms is implicit in [ACSS21].

Proposition 3.2. Let f : (X,B)→Z be a GLC contraction where B � 0. Suppose that there
exists a reduced divisor Σ⊂Z such that (Z,Σ) is log smooth and such that the vertical part
of B coincides with f−1(Σ). Suppose moreover for all closed points z ∈Z there is a reduced
divisor D⊂Z such that (Z,Σ+D) is log smooth, z is a log canonical centre of (Z,Σ+D)
and (X,B + f∗D) is log canonical in a neighbourhood of f−1(z). Then (X/Z, B) satisfies
Property (∗).
Proof. The proof of [ACSS21, Proposition 2.19] implies the following fact. Let z′ ∈Z be a point
and Dz′ a divisor such that:

(i) (Z,Σ+Dz′) is log smooth;

(ii) z′ is a log canonical centre of (Z,Σ+Dz′); and

(iii) (X,B + f∗Dz′) is log canonical.

Then, if D′
z′ is any other divisor such that (Z,Σ+D′

z′) is log smooth and z′ is a log canonical
centre of (Z,Σ+D′

z′), it follows that (X,B + f∗D′
z′) is log canonical. This in turn immediately

implies the proposition. �

Lemma 3.3. Let f : (X,B,M)→Z be a generalised GLC contraction. Consider a generalised
dlt modification p : (X ′, B′,M)→ (X,B,M).

If (X/Z, B,M) satisfies generalised Property (∗), then (X ′/Z, B′,M) satisfies generalised
Property (∗).
Proof. Let Σ⊂Z be the reduced divisor associated to (X/Z, B,M).

Note that (X,B,M) is generalised log canonical. From the equality KX′ +B′ +MX′ =
p∗(KX +B +MX), it is immediate that (X,B + f∗D,M) is generalised log canonical if and
only if (X ′, B′ + p∗f∗D,M) is generalised log canonical.

Thus to conclude it suffices to show that if E is a vertical component of �B′�, then p(E) is
contained in a vertical component of �B�. Generalised Property (∗) implies that, if W ⊂X is
any generalised log canonical centre of (X,B,M), then by Lemma 2.4 f(W ) is a log canonical
centre of (Z,Σ) and so W is contained in �B�. Since p(E) is a log canonical centre, we may
therefore conclude. �

Lemma 3.4. Let f : (X,B)→Z be a GLC contraction satisfying Property (∗) with B � 0.
Suppose in addition that:

(i) f : X→Z is equidimensional; and

(ii) if D⊂Z is any reduced divisor, then f∗D is reduced.

Then (X,Bh) satisfies Property (∗).
Proof. We first claim that KX +Bh is Q-Cartier. Observe that Property (∗) implies that, if D
is a vertical component of B, then in fact D is a component of �B�. This together with item (ii)
implies that Bv = f∗G where G is a reduced smooth normal crossings divisor on Z.

For any z ∈Z, let G′ � 0 be reduced divisor such that (Z, G+G′) is log smooth and z is a
log canonical centre of (Z, G+G′). Since (X,B) satisfies Property (∗), we see that (X,Bh +
f∗(G+G′)) is log canonical. Since z ∈Z is arbitrary, we may apply Proposition 3.2 to conclude
(X,Bh) satisfies Property (∗). �
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Proposition 3.5. Let f : (X,B)→Z be an equidimensional GLC contraction which satisfies
Property (∗) and where B � 0.

Then, there exists a diagram

Y X

W Z

g

s

f

r

where:

(i) r : W →Z is a finite Galois morphism;

(ii) (Y, C) is the normalisation of (X,Bh)×Z W ; and

(iii) g : (Y, C)→W is a locally stable family.

Moreover, if M (respectively N) is the moduli part of (X/Z, B) (respectively (Y/W, C))
and M is f -semi-ample, then:

(i) s∗M ∼N , where s : Y →X is the natural morphism;

(ii) for all k > 0 sufficiently divisible, r∗f∗OX(kM) is locally free; and

(iii) if, in addition, f : (X,Bh)→Z is a locally stable family, then for all k > 0 sufficiently
divisible, r∗f∗OX(kM)∼= g∗OY (kN).

Proof. Let ΣZ ⊂Z be the reduced divisor associated to the Property (∗) pair (X/Z, B).
Because X→Z is equidimensional, then away from subsets of codimension � 2 in X

and Z we have that f : X→Z is smooth, hence toroidal. Therefore, by [AK00, Proposition
5.1], we may find a Kawamata cover r : W →Z which is finite and Galois with Galois
group G, see [KMM87, Theorem 1-1-1], such that if Y is the normalisation of X ×W Z then
for any reduced divisor D⊂W we have g∗D is reduced, where g : Y →W is the natural
projection.

Let Σ⊂Z denote the branch locus of r : W →Z. If C ⊂Z is any divisor such that f∗C
is not reduced, then C ⊂ΣZ and C ⊂Σ. Therefore, the prime divisors in Z over which f
does not have reduced fibres form a simple normal crossing divisor. By the construction of
a Kawamata cover, we may therefore choose r : W →Z so that ΣZ ⊂Σ and so that (Z,Σ) is log
smooth. Replacing B by B + f∗(Σ−ΣZ) we may assume that the branch locus of s : Y →X is
contained in �B�.

Define C by the identity KY +C = s∗(KX +B). By the Riemann–Hurwitz formula, we have
that C � 0. We claim that (Y/W, C) satisfies Property (∗). Indeed, let ΣW = r−1ΣZ and let
w ∈W be arbitrary. Let H be a divisor on Z such that (Z,ΣZ +H) is log smooth and r(w) is a
log canonical centre of (Z,ΣZ +H). Then (W,ΣW + r∗H) is log smooth and w is a log canonical
centre of (W,ΣW + r∗H). By the construction of Kawamata covers, (W,ΣW ) is log smooth,
and the log smoothness of (W,ΣW + r∗H) immediately follows from the fact that Σ+H is a
simple normal crossing divisor. The claim regarding log canonical centres follows from [KM98,
Proposition 5.20]. Moreover, KY +C + g∗r∗H = s∗(KX +B + f∗H) and so (Y, C + g∗r∗H) is
log canonical. Letting w vary over all points of W we may apply Proposition 3.2 to see that
(Y, C) has Property (∗).

By Lemma 3.4, (Y, C :=C
h
) has Property (∗) and so we may apply Lemma 2.7 to see that

(Y, C) is locally stable.
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To prove (i) we observe have an equality s∗M =N because KY +C = s∗(KX +B) and KW +
ΣW = r∗(KZ +ΣZ). Item (iii) is a consequence of (ii) by Grauert’s theorem and cohomology and
base change [Har77, Theorem III.12.8 and Corollary III.12.9]. To prove (ii) it suffices to show
that h0(Xz,O(kM)|Xz

) is independent of z ∈Z. To check this it suffices to replace Z by a
general curves passing through z ∈Z so we may freely assume that dimZ = 1. Let c : X→U
be the relative ample model of M over Z, i.e., there exists an f -ample divisor H on U such
that M ∼Q c

∗H. For k� 0 we see that f∗OX(kM) = p∗OU (kH) where p : U →Z is the obvious
morphism. Since U →Z is flat (2) is then a consequence of Serre vanishing and semi-continuity
of fibre dimension. �

Lemma 3.6. Let f : (X,B)→Z and f ′ : (X ′, B′)→Z ′ be birationally equivalent equidimen-
sional GLC fibrations with B, B′ � 0 fitting into the following commutative diagram:

(X ′, B′) (X, B)

Z ′ Z.

α

f ′ f

β

Suppose moreover that the following hold:

(i) (X,B) and (X ′, B′) are crepant birational over the generic point of Z;

(ii) the moduli part M (respectively M ′) of (X/Z, B) (respectively (X ′/Z ′, B′)) is f -nef
(respectively f ′-nef);

(iii) (X/Z, B) and (X ′/Z ′, B′) satisfy Property (∗) and are BP stable;

(iv) f∗OX(nM) is locally free for n� 0 sufficiently divisible; and

(v) det f ′∗OX′(nM ′) is nef for n� 0 sufficiently divisible.

Then for all n� 0 sufficiently divisible and k > 0 we have isomorphisms β∗ det f∗OX(nM)∼=
det f ′∗OX′(nM ′). Moreover, if p : W →X and q : W →X ′ resolves the rational map X ′ ���X
we have q∗(kM ′ + (f ′)∗c1(det f ′∗OX′(nM ′)))∼Q p

∗(kM + f∗c1(det f∗OX(nM))).

Proof. For ease of notation set E = f∗OX(nM) and E′ = f ′∗OX′(nM ′). Let q : R→X and p : R→
X ′ resolve the birational map α : X ′ ���X. Let g : R→Z ′ be the composition of f ′ and p. By
[ACSS21, Proposition 2.21], we know that q∗M ∼Q p

∗M ′.
By the projection formula, it follows that, for n� 0 sufficiently divisible, we have β∗E′ =E.

This gives us a morphism β∗E→ β∗β∗E′ →E′, which is an isomorphism away from exc(β).
Taking determinants we get a non-zero morphism β∗ detE→ detE′, which is an isomorphism
away from Exc(β) and so we can deduce that detE′ ⊗ β∗ detE∗ ∼Q O(F ) where F � 0 is β-
exceptional.

By assumption detE′ is β-nef and so the same is true of F , and so the negativity
lemma, [KM98, Lemma 3.39], implies that F = 0. We deduce that β∗ detE ∼=detE′ and
q∗(kM ′ + (f ′)∗c1(detE′))∼Q p

∗(kM + f∗c1(detE)), from which we may conclude. �

4. On semi-ampleness of the moduli part

4.1 Stable pairs

Lemma 4.1. Let f : (X,B)→Z be a family of stable log varieties where Z is normal and
projective. Let M be the moduli part of (X/Z, B).
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(i) For m� 0 sufficiently divisible, f∗OX(mM) is a vector bundle whose formation commutes
with base change.

(ii) For m� 0 sufficiently divisible, λm := det f∗OX(mM) is semi-ample.

(iii) For m� 0 sufficiently divisible and all ε∈Q>0, M + εf∗c1(λm) is semi-ample.

Proof. Part (i) is a direct consequence of [KP17, Lemma 7.7] (and its proof) and the fact that
M =KX/Z +B.

To show (ii) and (iii) consider the following commutative diagram, which is guaranteed to
exist by [KP17, Corollary 6.20]:

(X0, B0) (X, B) (X, B)

Z0 Z Z

f0

s
σ

f f

t

τ

(1)

where all three of our vertical morphisms are families of stable log varieties, τ is finite, and the
moduli map associated with (X0, B0)→Z0 is finite.

By [KP17, Corollary 7.3] and its proof for m� 0 sufficiently divisible, λ0m :=
det f0∗OX0

(mM0) is ample, where M0 is the moduli part of (X0/Z0, B0). This implies that
M0 + εf∗0 c1(λ0m) is ample for all ε∈Q>0, since M0 is globally nef and relatively ample, see
[KP17, Lemma 7.7 and proof of Theorem 7.1.1]. Next, note that we have σ∗M = s∗M0 and by
(i) we know τ∗λm = t∗λ0m, which implies both (ii) and (iii). �

4.2 Intermediate Kodaira dimension

Lemma 4.2. Let (X,Δ) be a log canonical pair with Δ� 0, and let f : (X,Δ)→Z be a fibration
with KX +Δ∼Q 0/Z. Let (Z, BZ ,M) be the generalised pair induced on Z by the canonical
bundle formula. Then, any union of irreducible components of Nklt(Z, BZ ,M) is semi-normal.

We refer to [FS23, § 2] for the definition of Nklt(Z, BZ ,M).

Proof. It follows immediately from [LX23, Theorem 1.6] and the fact that Du Bois singularities
are semi-normal. �

Lemma 4.3 ([FI24, Lemma 2.3]). Let p : X→ Y be a proper surjective morphism with connected
fibres, with Y semi-normal and X reduced. Then p∗OX =OY .

Proposition 4.4. Let f : (X,B)→Z be a GLC fibration which is also a locally stable family,
where Z is smooth. Assume that KX/Z +B is relatively semi-ample over Z. Let c : X→ Y/Z
denote the relative Iitaka fibration of (X,B) over Z and let (Y, BY ,M) be the generalised pair
induced on Y .

Assume that the b-semi-ampleness conjecture holds.
Then, for every z ∈Z, we may find 0�ΔY ∼Q BY +MY such that g : (Y,ΔY )→Z is a stable

family of pairs over a neighbourhood of z ∈Z.
Proof. By Lemma 2.7, (X,B)→Z satisfies Property (∗), and so by [Amb04, Theorem 3.1] we
see that (Y, BY ,M)→Z satisfies generalised Property (∗). Observe also that if D⊂Z is any
reduced divisor, then g∗D is reduced as well.
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Let p : Y → Y be a generalised dlt modification, and let (Y , BY ,M) be the transformed pair.
By Lemma 3.3, we see that ḡ : (Y , BY ,M)→Z satsifies generalised Property (∗), and so it
follows that (Y /Z, BY ) satisfies Property (∗), and let Σ⊂Z be the associated boundary. Since

(X,B)→Z is locally stable we see that B
h
Y =BY , and so by Lemma 2.7 (Y , BY )→Z is locally

stable.
Since we are assuming the b-semi-ampleness conjecture, for a general choice of 0�H ∼Q M)Y ,

by Bertini’s theorem (applied on a log resolution where M descends) we may guarantee that
(Y z, BY,z +Hz) is slc. By [Kol23, Corollary 4.45] there is an open neighbourhood of z such that
(Y /Z, BY +H) is locally stable as required. �

Theorem 4.5. Let f : (X,Δ)→Z be a GLC fibration which is also a locally stable family,
where Z is normal.

Assume that the geometric generic fibres over the generic points of the irreducible components
of Z are normal. Assume that, for every z ∈Z, KXz

+Δz is semi-ample. Then, we may find
m0 ∈N>0 depending on the family f such that the following hold:

(1) for every k ∈N, h0(Xz,OXz
(km0(KXz

+Δz))) is independent of z ∈Z;
(2) for every k ∈N, f∗OX(km0(KX/Z +Δ)) is a vector bundle, whose formation commutes with

base change;

(3) the relative Iitaka fibration c : (X,Δ)→ Y of f is a morphism and computes the ample
model of each fibre; and

(4) the formation of the relative Iitaka fibration commutes with base change by reduced schemes.

Furthermore, g : Y →Z is flat. In particular, the scheme theoretic fibres of g are pure-
dimensional reduced and semi-normal.

Proof. Item (ii) immediately follows from item (i) by Grauert’s theorem and cohomology and
base change, see [Har77, Corollary III.12.9 and Theorem III.12.11]. Similarly, item (iv) follows
from item (iii). Thus, we are left with showing items (i) and (iii).

Let us first suppose that dimZ = 1. Let c : (X,Δ)→ Y be the relative Iitaka fibration of f ,
which exists by the assumptions and [HX13]. Since X is normal, so is Y . Let (Y/Z, BY ,M) be
the generalised pair induced by the canonical bundle formula. Since Z is a curve, g : Y →Z is
flat, see [Har77, Proposition III.9.7]. By semi-continuity [Har77, Theorem III.12.8], it suffices
to show that, for a special closed point 0∈Z, we have Y0 =Proj(R(X0,Δ0)), where we set
R(X0,Δ0) =⊕m∈NΓ(X0,OX0

(m(KX0
+Δ0))). Since f is a locally stable family, (X,Δ+X0) is

log canonical. Then, by inversion of adjunction for LC-trivial fibrations [Amb04, Theorem 3.1],
the induced generalised pair (Y/Z, BY + g∗0,M) is generalised log canonical. In particular, we
have Y0 = g∗0 as divisors. In particular, the scheme theoretic fibre Y0 is R0. Since Y is normal
and g∗0 is Cartier, it follows that OY and OY (−g∗0) are S2. Then, by [Kol13, Corollary 2.61],
Y0 is S1. But then, by [Sta22, Tag 0344], Y0 is reduced. Furthermore, by Lemma 4.2, Y0 is
semi-normal.

Now, we have a tower of morphisms as follows:

X0
α−→Proj(R(X0,Δ0))

β−→ Y0.

For m0 sufficiently large and divisible, we have the following:

• the morphism α is given by the full linear series |Γ(X0,OX0
(m0(KX0

+Δ0)))|; and
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• the morphism c0 : X0 → Y0 is given by the restricted linear series corresponding to

Im(Γ(X,OX(m0(KX/Z +Δ)))→ Γ(X0,OX0
(m(KX0

+Δ0)))). (2)

Since c0 is given by a sub-series of the one giving α, and since c0 contracts exactly the same
curves as α, the induced morphism β is finite. By construction, we have α∗OX0

=OProj(R(X0,Δ0)).
Similarly, we have c∗OX =OY and so X0 → Y0 has connected fibres. Then, by Lemma 4.3, we
have (c0)∗OX0

=OY0
. In turn, this gives β∗OProj(R(X0,Δ0)) =OY0

. But then, as β is finite, we
have Proj(R(X0,Δ0)) = Y0. Since g is flat, its fibres are pure-dimensional. This settles items (iii)
when dimZ = 1.

A priori, (2) may not be an isomorphism, since a proper linear sub-series may still define an
isomorphism. To rule this case out, we observe that we just showed (c0)∗OX0

=OY0
. Therefore,

by the projection formula, in order to prove (i), it suffices to show that h0(Yz, L|Yz
) is independent

of z ∈Z, where L=OY (m(KY +BY +MY )) and m is sufficiently divisible. But this latter fact
readily follows by the flatness of Y →Z and relative Serre’s vanishing applied to the relatively
ample line bundle L. This settles (i) when dimZ = 1.

We now handle the general case. Let l0 denote the Cartier index of KX/Z +Δ. By generic
flatness applied to g : Y →Z and relative Serre’s vanishing, we may find a non-empty open
subset U ⊂Z and m0 ∈N divisible by l0 such that (i) holds over U . Then, for every closed point
z′ ∈Z, by restricting to a general curve passing through z′ and which meets U , we may find
mz′ ∈N divisible by m0 such that, for every k ∈N, h0(Xz′ ,OXz

(kmz′(KX′
z
+Δz′))) attains the

generic value achieved over U . Then, by semi-continuity and Grauert’s theorem [Har77, Theorem
III.12.8 and Corollary III.12.9], z′ is in the open subset where f∗OX(kmz′(KX +Δ)) is a vector
bundle, for every k ∈N. Thus, by replacing m0 with a multiple, we may assume that any fixed
closed point z′ belongs to the open set U . Since the OZ-algebra ⊕k∈Nf∗OX(kl0(KX/Z +Δ)) is
finitely generated, after finitely many iterations, the above procedure extends the open subset
U to the whole Z.

Since (i) and (ii) are settled and (iii) is known over a curve, item (iii) now follows immediately.
Similarly, the additional properties of the fibres of g from (iii) hold since they may be checked
in the case the base is a curve. Lastly, the flatness of g follows from [Kol23, Theorem 3.20]. �

Theorem 4.6. Let f : (X,Δ)→Z be a GLC fibration which is also locally stable family, where
Z is quasi-projective and normal. Assume KX/Z +Δ is f -nef and that a general fibre is a good
minimal model. Further assume that the b-semi-ampleness conjecture holds.

Then, for m∈N>0 sufficiently divisible:

(i) λm := det f∗OX(m(KX/Z +Δ)) is basepoint-free; and

(ii) for all ε∈Q>0, KX/Z +Δ+ εf∗c1(λm) is semi-ample.

Proof. Since (X,Δ)→Z is locally stable, we know that every log canonical centre of (X,Δ)
dominates Z. By applying [HX13, Theorem 1.1] to a dlt modification of (X,Δ), it follows that
KX/Z +Δ is relatively semi-ample over Z.

By Theorem 4.5, the coherent sheaf f∗OX(m(KX/Z +Δ)) is a vector bundle and its for-
mation commutes with base change. In particular, it follows that the line bundle λm :=
det f∗OX(m(KX/Z +Δ)) is compatible with base change. Lastly, we recall that, given a line
bundle L on a normal variety U and a surjective projective morphism φ : V →U where V is
normal, then L is semi-ample if an only if so is φ∗L. Thus, when needed, we are free to replace
Z with a surjective generically finite cover and all the relevant varieties and morphisms by base
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change (recall that the base change of a locally stable family is again a locally stable family). In
particular, we may assume that Z is smooth.

Let c : X→ Y denote the relative Iitaka fibration of (X,Δ), and let (Y, BY ,M) be the
generalised pair induced on Y . By Noetherianity and Proposition 4.4, we may find finitely
many effective divisors D1, . . . , Dk ∈ |MY |Q and open sets Ui ⊂Z such that Z =∪ki=1Ui and
g : (Y, BY +Di)→Z is a stable family of pairs over Ui.

Now, fix i∈ {1, . . . , k}. We will show that for integers mi� 0 and � > 0 and ε∈Q>0,
the base locus of λ�mi

(respectively MY + εf∗c1(λ�mi
)) is contained in Z \Ui (respectively

f−1(Z \Ui)). Supposing this, we see that by taking m=m1m2 . . . mk the claims of the theorem
hold.

For ease of notation set D :=Di and U :=Ui.
By [KP17, Corollary 6.18], we may find a generically finite cover σ : U →U such that

g : (Y, BY +D)×U U →U can be recompactified to a family of stable pairs over a normal pro-
jective variety Z ⊃U . Call this compactified family (Y , BY +D)→Z. Perhaps replacing Z by
a higher model, we may assume that σ extends to a morphism σ : Z→Z.

Let τ : Z→ Z̃ be the Stein factorisation of σ, and set Ỹ := Y ×Z Z̃. By part (iv) of
Theorem 4.5, Ỹ is normal. Since ψ : Ỹ → Y is finite, pullback is well defined also for divisors
that are not necessarily Q-Cartier. We define B̃ via ψ∗(KY +BY ) =KỸ + B̃ and we set

D̃=ψ∗D.
Let m0 be the integer guaranteed to exist by Theorem 4.5. Up to replacing m0 with

a multiple, we may further assume that f∗OX(�m0(KX/Z +Δ)) is a vector bundle that

commutes with base change. Note that det h∗OY (km0(KY /Z +B +D))|U coincides with

σ∗ det f∗OX(km0(KX/Z +Δ))|U .
Now, we claim that we have an inclusion of coherent sheaves

0→ h∗OY (km0(KY /Z +B +D))→ σ∗f∗OX(km0(KX/Z +Δ)) (3)

that is an isomorphism over U . The latter claim is immediate by the previous observations.
Furthermore, as the two sheaves are torsion free, to conclude it suffices to show there is a
non-zero morphism between the two.

Now, let Ŷ be the normalisation of the closure of the graph of Ỹ ��� Y in Ỹ ×Z̃ Y , and

let p : Ŷ → Ỹ and q : Ŷ → Y be the corresponding morphisms. As Ỹ and Y are normal and
isomorphic over the generic point of Z̃, p and q are isomorphisms over the generic point of Z̃.
To conclude, it is then sufficient to show that

q∗(KY +B +D) +Θ= p∗(KỸ + B̃ + D̃), (4)

where Θ� 0. Note that, by construction, p∗Θ is contained in the preimage of Z \U in Ỹ .
To this end, we follow the proof of [Kol23, Theorem 11.40]. Then, we may write

p∗(KỸ + B̃ + D̃) =KŶ + B̂ + D̂+A−B,

where B̂ and D̂ denote the strict transforms of B̃ and D̃, respectively, and A and B are effective
divisors with no common components. Since h : (Y , B +D)→Z is a stable family, we may write

q∗(KY +B +D) =KŶ + B̂ + D̂−E,

where E is an effective divisor, cf. [Kol23, Proposition 2.15]. Then, it follows that −(E +A−B)
is p-nef and p∗(E +A−B) = p∗E � 0. Thus, by the negativity lemma [KM98, Lemma 3.39], we
have E +A−B � 0. Thus, in particular, A−B �−E, and (4) follows.
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By taking determinants of (3), we get a morphism

λ̄�m0
:= det h∗OY (�m0(KY /Z +B +D))→ σ∗ det f∗OX(�m0(KX/Z +Δ)) (5)

that is an isomorphism over U , and so σ∗c1(λ�m0
) = c1(λ̄�m0

) +G where G� 0 is supported
on Z \U . Likewise, we see that q∗(M + εf̄∗c1(λ̄�m0

)) +Θ+ εq∗f̄∗G= p∗(M̃ + εf̃∗c1(λ̃�m0
)),

where M̃ and λ̃�m0
are the pullbacks of M and λ�m0

to X̃ =X ×Z̃ Z and Z̃,
respectively.

By Lemma 4.1, we know that λ̄�m0
(respectively (M + εf̄∗c1(λ̄�m0

))) is semi-ample, which
from our above equalities implies that the base locus of λ̃�m0

(respectively M̃ + εf̃∗c1(λ̃�m0
)))

is contained in G (respectively p∗(Θ+ εq∗f̄∗G)) as required. As explained at the beginning of
the proof, these statements are well behaved under base change, and thus we can descend the
corresponding statements regarding λ�m0

and M + εf∗c1(λ�m0
) to Z and X, respectively. This

allows us to conclude. �

Theorem 4.7. Assume that the b-semi-ampleness conjecture holds for LC trivial fibrations of
relative dimension at most n− 1.

Let f : (X,B)→Z be a GLC fibration with B � 0 and dimX = n. Assume KX +B is f -nef
and that a general fibre of f is a good minimal model.

Then we may find a birationally equivalent GLC fibration f ′ : (X ′, B′)→Z ′ fitting into the
following commutative diagram

(X ′, B′) (X, B)

Z ′ Z,

α

f ′ f

β

where α and β are birational, such that the following hold:

(i) (X,B) and (X ′, B′) are crepant birational over the generic point of Z;

(ii) (X ′/Z ′, B′) satisfies Property (∗), is BP stable and has maximal moduli;

(iii) f : X ′ →Z ′ is equidimensional;

(iv) the moduli part, M ′, of (X ′/Z ′, B′) is nef;
(v) if, in addition, (X,Bh)→Z is a locally stable family, then f ′∗OX′(mM ′) is locally

free and λ′m := det f ′∗OX′(mM ′) is nef and semi-ample for m� 0 sufficiently divisible;
and

(vi) if, in addition, (X,Bh)→Z is a locally stable family, then M ′ + εf ′∗c1(λ′m) is semi-ample
for any ε∈Q>0.

Moreover, λ′m is compatible with base change in the following sense. Consider another
birationally equivalent GLC fibration f ′′ : (X ′′, B′′)→Z ′′, where γ : Z ′′ →Z ′ is a birational mor-
phism, such that (X ′′/Z ′′, B′′) satisfies Property (∗) and is BP stable, f ′′ is equidimensional and
such that the moduli part of (X ′′/Z ′′, B′′) is nef. Then, we have λ′′m ∼= γ∗λ′m.

Proof. By [ACSS21, Theorem 1.1] we may find a model (X ′, B′)→Z ′ which satisfies (i)–(iv).
By Lemma 2.6 we see that that the assumption on termination of flips in [ACSS21, Theorem
1.1] is unneeded. Theorem 4.6 implies that (v) and (vi) hold.

To prove our final claim, observe that (X ′′, B′′)→Z ′′ also satisfies (i)–(vi) and so our final
claim is a consequence of Lemma 3.6. �
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Remark 4.8. In the case where the moduli part is f -big, it is not necessary to assume the
b-semi-ampleness conjecture.

Corollary 4.9. Assume that the b-semi-ampleness conjecture holds for LC trivial fibrations
of relative dimension at most n− 1.

Let f : (X,B)→Z be an equidimensional GLC fibration with B � 0 and dimX = n which
satisfies Property (∗). Suppose that KX +B is f -nef and a general fibre of f admits a good
minimal model.

For m� 0 sufficiently divisible, set λm := det f∗OX(mM). Then, there exist birational mod-
els b : Z̃→Z and a : X̃→X and a semi-ample line bundle L on Z̃ such that b∗c1(L) = c1(λm),
and, for any ε∈Q>0, there is a semi-ample Q-Cartier divisor N on X̃ such that a∗N =
M + εc1(f

∗λm).

Proof. Consider the model (X ′/Z ′, B′) with moduli partM ′ guaranteed to exist by Theorem 4.7,
and let p : X̃→X and q : X̃→X ′ resolve the rational map α : X ′ ���X. Similarly, let β : Z ′ →Z
be the corresponding morphism as in Theorem 4.7.

By [ACSS21, Proposition 2.21], we see that p∗M ∼ q∗M ′ +D for some effective divisor D.
By Theorem 4.7, (X ′/Z ′, B′) has maximal moduli (see [ACSS21, Definition 2.20]); so D= 0
holds. It follows that we have β∗f ′∗OX′(mM ′) = f∗OX(mM), from which we may conclude that
β∗c1(λm) = c1(λ

′) + F where λ′ =det f ′∗OX′(mM ′) and F is β-exceptional. Since λ′ is nef [KM98,
Lemma 3.39], we have F � 0. Take Z̃ =Z ′ and L= λ′ to conclude. The claim for M + εc1(f

∗λm)
follows similarly. �

5. One-dimensional bases

Proposition 5.1. Let f : (X,B)→Z be a locally stable family of good minimal models over a
smooth curve Z and let M be the moduli part associated with (X/Z, B). Further assume that
λ+ > 0 and that a general fibre of f is a klt pair.

Then:

(i) M + εf∗c1(λm) is semi-ample for m� 0 any ε > 0 where λm =det f∗OX(mM); and

(ii) κ(M)� κ(X/Z, B) + var(X/Z, B).

Proof. By Lemma 3.1, we have M =KX/Z +B, which is f -nef by assumption. By Proposition
3.2, (X/Z, B) satisfies Property (∗). Furthermore, by [ACSS21, Theorem 2.11], it is also BP
stable. In turn, by [ACSS21, Theorem 4.4], M is globally nef; we observe that, by Lemma 2.6,
the assumption on termination of flips in [ACSS21, Theorem 4.4] is unneeded.

Let (Y, BY ,M) denote the relatively ample model of (X,B) over Z, with morphisms
c : X→ Y and g : Y →Z. Then, we have that κ(MX) = κ(KY/Z +BY +MY ), as we have
MX =KX/Z +B.

Since (X,B)→Z is a locally stable family and a general fibre is a klt pair, then (X,B) is klt.
In particular, by [Amb05, Theorem 0.2], we may choose 0�D∼Q MY such that (Y, BY +D) is
a klt pair. Then, for m> 0 sufficiently divisible, by [CP21, Proposition 6.4] and the projection
formula, Em = f∗OX(mM) is a nef vector bundle.

Now, we claim that λm =detEm is ample. Since Em is nef, we have c1(λm)� 0. If c1(λm) = 0,
then Em would be numerically flat. On the other hand, λ+ > 0 implies that M − δf∗A is Q-
effective, where A is an ample divisor on Z and 0< δ� 1. It follows that for m> 0 sufficiently
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divisible H0(Z, Em ⊗O(−A)) �= 0 and so we have a non-zero morphism O(A)→Em. This
implies that 0<μ(O(A))� μmax(Em), in particular Em is not numerically flat, and so λm is
ample.

Item (i) is a direct consequence of the fact that λm is ample and M =KX/Z +B is nef and
f -semi-ample. Indeed, M is the pullback of a nef and g-ample Q-divisor L. Then, by [Laz04,
Proposition 1.7.10], ηL+ εg∗c1(λm) is ample for 0< η� ε; then, since L is globally nef, we can
add any positive multiple of L to ηL+ εg∗c1(λm) and preserve ampleness. Then, by pullback to
X, the claim follows.

By dimension reasons, item (ii) is implied by the bigness of KY/Z +BY +MY . By construc-
tion, KY/Z +BY +MY is ample over Z. Furthermore, since λ+ > 0, we may find an ample
divisor H on Z such that KY/Z +BY +MY − g∗H is pseudo-effective. Now, since H is ample
and KY/Z +BY +MY is g-ample, for 0< ε� 1, we have that ε(KY/Z +BY +MY ) + g∗H is
ample. And so we have we have that

ε(KY/Z +BY +MY ) + g∗H + (KY/Z +BY +MY − g∗H) = (1 + ε)(KY/Z +BY +MY )

is big, as required. �

Lemma 5.2. Let X be a normal projective variety, let Z be normal quasi-projective variety and
let Y be a normal variety which is projective over Z.

(i) Suppose that we have a surjective contraction φ : X ×Z→ Y over Z. Then there is a
morphism ϕ : X→X ′ and an isomorphism Y ∼=X ′ ×Z.

(ii) Let D be a divisor on Y =X ×Z and suppose that the D-flip (respectively D-flop) over Z,
Y +, exists. Then there exists a divisor D0 on X such that the D0-flip (respectively D0-flop),
X+, exists and Y + ∼=X+ ×Z.

Proof. To see (i) take X ′ = φ(X × {z}) for any z ∈Z and set ϕ= φ|X×{z}. Let A′ be an ample

divisor on X ′ and let AY be an ample divisor on Y . We observe that (φ∗AY )⊥ ∩NE(X ×Z) =
(φ∗AY )⊥ ∩NE(X ×Z/Z)∼= (ϕ∗A′)⊥ ∩NE(X), where the first equality holds because φ is a
morphism over Z. It follows that the morphisms over Z defined by φ∗AY and π∗ ◦ϕ∗A′, where
π denotes the projection X ×Z→Z, contract the same curves, and so by the rigidity lemma,
[Deb01, Lemma 1.15], they are the same morphism.

To prove (ii), let W be the base of the D-flipping (respectively D-flopping) contraction.
Arguing as in the previous case if D0 =D|X×{z} for a general point z ∈Z then D0 ×Z ≡D/W .
It follows that the D-flip (respectively D-flop) is isomorphic to the D0 ×Z-flip (respectively
D0 ×Z-flop), which is easily seen to be X+ ×Z, as required. �

Lemma 5.3. Let C be a smooth projective variety, and let (X0,Δ0) be a projective klt pair
with Δ0 � 0 and such that KX0

+Δ0 is nef. Let (X,Δ) denote the product (X0,Δ0)×C, and
let f : (X,Δ)→C denote the induced morphism. Let f ′ : (X ′,Δ′)→C be a birational model of
(X,Δ), where Δ′ � 0, (X ′,Δ′) is klt and KX′ +Δ′ is nef. Then, there exists a crepant model
(X ′

0,Δ
′
0) of (X0,Δ0) such that (X ′,Δ′) = (X ′

0,Δ
′
0)×C.

Proof. By taking a Q-factorial terminalisation of (X0,Δ0), which exists by [BCHM10,
Corollary 1.4.3], we may further assume that (X,Δ) ��� (X ′,Δ′) is a rational contraction
and X and X0 are Q-factorial. Taking a Q-factorial terminalisation (X ′′,Δ′′)→ (X ′,Δ′),
which exists by [BCHM10, Corollary 1.4.3], we may assume X ���X ′′ is an isomorphism in
codimension 1.
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By [Kaw08]X ���X ′′ is a sequence of (KX +Δ)-flops. By Lemma 5.2 we see that ifX0 ���X ′′
0

is the induced birational contraction on a general fibre, then in fact X ′′ ∼=X ′′
0 ×C. We conclude

by another application of Lemma 5.2 to (X ′′,Δ′′)→ (X ′,Δ′). �

Definition 5.4. Given a GLC fibration (X,B)→Z with B � 0 and dimZ = 1 we define
var(X/Z, B) to be 0 if there exists a pair (X0, B0) and a generically finite morphism Z ′ →Z
such that (X0, B0)×Z ′ is birational to (X,B)×Z Z

′. Otherwise we define var(X/Z, B) to be 1.

Remark 5.5.

(i) Note that var(X/Z, B) is invariant by crepant birational transformations of (X,B).

(ii) If X has canonical singularities and B = 0 this agrees with the definition of variation found
in [Kaw85].

(iii) A family of terminal minimal models with B = 0 and var = 0 is always (up to base change)
crepant birational to a product, and so by Lemma 5.3 is in fact a product.

Theorem 5.6. Let f : (X,B)→Z be a GLC fibration between projective varieties with B � 0,
dimX = n and dimZ = 1. Suppose that (X,B) is klt over the generic point of Z and the generic
fibre of f admits a good minimal model.

Then we may find a birationally equivalent GLC fibration f ′ : (X ′, B′)→Z fitting into the
following commutative diagram

(X ′, B′) (X, B)

Z Z.

α

f ′ f

such that KX′ +B′ is nef over Z and:

(i) (X ′/Z ′, B′) is BP stable and has maximal moduli;

(ii) κ(M ′)� κ(X ′/Z, B′) + var(X ′/Z, B′); and
(iii) if, in addition, (X,Bh)→Z is a locally stable family, then M ′ + εf ′∗c1(λ′m) is semi-ample

for m� 0 and any ε∈Q>0 where λ′m =det f ′∗OX′(mM ′).

Remark 5.7. We remark that M ′ and λ′m are compatible with any further base change, as in
the statement of Theorem 4.7.

Proof. Take (X ′, B′) to be the model of (X,B) guaranteed by [ACSS21, Theorem 1.1]. By
Lemma 2.6 we see that that the assumption on termination of flips in [ACSS21, Theorem 1.1]
is unneeded.

Taking a base change along the finite morphism guaranteed by Proposition 3.5 does not
alter κ(M ′), κ(X/Z, B), var(X/Z, B) or (in the case (X,Bh)→Z is locally stable) the semi-
ampleness of M ′ + εf ′∗c1(λ′m), so we may freely replace (X ′, B′) by this cover, and therefore
may assume that (X ′, B′) is a locally stable family. For ease of notation we replace (X,B) by
(X ′, B′). By [HX13, Theorem 1.1], we see that KX +B is semi-ample over Z. Next, observe that
since (X,B) is locally stable and klt over the generic point of Z that (X,B) is in fact klt, see
Lemma 2.4.

Let (X̃, B̃)→ (X,B) be a Q-factorial terminalisation of (X,B), which exists by [BCHM10,
Corollary 1.4.3]. By Proposition 2.2, (X̃, B̃) is locally stable. So we may freely replace (X,B)
by (X̃, B̃), and so we may assume that X is Q-factorial with terminal singularities.
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By Proposition 5.1, we may assume that λ+ = 0. By [ACSS21, Proposition 4.1] we see that
KX/Z +B is nef and so λ− � 0. For m� 0 Theorem 4.5 implies that Em := f∗OX(m(KX/Z +B)
is a vector bundle and by Proposition 2.14 μmin(E) = μmax(E) = 0 and so Em is numerically flat.

Semi-ampleness of M is a direct consequence of Lemma 2.11, and so item (iii) is
proven.

To prove item (ii), let Y be the relatively ample model of (X,B) over Z and let (Y, BY ,M)
be the generalised pair given by the canonical bundle formula. By Lemma 2.11 after replacing
Z by an étale cover we may assume (Y, BY +MY ) =Z × (Y0, BY0

+MY0
). As we are assuming

that λ+ = 0 it suffices to show that var(X/Z, B) = 0 to conclude. So we will show that after a
generically finite base change, (X,B)→Z becomes isomorphic to a product (X0, B0)×Z. We
will argue by induction on dim(X/Z). The case where dim(X/Z) = 0 is obvious.

We proceed with a case by case analysis.
Case (1): In this case we assume that Supp(B) is vertical over Y .
First, we run a KX -MMP with scaling relatively over Y . By [HX13, Theorem 1.1] and the

assumption that B is vertical over Y , the MMP terminates with a good minimal model. We
denote by X ′ the final model of this MMP and Y ′ the relatively ample model, which is a
birational model of Y . Since KX +B ∼Q 0/Y , (X ′, B′)→Z is still a family of good minimal
models, where B′ denotes the push-forward of B along the MMP. Note that with respect to
(X ′, B′)→Z we still have λ+ = 0, and so we may freely replace (X,B) by (X ′, B′) and therefore
may assume in addition that KX ∼Q 0/Y .

Now, if B = 0, we may conclude by [Kaw85, Theorem 1.1], see also Remark 5.5. Thus, we may
assume that B �= 0, and we wish to reduce to [Kaw85]. Now, consider a general ample divisor
H0 ⊂ Y0, and let H denote the divisor H0 ×Z ⊂ Y . Furthermore, we let D denote the pullback
of H to X. For some m� 0 sufficiently large, and for general enough H, we may find a cyclic
Galois cover Ỹ → Y and X̃→W of degree =m, which are ramified along H and D, respectively.

Since KX ∼Q 0/Y and H0 is sufficiently ample, X̃→ Ỹ is the relative Iitaka fibration of X̃
over Z. By construction, the generalised pair induced by X̃ on Ỹ is (Ỹ , BỸ , M̃), where BỸ
and M̃ are the pullbacks (the latter as b-divisor) of BY and M, respectively. Then, for every
closed point z ∈Z, (Ỹ , BỸ + Ỹz, M̃) is generalised log canonical, because so is (Ỹ , BY + Yz,M).
Then, by inversion of adjunction for LC-trivial fibrations [Amb04, Theorem 3.1], we deduce that
X̃→Z is a locally stable family. By construction, the variation of the relatively ample model
of X̃ is 0, since both (Y, BY +MY ) and H have no variation. Then, by [Kaw85, Theorem 1.1],
it follows that X̃→Z is isotrivial, and hence (up to a base change) a product. We observe that
the requirements on the class of singularities to apply [Kaw85, Theorem 1.1] is actually satisfied.
Indeed, by our initial reductions, X is terminal, while H is a general member of a free linear
system. Thus, H is itself canonical, and so is the pair (X,H). In turn, by [KM98, Proposition
5.20] and the Riemann–Hurwitz formula, the pair (X̃, H̃) is canonical. In particular, X̃ has
canonical singularities.

Write X̃ = X̃0 ×Z, and Ỹ = Ỹ0 ×Z. Let g be a generator of the Galois action. By construc-
tion, g acts on Ỹ as g′ × 1Z for some g′ ∈Aut(Ỹ0). Then, the action of g on X̃ is a lift of this
action; in particular, by this compatibility, g has to act on X̃ as g′′ × 1Z for some g′′ ∈Aut(X̃0).
It follows that we have an isomorpism X̃/〈g〉 ∼= X̃0/〈g′′〉 ×Z, and so X splits as a product. We
then have (X,B)→Z is a product, since we reduced to the case when B is the pullback of a
divisor supported on BY .

Case (2): In this case we assume that B is big over Y .
Suppose for sake of contradiction that var(X/Z, B) = 1.
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Let (X ′, (1 + ε)B′) denote the log canonical model of (X, (1 + ε)B) over Y for 0< ε� 1. Note
that (X ′, (1 + ε)B′) is a stable family over some open subset U ⊂Z. Let (X ′′, (1 + ε)B′′) be a
compactification of this stable family over U to a stable family over Z (perhaps after replacing
Z by a finite cover). By [KP17, Corollary 8.3] and our assumption that var(X/Z, B) = 1 we see
that KX′′/Z + (1+ ε)B′′ is big.

For general y ∈ Y0, let Zy denote the fibre of Y0 ×Z→ Y0, and let (X ′′
y , (1 + ε)B′′

y ) denote
the restricted family over Zy. We note that by [Kol23, Proposition 2.13] (X ′′

y , (1 + ε)B′′
y ) is

locally stable over Zy. By Proposition 2.12 we have that (X ′′
y , (1 + ε)B′′

y )→Zy is isotriv-
ial over U , hence isotrivial. This implies that KX′′

y
+ (1+ ε)B′′

y is not big. Finally, observe
that (KX′′/Z + (1+ ε)B′′)|X′′

y
∼KX′′

y /Zy
+ (1+ ε)B′′

y , which contradicts the bigness of KX′′/Z +

(1+ ε)B′′, giving our required contradiction.
The map from Z to the moduli space parametrising the fibres of (X ′′, (1 + ε)B′′)→Z is

therefore constant, and so (X ′′, (1 + ε)B′′) splits as a product after a generically finite base
change, hence by Lemma 5.3 (X,B) itself splits as a product.

Case (3): In this case we assume that KX is not pseudo-effective over Y and we reduce to
case (2).

We run a KX -MMP with scaling of any ample divisor over Y . Since KX is not pseudo-
effective, this MMP terminates with a Mori fibre space X ′ →W over Y . In particular, we have
dimW < dimX, and hence X ′ →W is not birational. Since KX +B ∼Q 0/Y , the final outcome
(X ′, B′)→Z is still a locally stable family of good minimal models, and it is crepant birational to
(X,B). Thus, up to replacing (X,B) with (X ′, B′), we may assume that X→W is a morphism.
If dimW =dimY , then W → Y is birational and B is big over Y and so we may reduce to case
(2). Therefore, we may assume that dimY < dimW < dimX.

Let (W,BW ,MW ) denote the generalised pair induced by the canonical bundle formula for
(X,B)→W . By [Amb05], we may choose 0� Γ∼Q MW such that (W,BW +Γ) is klt. It follows
that (W,BW +Γ)→Z is generically a locally stable family of good minimal models, and so, up to
base change of Z, we may assume that this family admits a compactification (W ′, BW ′ +Γ′)→Z
that is everywhere locally stable and that agrees with (W,BW +Γ)→Z over a non-empty open
subset of Z. Let W̃ denote the normalisation of the graph of W →W ′, and let p : W̃ →W and
q : W̃ →W ′ denote the corresponding morphisms. Following the proof of [Kol23, Theorem 11.40],
it follows that

p∗(KW +BW +Γ)� q∗(KW ′ +BW ′ +Γ′). (6)

Since (W,BW +Γ) is crepant to (X,B), it follows that λ− = λ+ = 0 for (W,BW +Γ)→Z. Then,
by (6) and the fact that (W ′, BW ′ +Γ′)→Z is a locally stable family of good minimal models,
it follows that λ− = λ+ = 0 for (W ′, BW ′ +Γ′)→Z. By our induction hypothesis, up to a base
change, (W ′, BW ′ +Γ′)→Z splits as a product.

Since (Y, BY +MY ) and (W ′, BW ′ +Γ′) are products, and since for a general z we have a
morphism gz : W

′
z → Yz with g

∗
z(KY,z +BY,z +MY,z)∼QKW ′,z +BW ′,z +Γ′

z it follows that there
exists a morphism g : W ′ → Y such that g∗(KY +BY +MY )∼QKW ′ +BW ′ +Γ′. By construc-
tion we have a morphism h : W → Y such that KW +BW +Γ∼Q h

∗(KY +BY +MY ) and so
(W,BW +Γ), and (W ′, BW ′ +Γ′) are crepant birational to each other. By Lemma 5.3 it follows
that (W,BW +Γ) is a product.

We may then argue as in case (2), applied to the morphism (X,B)→W to deduce that
(X,B) is itself a product. �
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