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Abstract

Dicamba-resistant (DR) soybean cultivars are essential elements in managing broadleaf weeds
in modern production systems. However, limited information is available regarding yield
reductions associated with dicamba rates that were previously registered for postemergence
weed control and off-label dicamba rates in these cultivars. This study aimed to characterize and
quantify the effects of postemergence dicamba applications on two DR soybean cultivars. Field
trials were conducted in 2022 and 2023, with dicamba applied at 0 to 1,440 g ae ha™ during the
V5 to V6 stages. Visible injury increased with dicamba rate, reaching 18% (Cultivar A) to 20%
(Cultivar B) at 1,440 g ae ha™" at 3 d after treatment, but symptoms declined to <10% by 4 wk
after treatment (WAT). Chlorophyll fluorescence was not significantly affected at 2 and 4 WAT.
Height reduction at 4 WAT occurred only at the highest dicamba rate (1,440 g ae ha™), but
differences disappeared by maturity. Dry biomass reduction was also dose-dependent, reaching
16% for Cultivar A and 10% for Cultivar B at the highest rate. Pod reduction in DR soybean was
minor (<3.5%) and not significant. Applications of dicamba from 288 to 864 g ae ha™" resulted
in minimal yield reductions (<5%) and no significant biomass reduction. At a dicamba dose of
1,152 g ae ha™, yield reductions reached 7% and 9% for Cultivars A and B, respectively, while
the highest rate (1,440 g ae ha™') resulted in yield reductions of 12% (Cultivar A) and 14%
(Cultivar B). Despite over-the-top application restrictions, these results confirm that DR
soybean cultivars tolerate rates (<720 g ae ha™) of dicamba that were previously registered for
postemergence weed control with minimal (<5%) yield reduction and recover rapidly from
transient injury. However, applications above these rates can reduce yield by up to 14%,
highlighting the importance of adhering to recommended dicamba use guidelines.

Introduction

Dicamba-resistant (DR) soybean, developed through the insertion of the dicamba
monooxygenase (dmo) gene that enables dicamba metabolism and provides herbicide tolerance
(ISAAA 2024), has been commercially available to growers in the United States since 2016
(Wechsler 2018) and in Brazil since 2022 (CTNBio 2017), and this genetically engineered trait
has been widely adopted by soybean producers in both countries. By 2018, DR soybean cultivars
accounted for approximately 43% of U.S. soybean acreage, with an estimated 22.3 million
hectares planted annually (US EPA 2021; USDA-ERS 2022; Wechsler 2018).

Market research shows that approximately 60% of DR soybean fields received at least one
dicamba application, with up to 8.9 million ha planted primarily as a safeguard against off-target
exposure rather than for direct weed control (US EPA 2021). Adoption from 2016 to 2018
followed a trajectory similar to that of glyphosate-resistant varieties in the late 1990s, particularly
in areas with widespread glyphosate-resistant weeds. The global dicamba herbicide market was
valued at US$559.5 million in 2023 and is projected to grow at an annual rate of 7.9% through
2030, primarily driven by its efficacy in controlling herbicide-resistant broadleaf weeds and the
increasing adoption of DR crops, such as soybean and cotton (Grand View Research 2025).

Dicamba (3,6-dichloro-2-methoxybenzoic acid) has been used as herbicide since 1967 in
both agricultural and nonagricultural fields to target annual, biennial, and perennial broadleaf
weeds in a range of food and feed crops (Busi et al. 2018; US EPA 2024). In soybean production,
dicamba plays a critical role in the management of herbicide-resistant broadleaf species and has
been widely investigated for both its weed control performance and the potential for its off-
target movement (Carbonari et al. 2022; Egan and Mortensen 2012; Mueller and Steckel 2019;
Riter et al. 2021; Sall et al. 2020). The growing role of dicamba applied either before or after the
crop emerges, but primarily to control emerged weeds, is reflected in its significant increase in
use in both Brazil and the United States. In the United States, dicamba usage grew by 300% from
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2013 to 2017 (USGS 2024), while in Brazil, sales of dicamba (acid
equivalent) rose by more than 1,200%, from 11,600 kg in 2018 to
155,900 kg in 2022 (IBAMA 2023). These increases were driven by
the widespread adoption of DR soybean cultivars and the growing
resistance of weeds to 2,4-D in both countries. Yet, recent
regulatory revocations no longer permit over-the-top (OTT)
dicamba applications to soybean under current label recommen-
dations and restrictions. Even so, generating exploratory data
under controlled research conditions remains necessary if we are to
better understand DR soybean responses and to inform future
regulatory discussions.

Injury symptoms associated with dicamba exposure typically
include crinkling and cupping of young leaves, epinasty, stem
twisting, leaf droop, reduced plant height, apical meristem
necrosis, abnormal pod development, and ultimately, decreased
grain yield (Andersen et al. 2004; Canella Vieira et al. 2022;
Grossmann, 2010; Kniss 2018; Weidenhamer et al. 1989). A meta-
analysis shows that soybean plants are highly variable in their
responses to dicamba exposure (Kniss 2018). The visible injury
symptoms, especially during vegetative stages, are not predictive of
final yield reduction (Egan et al. 2014; Garcia et al. 2025). The U.S.
Environmental Protection Agency (U.S. EPA) has assessed the
relationship between visible injury symptoms such as leaf
crinkling, cupping, and epinasty; plant height; and yield across
multiple studies and determined that a 10% visible injury threshold
is a sensitive and protective endpoint, typically associated with a
reduction in growth or yield of less than 5% in most cases (US EPA
2020). Therefore, this study adopted the 5% and 10% visible injury
and yield reductions levels as recommended by the U.S. EPA and
previous studies (Kniss 2018; Price et al. 2017), to characterize the
severity of dicamba-induced injury and assess the sensitivity of DR
soybean cultivars under increasing dicamba doses.

Nonresistant soybean plants are highly sensitive to dicamba,
exhibiting symptoms even at ultralow doses such 0.03 gae ha™, the
lowest non-zero dose reported in the literature; consequently,
significant injury might be expected at slightly lower rates (Foster
and Griffin 2018; Kniss, 2018; Riter et al. 2021; Solomon and
Bradley 2014). In contrast, DR cultivars that express the dmo gene
exhibit a much higher tolerance, but transient injury can still occur
shortly after a herbicide is applied. While the genetic resistance of
soybean to dicamba prevents major injury, postemergence
application of dicamba at 720 g ae ha™' may cause slight reductions
in net CO, assimilation without compromising carboxylation
efficiency. These mild physiological effects likely result from early
herbicide perception and hormonal signaling. The dmo trait
effectively metabolizes dicamba into 3,6-dichlorosalicylic acid (3,6-
DCSA), with metabolite levels exceeding those of dicamba within 3
d after application and internal dicamba concentrations dropping
below 0.05 g ha™ within 24 h (Pereira 2023). Moreover, dicamba
applied at 600 g ai ha™! reduced the yield of DR soybean by 5.6%, a
figure that was not statistically different from that of the nontreated
plots, resulting in no negative effect on soybean yield (Underwood
et al. 2016). These findings highlight the effectiveness of the dmo
gene in mitigating dicamba injury, while underscoring the need for
further research on its impact on yield components.

Although DR soybean is a key tool in weed management, much
of the existing research has focused on off-target drift or sublethal
exposures. With newer DR cultivars exhibiting higher yield
potential, shorter growth cycles, and increased nutrient demands,
understanding how these traits influence their tolerance to
dicamba is crucial, even considering current restrictions on OTT
dicamba applications. Despite the potential variability in responses
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among DR cultivars, limited information exists on the severity of
symptoms at different dicamba application rates, leading to
uncertainty about how much dicamba DR soybean can tolerate
without compromising performance. Therefore, the results
presented here should be interpreted as exploratory, and intended
to advance scientific understanding of DR soybean responses to
dicamba. They are not an endorsement of nonlabeled use, but
rather we expect the results to contribute evidence that may
support future discussions on dicamba regulation and manage-
ment in soybean production systems. This study aims to
characterize the effects of postemergence dicamba doses on DR
soybean cultivars.

Material and Methods
Experimental Site and Design

Field trials assessing DR soybean response to dicamba dose
exposure were conducted during the 2022 and 2023 growing
seasons in no-till agricultural fields previously cultivated with corn
in Terra roxa, West Parand State, Brazil. Two DR cultivars used in
southern Brazil, Cultivar A (Monsoy 630112X) and Cultivar B
(Soytech 621), were tested under a no-till system. Seeding rates
were 280,000 seeds ha™ for Cultivar A and 260,000 seeds ha™ for
Cultivar B. Fertilizer application, pest management, and disease
control practices followed local agronomic guidelines for soybean
production. Site information, location coordinates, soil properties,
weather conditions at the time of treatment application, and
treatment application dates are listed in Table 1. Weather data
containing rainfall indices and minimum and maximum temper-
atures during the experimental period are shown in Figure 1. Field
trials were set up as a randomized complete block with three
replicates, with experimental units consisting of six 40-cm-spaced
rows, 5 m in length. Dicamba (Xtendicam; Bayer S.A., Rio de
Janeiro, Brazil) herbicide was tested at doses of 0, 288, 576, 864,
1,152 and 1,440 g ae ha™'. All dicamba treatments included a
premix of a volatility and drift-reducing adjuvant (Xtend Protect;
Solvay, Brazil) at a concentration of 1% (10 mL L™). Herbicide
treatments were applied when soybean plants were at the V4 to V6
growth stage with a CO,-pressurized backpack sprayer equipped
with six TeeJet 110015 AIXR nozzles (TeeJet Technologies, Sdo
Paolo, Brazil) spaced 50 cm apart, adjusted to deliver 150 L ha™! at
245 kPa, at speed of 3.6 km h™!, producing a spray width of 3.0 m.

Visible injury was evaluated 3 d after treatment, and 2 and 4 wk
after herbicide treatment (WAT). For these, scores were assigned
by visible injury level analysis to each plot using a scale of 0% (no
effect) to 100% (death of the plant), based on the comparison of the
treated plot with an untreated control plot (Velini et al. 1995). At 4
WAT, soybean plant aboveground biomass was determined by
clipping all plants within a 0.25-m? quadrant in each plot.
Aboveground dry mass was determined after oven-drying at 75 C
until a constant moisture was achieved. The height (in centimeters)
of five soybean plants per plot was measured at 4 WAT and at R8
growth stage (full maturity) before harvest. Chlorophyll content
was assessed in five trifoliates from five soybean plants per plot at 2
and 4 WAT using a Clorofilog CFL1030 chlorophyll meter (Falker,
Porto Alegre, Brazil). Finally, six center rows of each soybean plot
were harvested at the R8 growth stage (full maturity) using a plot
combine (Massey Ferguson MF210S, adapted). Grain weight
values were adjusted to 13% moisture, then the yields were estimate
in kilograms per hectare (kg ha™).
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Table 1. Site information, location coordinates, soil properties, weather conditions, soybean growth stage at the time of treatment application, and treatment

application dates for the two field trials.

Soil properties

Weather at treatment application

Year Location coordinates ~ Texture  Sand Silt  Clay  Air temperature Relative humidity ~ Windy speed Growth stage  Spray date
—_— % ——— C — % — km h?
2022 24.345062°S, Red 27 4 69 26.7 58.9 4.0 V4-V6 October 21, 2022
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Figure 1. Rainfall indices, maximum (Max.T) and minimum (Min.T) temperatures during the 2022 (A) and 2023 (B) experimental periods, demonstrating the day of spraying and

evaluations at 3 d after treatment (DAT), 2, 4 wk after application (WAA), R8 growth stage (fu
Paranad, Brazil (24.1790°S, 53.8379°W).

Statistical Analysis

Statistical analysis was conducted using R software (v.4.4.0; R Core
Team 2024). Data were pooled between years after confirming
homogeneity of variances using Levene’s test (P> 0.05). The
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Il maturity), and harvest in Western Parana, Brazil. Source: weather station in Palotina,

nonsignificant test result indicates that variances were equal
between years, suggesting there was no significant year effect.
Therefore, data from different years were combined for analysis.
Visible injury, yield, dry biomass, and plant height reductions were
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Figure 2. Visible injury (%) of dicamba-resistant cultivars according to dicamba doses at 3 d after treatment (DAT), 2 and 4 wk after treatment (WAT), analyzed using a generalized
linear mixed model. Significant effects were found for dicamba dose (P < 0.001), WAT (P < 0.001), and their interaction (P =0.001) on visible injury. No significant effects were
observed for cultivar or interactions involving cultivar (P > 0.05). Data were pooled across years (Levene’s test, P = 0.370). Error bars represent the standard error of the mean.
Means followed by the same letter within each dose are not significantly different according to Fisher’s protected LSD test (P < 0.05). The pink-colored rectangle indicates the
recommended herbicide dosage for postemergence weed control. The orange and red dashed lines represent the 5% and 10% visible injury thresholds, respectively.

assessed using 5% and 10% thresholds to define biologically
relevant tolerance levels, following criteria established by the U.S.
EPA in 2020 and supported by previous studies (Kniss 2018; Price
et al. 2017). Yield, dry biomass, and plant height reductions were
expressed as percentage reduction relative to the untreated control
(dose = 0). Chlorophyll fluorescence increases were calculated as
percentage increases compared to the control. To identify the main
variables that contribute to the variation in the yield and injury
components, a principal component analysis (PCA) was per-
formed using the prcomp() function in R software. The PCA was
visualized through scatter plots showing the distribution of the
cultivars along the first two principal components (Diml and
Dim2), which explained a significant portion of the total variance.
The variable correlation plot was also generated to show how yield
components and injury metrics are associated with each principal
component. Additionally, to evaluate the relationships between
dicamba doses, plant injury, and yield reduction, a Spearman
correlation matrix was computed using the cor() function in R
software. Statistical significance was assessed using a P-value
threshold of 0.05, with nonsignificant correlations blanked out.
The correlation coefficients were annotated within the plot to
facilitate the interpretation of relationships between the variables.

An analysis of variance using the AOV function was performed
to assess the effects of dicamba doses across DR cultivars on these
variables. The linear mode was fitted, including dose as a factor and
its interaction with cultivars. The EMMEANS and MULTCOMP
packages were used, and tests were performed on the log odds ratio
scale at a significance level of a = 0.05. Doses were compared using
Fisher’s protected LSD test (P <0.05). Visible injury levels in
percentages were transformed to proportions (values between 0
and 1) prior to analysis, and the results were then back-
transformed and presented on the original percentage scale
(0%-100%). A generalized linear mixed model (GLMM) using
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Template Model Builder (TMB) was then fitted with the
GLMMTMB package. The EMMEANS and MULTCOMP packages
were used to obtain the back-transformed visible injury values
from the logit scale, with tests performed on the log odds ratio scale
at a significance level of a=0.05. Doses were compared using
Fisher’s protected LSD test (P < 0.05). Data were pooled across
years based on Levene’s test, furthermore, the DHARMA package
was used to create readily interpretable scaled (quantile) residuals
for our fitted (generalized) linear mixed models to confirm the
statistical assumptions were met. The statistical model included
dicamba doses and cultivars as a fixed effect evaluated weekly,
while year and block (with blocks nested within years) were
considered as random effects.

Results and Discussion

Visible injury (%) at 3 d after treatment (DAT), 2 WAT, and 4
WAT increased with dicamba dose (P < 0.05; Figure 2), without a
dose X cultivar interaction (P = 0.741, nonsignificant). At 3 DAT,
doses equal to or greater than 864 g ae ha™' resulted in
approximately 12% injury to both cultivars, which increased to
17% at 1,152 g ae ha™' and reaching 18% (Cultivar A) to 20%
(Cultivar B) at 1,440 g ae ha™. Injury levels at 2 WAT were similar.
By 4 WAT, recovery was evident: injury dropped below 5% when
dicamba was applied at 288 to 864 g ae ha™' and stayed under 10%
even at 1,152 and 1,440 gae ha™'. Representative images of exposed
and newly developed trifoliate leaves from both cultivars (Figure 3)
visibly corroborate these trends, showing increasing leaf deforma-
tion with higher dicamba rates, especially in trifoliate leaves that
were present at the time of application, while newly developed
trifoliates appeared largely unaffected as early as 2 WAT, and even
less so by 4 WAT. These results align with previous reports that
dicamba injury symptoms on DR cultivars are generally transient,
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Figure 3. Representative images of dicamba-resistant soybean trifoliate leaves from two cultivars (A and B), evaluated at 3 d after treatment (DAT), and at 2 and 4 wk after treatment
(WAT), under different dicamba rates. The pink-colored rectangle indicates the recommended herbicide dosage for postemergence weed control. Rows marked “Exposed” show
trifoliate leaves that were present at the time of dicamba application. Rows marked “New” show newly developed trifoliate leaves that emerged after dicamba exposure.

dissipating within 2 to 3 wk after application, particularly at labeled
rates (Pereira 2023; Underwood et al. 2016).

Chlorophyll fluorescence (ChlF) increased slightly at 2 and 4
WAT compared to untreated plants, with no significant interaction
between dicamba dose and cultivar (P > 0.05; Figure 4, A and B).
Despite this small increase, ChlF was not correlated with yield
reduction or its components and contributed minimally to the
PCA, supporting its role as a general stress indicator rather than a
predictor of dicamba-induced yield reduction. Although most
herbicide applications reduce ChlF (Dayan and Zaccaro 2012; Li
et al. 2018), the increases observed in this study may reflect stress-
induced compensatory mechanisms. Injury-related disruptions in
photosynthesis and respiration can lower photochemical effi-
ciency, leading to elevated ChlF via increased chlorophyll synthesis
and energy dissipation. In DR soybean, resistance is conferred by
expression of the dicamba monooxygenase (DMO) gene, which
enables rapid metabolism of dicamba to the nontoxic metabolite
3,6-DCSA (Clemente et al. 2011; Gleason et al. 2011).

Height reduction occurred at 4 WAT only at the highest
dicamba rate (1,440 g ae ha™'; Figure 5A), with reductions of 10%
(Cultivar B) and 7% (Cultivar A) compared with the nontreated
control. By physiological maturity, plant height differences among
treatments were not statistically significant, indicating recovery or
compensation in growth over time (Figure 5B). Although current
regulations restrict OTT applications, these findings highlight the
capacity of DR cultivars to withstand field-use rates previously
registered for effective postemergence soybean weed control, as
well as slightly elevated dicamba doses, with minimal long-term
growth penalties. To our knowledge, no peer-reviewed studies have
documented transient height reduction followed by recovery in DR
soybean, which underscores the importance of these findings. In
contrast, non-DR cultivars can exhibit sustained growth suppres-
sion even at low dicamba rates (Sperry et al. 2022).

Dry biomass reduction (%) at 4 WAT was affected by dicamba
dose (P < 0.05), with no dose X cultivar interaction (P = 0.9645, ns).
At dicamba doses between 288 and 864 g ae ha™', biomass reductions
were <5%. At 288 gae ha™, biomass even increased slightly, possibly
due to hormesis, a process in which low auxinic herbicide doses
stimulate growth (Cedergreen 2008; Duke et al. 2025; Wiedman and
Appleby 1972). However, at 1,440 g ae ha™, biomass reduction
reached 16% (Cultivar A) and 10% (Cultivar B) (Figure 6).
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Figure 4. Chlorophyll fluorescence increases (%) in dicamba-resistant cultivars
according to dicamba doses at 2 (A) and 4 (B) wk after treatment, analyzed using a
generalized linear mixed model. No significant effects of dose (2 wk P =0.268; 4 wk
P =0.659), cultivar (2 wk P =0.191; 4 wk P = 0.704), or dose-by-cultivar interaction (2 wk
P =10.972; 4 wk P = 0.993) were detected. Data were pooled across years (Levene’s test:
P =0.750 and 0.997, respectively). Nontreated controls (CA=29.87, CB =28.02 at 2 wk;
CA=30.57, CB = 33.32 at 4 wk) served as the reference for percentage reductions. Error
bars represent the standard error of the mean. Means followed by the same letter within
each dose are not significantly different according to Fisher’s protected LSD test
(P < 0.05). If no letter is presented, it indicates that no significant differences were found.
The pink-colored rectangle indicates the recommended herbicide dosage for
postemergence weed control. The orange and red dashed lines represent the 5%
and 10% chlorophyll fluorescence increases thresholds, respectively.
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Figure 5. Height reduction (%) of dicamba-resistant cultivars according to dicamba doses at 4 wk after treatment (A) and at the R8 growth stage (full maturity) prior to harvest (B)
analyzed using a generalized linear mixed model. A significant effect of dose was observed at 4 wk (P = 0.014), but not at the R8 growth stage (P = 0.443). No significant effects of
cultivar (4 wk P =0.089; maturity P =0.800) or dose-by-cultivar interaction (4 wk P =0.944; maturity P = 0.983) were detected. Data were pooled across years according to
Levene’s test for homogeneity of variance (4 WAT: P = 0.998; maturity: P = 0.997). Nontreated controls (CA =60 cm, CB = 44 cm at 4 wk; CA = 96 cm, CB = 85 cm at R8) served as the
reference for percentage reductions. Error bars represent the standard error of the mean. Means followed by the same letter within each dose are not significantly different
according to Fisher’s protected LSD test (P < 0.05). If no letter is displayed, it indicates that no significant differences were found. The pink-colored rectangle indicates the
recommended herbicide dosage for postemergence weed control. The orange and red dashed lines represent the 5% and 10% height reduction thresholds, respectively.

Pod reduction in DR soybean cultivars was not significantly
affected by dicamba dose or cultivar (P> 0.05; Figure 7).
Nonetheless, at the highest dicamba rates (1,152 and 1,440 g ae
ha™), pod reduction reached 3.0% and 3.5%, respectively,
remaining below the 5% threshold. In contrast, even low doses
of dicamba can reduce pod number and seed yield of nonresistant
soybean (Foster and Griffin 2019; McCown 2018), DR cultivars
appear capable of effectively mitigating such reductions, even
under higher application rates.

Yield reduction (%) varied significantly among dicamba doses
(P < 0.05), although no dose and cultivar interaction was detected
(P =0.9646, nonsignificant). Doses ranging from 288 to 864 g ae
ha™' resulted in less than 5% yield reduction for both cultivars,
highlighting the tolerance of DR cultivars. However, these data
should not be interpreted as a recommendation for off-label OTT
applications, but they provide insight into the potential range of
dicamba exposure that DR cultivars can withstand and may inform
future research or regulatory discussions regarding agronomically
justified scenarios, such as taller weeds or herbicide-resistant
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biotypes. At 1,152 g ae ha™', yield reductions reached 7%
(Cultivar A) and 9% (Cultivar B), and rose to 12% and 14%,
respectively, at 1,440 g ae ha™ (Figure 8). Although these reductions
are noteworthy, they must be interpreted in a broader agronomic
context. Without postemergence control, yield reductions may
range from approximately 10% under low weed densities to more
than 80% in heavily infested fields (Byker et al. 2013; Klingaman and
Oliver 1994; Korres et al. 2020; Soltani et al. 2017). When weed
infestation occurs during vegetative soybean growth, producers
should prioritize early season control by targeting small weeds for
more effective management. Previous studies have demonstrated
that dicamba applied at 600 g ae ha™ provides more than 90%
control of glyphosate-resistant horseweed, with <10% soybean
injury and no effect on yield (Dilliott et al. 2021, 2022a, 2022b).
Principal component analysis (Figure 9, A and B) revealed that
dicamba dose and yield reductions were among the most influential
factors explaining variation among DR soybean cultivars. The first
principal component (Dim1), which accounted for 42% of the total
variance, was primarily associated with dicamba dose (0.44) and
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Figure 6. Dry biomass reduction (%) of dicamba-resistant cultivars according to dicamba doses at 4 wk after treatment, analyzed using a generalized linear mixed model and
pooled across years based on Levene’s test for homogeneity of variance (P = 0.963). Significant effects of dicamba dose were observed for dry biomass reduction (P < 0.05), while
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Figure 7. Pod reduction (%) of dicamba-resistant cultivars according to dicamba doses at the R8 growth stage (full maturity) prior to harvest, analyzed using a generalized linear
mixed model and pooled across years based on Levene’s test for homogeneity of variance (P =0.997). No significant effects of dose (P =0.663), cultivar (P =0.978), or their
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standard error of the mean. Mean bars followed by the same letter within each dose are not significantly different according to Fisher’s protected LSD test (P < 0.05). Absence of
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lines represent the 5% and 10% pod reduction thresholds, respectively.
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Figure 8. Yield reduction (%) of dicamba-resistant soybean cultivars in response to dicamba doses, analyzed using a generalized linear mixed model and pooled across years
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dicamba-resistant soybean within yield components variables observations (data points) in the first two principal components (Dim1 and Dim2). Each data point represents an
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variable correlation plot, where each arrow represents a yield component variable, with its direction and length indicating its contribution to the principal components. The color
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yield reduction (0.37), indicating that cultivars that experience
higher herbicide doses tended to exhibit greater yield reductions.
Visible injury at 3 DAT, 2 WAT, and 4 WAT also loaded strongly on
Dim1 (0.42, 0.41, and 0.41, respectively), suggesting that temporal
patterns of injury contribute to variation across the DR cultivars.
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These variables, along with dicamba doses, co-varied with yield
reduction. Conversely, variables such as height reduction at 4 WAT
and ChIF at 4 WAT had moderate loadings (0.26 and —0.04,
respectively), and final height and pod reduction showed minimal
association.
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Spearman correlation analysis (Figure 10) indicated positive
associations between dicamba dose and visible injury at 3 DAT
(r=0.82), 2 WAT (r=0.90), 4 WAT (r=0.75), and yield
reduction (r=0.82). Injury ratings between cultivars were
correlated over time (r = 0.75; 0.84), indicating similar progression
patterns. However, although early injury levels are correlated with
yield reduction, these symptoms can be transient and may not
reliably predict final yield in all cultivars or environments.
Therefore, early visible injury assessments should be interpreted
cautiously and not be used as the sole proxy for yield impact.
Height at 4 WAT (r = 0.45 with dose; r = 0.56 with injury 4 WAT)
and dry biomass (r = 0.46 with dose; r = 0.31 with yield reduction)
were moderately correlated, whereas final height, pod reduction,
and ChlIF showed minimal association.

In summary, DR soybean exhibited selectivity to dicamba, with
visible injury and yield reductions limited to <5% at rates up to 720
g ae ha™'. However, applications exceeding this threshold resulted
in increased crop injury, biomass reduction, and yield reductions
of up to 14% at dicamba rates of 1,440 g ae ha™', which underscores
a threshold at which the DMO trait can mitigate dicamba damage.
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Despite current OTT restrictions, which were implemented
primarily due to off-target movement and potential injury to
susceptible neighboring crops, these findings underscore, from the
perspective of DR cultivars, the importance of adhering to field-use
rates that were previously registered for effective postemergence
weed control in soybean, because maintaining these rates ensures
crop safety and minimizes yield component reductions.

Practical Implications

Despite current OTT restrictions, this study provides evidence that
DR soybean cultivars can withstand field-use rates previously
registered for postemergence dicamba applications (<720 g ae
ha™') with minimal yield reduction (<5%) and transient visible
injury, confirming the effectiveness of the DMO trait in mitigating
crop damage under proper application. These results are
particularly relevant as DR technologies continue to be adopted
in both Brazil and the United States, despite evolving regulatory
restrictions. At higher dicamba doses (>1,152 g ae ha™), yield and
biomass reductions reached up to 14% and 16%, respectively,
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reinforcing the importance of adhering to label rates to avoid
compromising crop performance. No significant dose-by-cultivar
interaction was detected, suggesting a consistent trend in tolerance
among the evaluated DR cultivars. However, differences in visible
symptom expression and yield component sensitivity indicate that
performance may vary across genetic backgrounds. This study fills
a critical gap by evaluating the response of DR soybean cultivars to
postemergence applications of dicamba, rather than sub-lethal
doses or drift exposures in non-DR soybean.
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