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Abstract

Placing an inertial measurement unit (IMU) at the 5th lumbar vertebra (L5) is a frequently employedmethod to assess
the whole-body center of mass (CoM) motion during walking. However, such a fixed position approach does not
account for instantaneous changes in body segment positions that change the CoM. Therefore, this study aimed to
assess the congruence between CoM accelerations obtained from these two methods. The CoM positions were
calculated based on trajectory data from 49 markers placed on bony landmarks, and its accelerations were computed
using the finite-difference algorithm. Concurrently, accelerations were obtained with an IMU placed at L5, a proxy
CoM position. Data were collected from 16 participants. Bland–Altman Limits of Agreement and Statistical
Parametric Mapping approaches were used to examine the similarity and differences between accelerations directly
obtained from the IMU and those derived from position data of the L5 marker (ML5) and whole-body CoM during a
gait cycle. The correlation was moderate between IMU and CoM accelerations (r = 0.58) and was strong between
IMU and ML5 or between CoM and ML5 accelerations (r = 0.76). There were significant differences in magnitudes
between CoM and ML5 and between CoM and IMU accelerations along the anteroposterior and mediolateral
directions during the early loading response, mid-stance, and terminal stance to pre-swing. Such comprehensive
understanding of the similarity or discrepancy between CoM accelerations acquired by a single IMU and a camera-
based motion capture system could further improve the development of wearable sensor technology for human
movement analysis.

1. Introduction

The motion of the whole-body center of mass (CoM) reflects the overall mechanical effect on an
individual. It has been frequently assessed in the study of human locomotion, especially when examining
balance control during standing or walking (Winter 1995; Pai and Patton 1997; Hof 2008). Altered CoM
motions have been reported in individuals with gait dysfunction, and many CoM-related kinematic
markers have been identified to detect gait imbalance (Kaya et al. 1998; Hahn andChou 2004) sensitively.
Age-related sagittal plane CoM motion reductions were reported during walking and obstacle crossing
(Fujimoto and Chou 2014). Increased frontal plane CoM displacement and peak velocity during walking
were reported in older fallers (Lee and Chou 2006) and patients with post-concussion syndrome during
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dual-task walking (Howell et al. 2013). Besides, CoM accelerations were reported to better differentiate
between individuals with and without functional limitations (Fujimoto and Chou 2012; Fujimoto and
Chou 2014) and suggested to better identify individuals with balance control deficits during daily
activities.

The CoMmotion is traditionally estimated through the acquisition of whole-body movement with the
use of a camera-basedmotion capture system (Winter 1995), which has beenwell-developed and regarded
as the gold standard. However, practical applications of this method are limited for many real-world
activities or clinical settings due to the exorbitant costs associated with equipment and extensive expertise
required for data acquisition and analysis. Recent advancements in wearable sensor technology have
emerged as a viable solution for effectively bridging this existing gap. Many of these devices incorporate
multiple sensors such as tri-axial accelerometers, gyroscopes, and magnetometers and are broadly
described as inertial measurement units (IMUs). Such technology provides users substantial freedom
to measure body movement and alignment data from various daily activities. Wearable sensors have
become a popular alternative in providing a time-efficient and user-friendly measurement of gait and
balance performance (O’Sullivan et al. 2009; Pitt and Chou 2019). Recent studies utilizing a single
accelerometer placed over the 5th lumbar vertebrae (L5), a proxy for the whole-body CoM, to examine
gait balance control concluded that such acceleration data were reliable, clinically practical, and could be
sensitive to detect gait imbalance (Howell et al. 2015; Pitt and Chou 2019).

The CoM of a multi-segment system, like the human body, is an estimated point that accounts for each
body segment’s mass and instantaneous location. Thus, the CoM location and proximity to selected bony
landmarks during movement are posture-dependent. On the other hand, the use of a wearable sensor
requires its placement at a fixed body landmark, which does not account formultisegmental motion or any
instantaneous changes in body segment alignment that lead to the relocation of the whole-body CoM.
Although kinematic parameters derived from the CoMmotion and wearable sensor’s measurement have
been used to detect gait imbalance, it is still not clear to what extent the acceleration measured by a
wearable sensor at a single landmark, i.e., L5, could reflect the feature of the CoM acceleration during
walking. Given the growing use of wearable sensors in humanmovement analysis, such understanding of
differences in measurement data from both methods would enhance our ability in IMU data interpretation
and the development of deep learning algorithms to facilitate a robust gait imbalance detection.

Therefore, this study aimed to compare the similarity between accelerations directly measured by a
single IMU placed at L5 and those derived from the CoM position obtained from a camera-based motion
capture approach during walking. This initial study employed healthy adults, a population with a stable
gait and balance control, so a fundamental understanding of the agreement between IMU-based mea-
surements and conventionally calculated CoM acceleration could be achieved. It was hypothesized that
IMU-based measurements and camera-based CoM acceleration would demonstrate a substantial degree
of similarity in the nature of the patterns but with identifiable discrete differences in magnitudes.

2. Methods

2.1. Participant

A total of 16 healthy adults (8 males/8 females; ages: 19–62 years old; weight: 73.7 ± 18.3 [43.4–106.8]
kg, height: 1.71 ± 0.10 [1.56–1.89] m) were recruited for this study from the university community.
Individuals with any existing pain or musculoskeletal injuries that could potentially impact walking
ability were excluded from the study. Before data collection, participants were provided with a detailed
explanation of the study objectives and experimental procedures and signed the informed consent
approved by the Institutional Review Board.

2.2. Procedure

Forty-nine retroreflective markers were placed on specific bony landmarks (Leardini et al. 2007, 2011) to
capture the whole-body motion during walking. Marker trajectory data were collected using a 12-camera
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motion capture system (Qualisys AB, Sweden). Before data collection, the coordinates of the motion
capture system were calibrated and established with one of the axes aligned with the direction of the
walkway. Additionally, a single IMU (OPAL, APDM wearable Technologies, Inc., Portland, OR, USA)
was placed at the L5 as the proxy location of CoM (Howell et al. 2015). Its axes were aligned carefully
with the anatomical direction during a standing position. Moreover, another retroreflective marker was
placed on the IMU sensor to acquire movement data at L5 to identify system-wide (IMU versus camera-
based) measurement discrepancies.

Participants were instructed to walk at self-selected speeds barefoot along a walkway in the laboratory.
To familiarize the laboratory settings and to obtain each participant’s average walking speed, five practice
walking trials were first conducted. Marker trajectory and IMU data from each participant were then
collected from five subsequent walking trials. The walking speeds for these trials were set within a range
of 95% to 105% of the pre-determined average walking speed to ensure the consistency of the gait pattern
within each participant.

2.3. Data processing

The three-dimensional marker trajectory data were collectedwith a sampling rate of 240Hz and processed
using a zero-lag low-pass fourth-order Butterworth filter with a cutoff frequency of 12 Hz (Winter 2009;
Pitt andChu 2019). The position of thewhole-bodyCoMwas computed as theweighted sumof each body
segment’s CoM from a 13-link biomechanical model, including head and neck, trunk, pelvis, two upper
arms, two forearms with hands, two thighs, two shanks, and two feet (Hahn and Chou 2004). Anthro-
pometric reference data were adopted from the initial work of Dempster (Dempster 1955). The following
equations describe the weighted sum formula for calculating the whole-body CoM position (x0, y0, z0)
(Winter 1995).

x0 =
1
M

Xn

i = 1

mixi, y0 =
1
M

Xn

i = 1

miyi, z0 =
1
M

Xn

i = 1

mizi

wheremi is the mass of the ith body segment; (xi, yi, zi) is the location of the center of mass of the ith body
segment; and M is the total body mass.

Velocities and accelerations for the whole-body CoM and L5 marker, respectively, were calculated
from the first and second derivatives of their position data using the finite-difference algorithm built in
Visual3D (C-Motion, Inc., MD). IMU acceleration data were collected with a sampling rate of 128 Hz,
and raw signals were filtered with a second order, zero-lag, and low-pass Butterworth filter with a 12 Hz
cutoff frequency (Hahn and Chou 2004). To mitigate the impact of gravitational acceleration on IMU
measurements, the resulting magnitude from the z-axis was corrected by subtracting 9.81 m/s2.

Data for each gait cycle obtained from both systems were synchronized by aligning the timingmarkers
detected for the gait event of heel-strike (HS). A gait cycle is defined as the time period between two
consequtive HSs of the same foot. For the camera-based motion capture system, the HS was determined
by the ground reaction force and motion data, utilizing an algorithm integrated in Visual3D. IC events
were detected from the IMU acceleration data by detecting the minimum value after applying Gaussian
continuouswavelet transforms to the vertical acceleration (McCamley et al. 2012), a process implemented
in Matlab (MathWorks, Natick, MA, USA).

2.4. Statistical analysis

Correlation between the time-series of acceleration data obtained from the IMU (IMU), a marker placed on
the IMU at L5 (ML5), andwhole-bodyCoMover one gait cycle was assessed using the Pearson Correlation
Coefficient (r). which indicates the degree and direction of the linear relationship The Bland–Altman
analysis (Bland and Altman, 1999) was further used to evaluate the level of agreement between measure-
ments. This analytical approach is widely employed in biomedical research to quantify the consistency and

Wearable Technologies e16-3

https://doi.org/10.1017/wtc.2024.12 Published online by Cambridge University Press

https://doi.org/10.1017/wtc.2024.12


repeatability between twomeasurement techniques (Klein et al. 1998). All data points acquired by the IMU
during walking were included in the analysis, as removing any outliers could compromise the true
representation of the sensor’s behavior in response to the human walking motion. The analysis created a
scatter plot that incorporates the absolute differences betweenmeasurements obtained from the IMU and the
motion capture system, with the horizontal axis representing the average values of measurements and the
vertical axis against corresponding differences. A statistical significance α level was set as 0.05.

To compare the general patterns of IMU, ML5, and CoM accelerations over one gait cycle, a one-way
repeated analysis of variance (ANOVA) was conducted with the normalized acceleration data using the
Statistical Parametric Mapping (SPM) approach. The data normalization process involved scaling the
maximum or minimum value to fit within the range of�1 to 1. A statistical significance α level was set as
0.05. Post-hoc pairwise comparisons were performed with a significant α level of 0.017 with Bonferroni
correction. Data analyses were conducted usingMATLAB, and the statistical analyses were implemented
in spm1d (Pataky 2012; Pataky et al. 2016).

3. Results

Accelerations in three respective anatomical directions obtained from all three approaches demonstrated
similar patterns (Figure 1). Acceleration data directly measured by the IMU closely overlapped with that
of ML5 in all three directions. However, CoM accelerations had relatively lower magnitudes. They were
smoother when compared to those of IMUandML5, especially at the heel-strike andmid-stance, and such
a phenomenon was more noticeable in the mediolateral direction.

A total of 4848 points were included in both correlation and Bland–Altman analysis (16 participants ×
101 timeframes × 3 directions). The correlation was moderate between IMU and CoM (r = 0.58; p < .05)
and was strong between IMU and ML5 or between CoM and ML5 (r = 0.76; p < .05) (Figure 2). The
Bland–Altman plot quantified the biases and variabilities for three pairs: CoM versus IMU, ML5 versus
IMU, and CoM versus ML5. The upper and lower limits were calculated using mean ± 1.96 × standard
deviation (SD). For the comparison between CoM and IMU, the absolute mean bias ± SDwas�0.4 ± 1.8

Figure 1.Average accelerations from all participants were obtained by different approaches (CoM, IMU,
andML5) in three anatomical directions during one gait cycle. The grey shade in the plot, represented by
the ±1 standard deviation (SD), indicates the dispersion or variability of the data points around the mean.
A gait cycle is defined as ranging from an initial contact (0%) to the subsequent initial contact (100%) of

the same foot. Anteroposterior (A-P), mediolateral (M-L), and superior–inferior (S-I).
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m/s2, with the limits of agreements being�3.9 and 3.1. For the comparison between ML5 and IMU, the
absolute mean bias ± SDwas�0.41 ± 1.5 m/s2, with the limits of agreements being�3.3 and 2.5. For the
comparison between CoM andML5, the absolute mean bias ± SDwas 0.01 ± 1.3 m/s2, with the limits of
agreements being �2.6 and 2.6. (Figure 2).

Figure 2. Linear correlation analysis (left-column) and Bland–Altman plot (right-column) between each
pair of measurements: IMU versus CoM; IMU versus ML5; ML5 versus CoM. (red: anteroposterior;

green: mediolateral; blue: superior–inferior).
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When comparing the normalized magnitudes, significant differences were detected between IMU
versus CoM and ML5 versus CoM in both anteroposterior and mediolateral directions (Figure 3). In the
anteroposterior direction, significant differences were detected betweenCoMand IMUand betweenCoM
andML5 during the loading response, mid-stance, and late terminal stance (p < .001). In the mediolateral
direction, there were significant differences between CoM and ML5 at the heel-strike, early mid-stance,
and late terminal stance phase (p < .001) and between CoM and IMU at the early loading response, mid-
stance, and terminal stance to pre-swing (p < .001).

4. Discussion

We examined to what extent the accelerations measured by an IMU placed at the L5 could reflect the
feature of the whole-body CoM accelerations during walking. Our findings indicated that the accelera-
tions measured at the L5 with an IMU or with a single marker demonstrated similar patterns in all three
anatomical directions to the CoM accelerations derived frommulti-segment kinematic data obtained with
a camera-based motion capture system. However, our results also indicated the presence of a systematic
and proportional bias between accelerationsmeasured by IMU and derived fromCoMposition data. Such
systematic bias is more pronounced in the mediolateral and anteroposterior directions, especially during
the loading response and terminal stance.

Accelerations obtained from a single marker placed at L5with IMUwere also included for comparison
in this study. As accelerations of the L5 marker were calculated using the same method as for the whole-
body CoM, its comparison to the IMU-measured acceleration would reveal possible differences resulting
from the numerical method applied to calculate the second derivatives from position data. The close
agreement between the accelerations obtained from the marker and IMU placed at L5 indicates that the
acceleration computation from position data would not be a contributing factor to the magnitude
difference between IMU-measured and motion capture system-derived CoM accelerations.

Analysis from the Bland–Altman plot revealed essential insights from the IMU and CoM comparison
and indicated the presence of a systematic and proportional bias between accelerations measured by IMU

Figure 3. Normalized accelerations (with ±1 SD in shaded grey) from IMU, CoM, and ML5 in each of
three anatomical directions during a gait cycle. Regions with statistical significances from the SPM one-

way repeated ANOVA were indicated in grey color zones.
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and derived from CoM position data. The whole-body CoM of a multi-segment system is estimated using
the weighted-sum method that accounts for masses and instantaneous locations of all body segments. Its
kinematics reflects the overall mechanical effect of themulti-segment system. Duringwalking, thewhole-
body CoM trajectory is smoothly and tightly regulated to pass between the alternating supporting feet
(Winter 1995; Chou et al. 2001). It is, therefore, reasonable to expect a smoother CoM acceleration profile
compared to those obtained from the marker or IMU placed at L5, which only measures the kinematics of
the pelvis segment. Such systematic bias is more pronounced in the mediolateral and anteroposterior
directions, in which the CoM motion is tightly regulated in response to changes in the base of support,
especially during the loading response and terminal stance. Despite differences in the acceleration
magnitude, both the CoM acceleration obtained with the camera-based system and acceleration measured
at the L5 by an IMU were reported to detect gait imbalance (Pitt and Chou 2019). However, such a
comprehensive understanding of differences in measurement data from both methods would enhance our
ability in IMU data interpretation and the development of deep learning algorithms to facilitate robust gait
imbalance detection.

4.1 Limitation

There were a few potential limitations in this study. First, during data collection, the local IMU coordinate
system was not explicitly aligned with the global coordinate system. Although the participant’s walking
direction was guided by the walkway that aligned with one of the axes established for the camera-based
motion capture system and the IMU at L5was also oriented carefully with the anatomical direction during
a standing position, this setup could still introduce directional discrepancies in respective data measure-
ment. Such limitation may impose a greater difference in activities involving a significant trunk
movement. Secondly, this study is our initial investigation to examine the data agreement between the
uses of IMU and camera-basedmotion capture systems for estimating CoM acceleration. As a result, only
healthy adults were recruited as participants. Future studies should consider examining whether the
reported data differences vary with different locomotive tasks or populations, including older adults or
individuals with impaired balance, to enhance the generalizability of findings.

In addition, the body sizes of study participants may impact the CoM calculation and IMU placement,
which could lead to a potential variation in the acceleration measurement. This current study did not
explicitly address how these variations may influence the results. Future efforts should be made to
investigate these relationships more thoroughly, providing a more comprehensive understanding of the
implications of varying body sizes on interpreting CoM acceleration data obtained through IMUs.

5. Conclusion

This study aimed to assess the agreement between accelerations measured by an IMU placed at L5 and
whole-body CoM accelerations calculated by a camera-basedmotion capture system duringwalking. The
results revealed congruent patterns in both systems across all three anatomical directions but noticeable
differences in magnitudes during specific gait phases. Bland–Altman analysis indicated a systematic
agreement bias between the two systems, and the disparity was unrelated to the employed acceleration
computation algorithm. A smoother CoM acceleration profile reflects its unique kinematic characteristics
as an equilibrium point of the multi-segment human body.

Such comprehensive understanding of the similarity or discrepancy between CoM accelerations
acquired by a single IMU and a camera-based motion capture system could further improve the
development of wearable sensor technology for human movement analysis. Future investigations should
focus on refining data acquisitionmethodologies tomitigate these identified biases or exploring advanced
machine learning algorithms or sensor fusion techniques to ensure the capture of relevant kinematics
features. These efforts will enhance the accuracy and applicability of IMU-based assessments in the
context of whole-body CoM dynamics of human movement.

Data availability statement. All data reported in this study were collected from human subjects tested in the Biomechanics
Laboratory in the Department of Kinesiology at the Iowa State University.
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