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A Stochastic Difference Equation with
Stationary Noise on Groups

Chandiraraj Robinson Edward Raja

Abstract. 'We consider the stochastic difference equation 7y = &¢(1k—1), k € Z on a locally com-
pact group G, where ¢ is an automorphism of G, & are given G-valued random variables, and 7, are
unknown G-valued random variables. This equation was considered by Tsirelson and Yor on a one-
dimensional torus. We consider the case when £ have a common law p and prove that if G is a distal
group and ¢ is a distal automorphism of G and if the equation has a solution, then extremal solutions
of the equation are in one-to-one correspondence with points on the coset space K\ G for some com-
pact subgroup K of G such that 1 is supported on Kz = z¢(K) for any z in the support of z. We also
provide a necessary and sufficient condition for the existence of solutions to the equation.

1 Introduction

Stochastic and random difference equations have been considered by many in differ-
ent settings (see, for instance, [Ke73}Ts75,Y092l]). Here we consider the following
type of equation.

Let G be a locally compact (Hausdorff) group. Consider the stochastic difference
equation on G

(L. M = Ep(me—1), ke =N,

where 7, and &, are G-valued random variables and ¢ is an automorphism of G. The
random variables (£;) are given and are called the noise process of equation (LI]). We
are interested in finding the law of the unknown process (7). We further assume that
for any k, the random variable & is independent of 7); for j < k, and this assumption
will be enforced whenever an equation of type (.1)) is considered.

B. Tsirelson [Ts75]] considered the following stochastic difference equation on the
real line:

(1.2) mk = & + frac(me—1) k€ —N
to obtain his celebrated example of the stochastic differential equation
(1.3) dX, = dB, + b*(t,X)dtr, X(0)=0

that has a unique, but not strong, solution, where frac(x) is the fractional part of x €
IR, (&) is a given stationary Gaussian noise process, and (B;) is the one-dimensional
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Brownian motion. It was also noted that under some conditions the solution of
stochastic difference equation (I.2)) determines the solution of Tsirelson’s stochastic
differential equation (L3) (see [Ts75] for more details).

It is easy to see that the set of all solutions (1) of equation (L) is a convex set,
hence by extremal solution we mean an extreme point of the convex set of all solu-
tions.

M. Yor [Yo92] formulated equation (L.2)) in the form of equation (I.I)) on the one-
dimensional torus R/Z when ¢ is the identity automorphism and (&) is a general
noise process. In particular, [Yo92]] proved that extremal solutions of the equation
are in one-to-one correspondence with points on the coset space (R/Z)/M,
where M is a closed subgroup of R/Z. When ¢ is the identity automorphism, equa-
tion (LI was considered on general compact groups [AKUYO08]|, and when the noise
law (&) is stationary, equation (L.I]) was considered on abelian groups [Ta09]]. The
main results of [AKUYO08,[HiY10,[Ta09]] extended the result of [Yo92]] and proved that
the extremal solutions can be identified with G/H where H is a certain compact sub-
group of G if G is abelian or compact.

Assuming that the noise process (&) is stationary, we obtain the following exten-
sion of [[Yo92] to all locally compact distal groups G (that is, e is not in the closure of
{gxg™! | g € G} forany x € G\ {e}) when the automorphism ¢ is distal on G (that
is, e is not in the closure of {¢"(x) | n € Z} forany x € G\ {e}).

Theorem 1.1 Let G be a locally compact distal group and ¢ be a distal automorphism
of G. Let ({k)rez be G-valued random variables with common law p. Suppose the
equation

(1.4) M = &P(mk—1), keZ

has a solution. Then there exists a compact subgroup K,, such that for any z in the
support of p, pz~" is supported on K, = z¢(K,)z~" and there is a one-to-one corre-
spondence between left K,,-invariant probability measures X on G and the laws (\;) of
the solutions (1) of the equation (LA), given by A\, = zxd*(\) for all k € Z, where z
are given by

20(2) -+ ¢* 1 (2) k>0,
(1.5) Z=1e k=0,
¢~z dfe) k<o,

for any z in the support of pi. Moreover, extremal solutions (ny) of the equation (L4) are
in one-to-one correspondence with the elements of the coset space K,\G.

It is easy to verify by induction that z; (k € 7Z) given in (L3)) satisty zxy1 = zo(zx)
for all k € Z, which is often used here.

2 Preliminaries

Let G be a locally compact (Hausdorff) group and let Aut(G) be the group of all bi-
continuous automorphisms of G. Let ¢ be an automorphism of G. For a (regular
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Borel) probability measure 1 on G, we define probability measures /2 and ¢(u) on G
by j«(E) = n(E™') and ¢(u)(E) = u(¢p~1(E)) for any Borel subset E of G.

For any two probability measures 1 and A, the convolution of 1 and A is denoted
by p * A and is defined by

wx ME) = /,u(Exil)d)\(x)

for any Borel subset E of G. For n > 1 and for a probability measure p on G, p"
denotes the n-th convolution power of .

For x € G and a probability measure ¢ on G, xu (resp., px) denotes 6, * i (resp.,
J* Ox).

For a compact subgroup K of G, wi denotes the normalized Haar measure on K
and a probability measure A on G is called left K-invariant if xA = A forallx € K
(which is equivalent to wg * A = A, by [He77, Theorem 1.2.7]).

We say that a sequence (\,) of probability measures on G converges (in the weak
topology) to a probability measure A on G if [ fd\, — [ fd\ for all continuous
bounded functions f on G.

A set F of probability measures on G is said to be tight if for each € > 0 there is a
compact set C, of G such that p(C.) > 1 — e for all p € F. It follows from Prohorov’s
Theorem that J is tight if and only if F is relatively compact in the space of probability
measures on G equipped with weak topology (cf. [He77, Theorem 1.1.11]).

Let (&k)rez be G-valued random variables. We are interested in investigating the
law of random variables (1) that satisfies the stochastic difference equation

(21) e = §k¢(7lk—1)a ke Za

where & is independent of 7; for all j < k. [[AKUYO08] and [Yo92] considered only
negative k, we also could have considered k € —N, but that would not have made any
difference. Since we are interested in the law of the solutions of equation (2.1]), we
will be studying the corresponding convolution equation

(2.2) Ak = i+ p( A1)

for all k € 7, where uy and Ay are the laws of & and 7 respectively. It may be noted
that [HiY10, Lemma 4.3(ii)] asserts that for a solution (Ag)rez of equation (Z.2]) there
exists a solution (7 )rez of equation whose marginal laws are (A\)rez-

We consider equation (2.I]) when & is stationary on the following type of locally
compact groups and automorphisms.

Definition 2.1 A group I of automorphisms of a locally compact group G is called
distal on G if e is not in the closure of the orbit I'(x) = {¢(x) | ¢ € I'} for any
x € G\ {e}. An automorphism ¢ of a locally compact group G is called distal if the
group generated by ¢ is distal on G. A locally compact group G is called distal if the
group of inner-automorphisms is distal on G. A locally compact group G is called
pointwise distal if each inner-automorphism is distal on G.
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Compact extension of nilpotent groups, connected groups of polynomial growth,
and SIN-groups (that is, groups having small invariant neighborhoods) are distal
groups, and distal groups are pointwise distal (cf. [Ro86]]). The class of (pointwise)
distal groups is closed under direct product resulting in a rich class of groups satisfy-
ing the distal conditions.

It is easy to see that if an automorphism ¢ preserves a metric on G, then ¢ is distal
on G. All unipotent matrices on finite-dimensional vector spaces are distal. It follows
from the definition that inner-automorphisms of distal groups are distal. In the final
section we give examples of compact groups in which all automorphisms are distal.

Given an automorphism ¢ of a locally compact group G, the following type of
group is useful in our approach to equation (2.I). The semidirect product of Z and
G (with respect to ¢) is denoted by Z x, G and is defined by

(n,8)(m,h) = (n+m,gp"(h))

foralln,m € Zand g, h € G. Equipped with the product topology of Z X G, Z x4 G
is a locally compact group. Since Z has discrete topology, {(0,x) | x € G} is an open
subgroup of Z X, G and G will be identified with the open subgroup {(0,x) | x € G}
under the map x — (0, x).

Given a probability measure p on a locally compact group G and an automor-
phisms ¢ of G, we will also be studying probability measures n® ;1 on Z X 4 G defined
by

n® (A x B) = 0,(A)u(B)
for any subset A of Z and any Borel subset B of G. The measure 0 ® p will be simply
written as u.

3 Distal Groups and Distal Automorphisms

In this section we prove the following result, to be used in the proof of Theorem[L.1]
G is assumed to be a metrizable group.

Proposition 3.1 Let G be a locally compact group. Suppose ¢ € Aut(G) and I is
a subgroup of Aut(G) such that I and ¢ are distal on G and ¢ normalizes I' (that is,
¢I'go~1 =T). Let T be the group generated by ¢ and I". Then T is distal on G.

In particular, if a locally compact group G is distal and ¢ € Aut(G) is distal on G,
then 7. x4 G is distal.

We first note that the group generated by ¢ and T'is |, ¢"T’ = |J, T'¢" if pI'p~! =
I". We now prove Proposition[3.1lfor connected Lie groups, for compact groups, and
for totally disconnected groups separately and combine these to obtain the general
case.

Proposition 3.2 Let G be a totally disconnected locally compact group. If I', ¢, and r
are as in Proposition[3.1] then I is distal on G.

Proof If e is in the closure of f(x) for some x € G. By [JaR07]], G has small
¢-invariant compact open subgroups, hence e is in the closure of I'(x) as I' =
Un @"I. Since I' is distal on G, x = e. Thus, I is distal on G. |
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We next consider the connected Lie group case.

Proposition 3.3 Let G be a connected Lie group. If T, ¢, and T are as in Proposi-
tion[B.1] then I is distal on G.

Proof Let G be the Lie algebra of G. By identifying each automorphism of G with its
corresponding differential on the Lie algebra of G, we may view Aut(G) as a group of
linear transformations on §. Since I" and ¢ are distal on G, [Ab81, Theorem 1.1] im-
plies that I" and ¢ are also distal on G. In view of [[Ab81, Theorem 1.1], it is sufficient
to prove that T is distal on q.

Let V. = {v € G | I'(v) isbounded}. Then V is a non-trivial I'-invariant sub-
space of G (cf. [CoG74] for non-trivialness of V'). Since I is distal on G, I is distal
on V. Since I'(v) is bounded for any v € V, I restricted to V' is contained in a com-
pact group of linear transformations of V. This implies that V has a basis of small
I-invariant neighborhoods of 0. Since ¢pI'¢y~! = T, V is ¢-invariant. If 0 is in the clo-
sure off(v) = |JT'¢"(v) for some v € V, then 0 is in the closure of {¢"(v) | n € 7}
as V has small I'-invariant neighborhoods of 0. Since ¢ is distal, v = 0. Thus, Tis
distal on V. Since I" and ¢ are distal on G, I’ and ¢ are also distal on §/V. Since
dimension of G/V is smaller than the dimension of G, by induction we get that Tis
distal on G/V. Hence T is distal on qG. [ ]

We now prove the final case, compact groups.

Proposition 3.4 Let G be a compact group. If I, ¢, and T are as in Proposition[3.1]
then I is distal on G.

Proof Since a factor of distal action is distal, using Proposition we may assume
that G is a compact connected group. Let I(G) be the group of inner-automorphisms
of G and let A be the group generated by I' and I(G). Since I(G) is compact, A is
distal on G. Since I(G) is normal in Aut(G) and ¢ normalizes I, ¢ normalizes A. Let
A be the group generated by A and ¢.

Let x € G be such that e is in the closure of f(x). Let T be a maximal, compact,
connected, abelian subgroup of G containing x (¢f. [HoM98, Theorem 9.32]) and
Or = {a € Aut(G) | a(T) = T}. Then Aut(G) = I(G)Or (c¢f- [HoM98| Corol-
lary 9.87]). Since A and A contain I(G), we get that A = I(G)Ar and A= I(G)AT,
where Ar = AN Orand zl: AN Or.

Let ¢1 € I(G) and ¢, € Ar be such that ¢ = ¢;¢,. Since G contains a basis of
I(G)-invariant neighborhoods of e, ¢, = ¢ '¢ is distal on G. Since both ¢ and ¢,
normalize A, ¢, also normalizes A. Since ¢, € Or, ¢, normalizes Ar. Let A be the
group generated by ¢, and Ar. Then T is invariant under A.

Leta € ET. Then a = aja,y¢” for some a; € I(G), ay € T'and n € 7. Since
¢ = ¢1¢, with ¢; € I(G) and I(G) is normalized by all automorphisms of G, we get
that @ = aja@4 for some o) € I(G). SinceT' C A = I(G)Ar, a = af’ o)} for
some ]’ € I(G) and oy € Ay. Thus, Ar C I(G)A, hence A = I(G)Ar C I(G)A.

Since ¢, and A7 are distal on G and T is invariant under both ¢, and A7, ¢, and
Ar are distal on T. Since ¢, normalizes Ar, [Ra09, Lemma 5.3] implies that A is
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distal on T. Since e is in the closure of f(x) - ﬁ(x) C I(G)A(x), e is in the closure
of I(G)A(x). Since I(G) is compact, iis in the closure of A(x). Since x € T and A is
distal on T, we get that x = e. Thus, I is distal on G. ]

Proof of Proposition[3.1] Let G° be the connected component of identity in G. Then
G is a I'-invariant closed normal subgroup of G. By [RaS10, Theorem 3.3], I and
¢ are distal on G/G°. Proposition 3.2limplies that I is distal on G/G°. Since G° is a
connected locally compact group, G° contains a maximal compact normal subgroup
M such that G°/M is a Lie group. Then M is a characteristic subgroup of G°. By
[RaS10} Theorem 3.1], T and ¢ are distal on G°/M. Proposition[3.3implies that I is
distal on G°/M. Now applying Proposition 3.4l we get that T is distal on M. Thus we
have shown that I" is distal on M, G°/M and G/G°. Hence I is distal on G.

For the second part, let G be a distal group and let ¢ € Aut(G) be distal on G.
Then the group of all inner-automorphisms of G is distal on G, and it can easily be
seen that the group of all inner-automorphisms is normalized by any automorphism.
Thus, the first part implies that the group generated by inner-automorphisms and ¢
is distal on G. Since (Z x 4 G)/G is discrete, we get that 7 x 4 G is distal. ]

4 Dissipating Measures

A probability measure 1 on a locally compact group G is called dissipating if for any
compact set C in G, sup,; " (Cx) — 0.

In the study of dissipating measures the smallest closed normal subgroup a coset
of which contains the support of  plays a crucial role. Let N, denote this normal
subgroup of G. Let G, be the closed subgroup generated by the support of pi. If G,
is non-compact and G, /N,, is compact, then [JaRW96]] showed that 1 is dissipat-
ing. Many sufficient conditions (on G, or on p) for i to be dissipating have been
provided by [Ja99,[Ja07], for instance if G, is not amenable, then y is dissipating
([Ja07, Corollary 3.6]).

We will now provide a necessary and sufficient condition for equation (2.I)) to
have a solution.

Proposition 4.1 Let G be alocally compact group and let (&)kez be G-valued random
variables with common law . Let ¢ be an automorphism of G. Then there is a solution
(k) of the equation

e = &p(mk—1), keZ

if and only if the probability measure p = 1 ® pon G = Z x4 G is not dissipating.

Remark 4.2 1f ¢ is the identity in Proposition[4.T} then p" = n ® 1", hence for any
compact set C of G, sup,_z p"(Ca) = sup,; 1" (Cx). Since G is open in G and pis
dissipating if and only if sup, 7 p"(Ex) — 0 for some compact neighborhood E of e,
we get that p is dissipating if and only if p is dissipating. Thus, when ¢ is trivial, the
equation in Proposition[4.Ilhas a solution if and only if i is not dissipating.

Proof We first define u; by p1; = po* op(u) * - - - % ¢/ () for j > 1 and let py = 6,.
If (1) is a sequence of G-valued random variables such that 7, = & @ (1) for all
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k € 7, let A be the law of ;. Then the corresponding convolution equation is
Ak = px ¢(Ae—1)

for all k € Z. Tterating the convolution equation we get that
e = 1% ¢ ()

forall k € Zand all j > 1. It follows from [He77, Theorems 1.2.21(iii)] that there is
a sequence (g;j) in G such that the sequence (11 ,—gj_l) is tight.

Consider the group G=17 X4 G and the measure p = 1 ® p on G. Then pl =
j®uj, hence we get that p/(j, ;)" = (jOu;)(—7, ¢*J(g;1)) = ,ujg;l. This implies
that (p/(j, gj)_l) is tight. Then there is a compact set C of G such that P (C(j, gi)) >
3 forall j > 1. This proves that p is not dijsipating.

For the converse, suppose that p on G = Z x4 G is not dissipating. We first
assume that G is separable. Then by [[Cs66, Theorem 3.1], there is a sequence (11, g;)
in G such tha'; (pj(n]-,gj)_l) converges (see glso [To63]]). Now since p/ = j ® s
we get that p/(nj,g))™' = (j — nj) ® uj(bf_”f(gj_l), hence (11jx;) converges for
xj = qu_”J(g;l). Let v = lim pjx;. Then v = p * ¢p(lim(pj—1xj-1)) * qb(x;_ll)xj,
hence by [He77, Theorems 1.2.21(ii) and 1.1.11], we get that (gb(xj__l1 )x;) is relatively
compact. If z is the inverse of a limit point of (qzﬁ(xj_jl)x]—), then v = p * ¢(y)z7 L
Now define z; for k € Z as in equation (L.3)). Then it is easy to verify by induction
that zy1 = z¢(z) for all k € Z. For k € Z, let Ay = yz;. Then

MNer1 = V2ke1 = o x ¢z zier = px (V) b(zi) = p* d( M)

forallk € 7.

In general, suppose G is any locally compact group. Let G; be the closed subgroup
generated by the support of the probability measure %[1 ® p+0® p]. Then Gy is
a o-compact closed subgroup of Z x4 G and contains the support of u. Since G;
contains the support of 1 ® p, (1,e) € G;. This implies that G N G is a closed,
o-compact, ¢-invariant subgroup of G containing the support of ;. Now replacing
G by the smallest ¢-invariant closed subgroup of G containing the support of y, we
may assume that G is o-compact. This implies that Z x4 G is o-compact. Then
by [HeR79, Theorem 8.7], there exists a compact normal subgroup K of Z x, G
such that (Z x4 G)/K is separable. Since (Z x4 G)/G has no compact subgroup,
K C G. Since K is a normal subgroup of Z x4 G, K is ¢-invariant. This shows that
G contains a ¢-invariant compact normal subgroup K such that G/K is separable.
Let 1" be the image of 1 on G/K. Since K is compact, 1 ® ' is not dissipating on
(Z x4 G)/K. By the previous case, there exist probability measures A\, on G/K such
that \{ = p/ % ¢(A[_,) for all k € Z. It follows from [He77, 1.2.15(iii)] that there
exists probability measures A on G such that A * wg = A and image of Ay on G/K
is A[. Since K is ¢-invariant, j % ¢(A—1) *wg = px ¢(Ag—y) for all k € Z. Since both
A and g1 * ¢(A—1) are projected onto the same probability measure \; on G/K, by
[He77, Theorem 1.2.15(iii)] we get that Ay = p % ¢(Ak—1) forall k € Z. [ |
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Using Proposition [4.1] we now provide an easy sufficient condition so that equa-
tion (L.4) has a solution. Proposition 4.3 of [Ja99] provides some further sufficient
conditions for equation (2.I]) to have a solution.

Corollary 4.3 Let G be a locally compact group and let ({x)rez be G-valued random
variables with common law p. Let ¢ be an automorphism of G. Suppose there is a
compact subgroup K of G such that p is supported on K and ¢(K) C K. Then thereis a
solution (1) of the equation ny = Ep(nk—1), k € 7.

Proof In view of Proposition it is sufficient to prove that p = 1 ® p is not
dissipating. If there is a compact subgroup K such that ¢(K) C K and p is supported
on K, then p" # §(_pe) = p* P(p) * - -+ % ¢" ' (p) is also supported on K and hence
p is not dissipating. ]

Remark 4.4 1If G is compact, then it follows from Corollary [£3] that there exists
a solution to equation (2.I)), but it is easy to verify that A\, = wg forallk € Zis a
solution.

5 Shifted Convolution Property

A probability measure p on a locally compact group G is said to have the shifted
convolution property if either 1 is dissipating or there is a compact subgroup K of
Gand ag € G such that 4"¢”" — wk and gKg~' = K. The shifted convolution
property was studied in details in [RaS10]], where it was shown that all probability
measures on a locally compact group G have the shifted convolution property if and
only if the group G is pointwise distal (see [RaS10, Theorem 6.1]). We first prove
the following result, which provides a sufficient condition for the existence of large
collection of solutions.

Proposition 5.1 Let G be a locally compact group and let . be a probability measure
on G. Suppose there is a compact subgroup K of G such that for any z in the support
of pt, pz=' is supported on K = z¢(K)z~'. For any z in the support of ju and for
any left K-invariant probability measure X, define zy as in equation (L3) and A\ by
e = zkd*(N). Then (\g) is a solution to the equation

(5.1) Me=p* (A1), kel

Proof Assume that there is a compact subgroup K of G such that for any x in the
support of u, ux~! is supported on K = x¢(K)x~!. Suppose z is in the support of
and A is a left K-invariant probability measure on G. For any k € 7, define z; as in
equation (IL3) and define A\ by Ay = zx¢*(\). Then it is easy to see that z;,; = z¢(zx)
forall k € Z and M1 = zip1 01 (N) = zop(\y) for all k € 7Z.

We first claim that Ay is left K-invariant for all k > 0. Our claim is based on
induction. For k > 1, if A\x_; is left K-invariant, then ¢(\¢_) is left ¢(K)-invariant,
hence for x € K, x\ = xz¢p(M_1) = z0(M_1) = M as ¢(K) = z~ 'Kz implies
z7'xz € ¢(K). This proves that \; is left K-invariant if A\, is left K-invariant. Since
Ao = Ais left K-invariant, induction implies that A is left K-invariant for all k > 0.
Similarly, we can prove that A is left K-invariant for all k < 0.

https://doi.org/10.4153/CJM-2011-094-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-094-6

A Stochastic Difference Equation with Stationary Noise on Groups 1083

Since pz~! is supported on K = zp(K)z™!, we get that z~ ! is supported on

@(K). Since A\g_; is left K-invariant, p * ¢(Ag—1) = zd(Ag—1) = ¢ forall k € Z.
Thus, (\¢) is a solution to equation (5.1)). [ |

Proposition 5.2 Let G be a locally compact group and let ¢ be an automorphism of
G. Let (&) be a sequence of G-valued random variables with common law p. Suppose
the measure 1 ® pu is not dissipating and has the shifted convolution property onZ x 4 G.
Then for any solution (ny) of the equation

(52) Tk = §k¢(nk—l)a ke Za

and for any z in the support of 11, we have

(i)  acompact subgroup K, such that  is supported on K,z = z¢(K,,),

(i) laws (Ax) of solution (ny) satisfy Ay = zd(Ak—1);

(iii) a one-to-one correspondence between left K,,-invariant probability measures A on
G and the laws (\i) of the solutions (ny) of the equation (5.2) given by A\ =
2% (), where z is defined as in (L3).

Proof Let G = Z Xg Gand p = 1 ® p. Since p is not dissipating and has the
shifted convolution property, there is a compact subgroup K of G and g€ G such
that pfg~* — wy and gKg—!' = K. Since G/G ~ Z, we get that K C G. Let z be in
the support of 4 and a = (1,z). Then a is in the support of p. By [Ei92, Theorem
4.3] we get that pfa=* — wy and aKa~! = K (cf. [RaS10}, Remark 1.2]). Then since
K C G,aKa™' = K implies that K = z¢(K)z~'. Also, pfa=* — wg implies that
p * wg = wyga and hence p is supported on Kz. This proves (i).

We now prove (ii). Let (7)) be a solution to equation and let \; be the law of
Nk, k € 7. We now claim that for k € 7, A\ is left K-invariant. Define z; as in
forany k € Zand p; = pux ¢(p) * - -+ x ¢/ ~1(p) for any j > 1. Then we get that
pra=k = ukzk_l — wg. Fork € 7,

Mo = px ¢ Nkmr) = (izi ') * (i (M—i)), 0> 1,

and hence by [He77, Theorems 1.2.21(ii) gnd 1.1.11], (zi(bi(/\k_i)),-zl is relatively
compact. Thus, for any limit point v of (zi¢'(A¢—;)), we get that \y = wg * v. Thus,
Ak is left K-invariant. By (i), z~ ' is supported on ¢(K), hence for k € Z,

e = ok d(Ne—1) = 2z ek d(Mir) = 2 (M),

as Ag_1 is left K-invariant. This proves (ii).
Let A = \g. Then \ is left K-invariant, and for k > 1,

e = 26(2) - - 1 (2)9 (N = zkdF (V).
Fork < 0, A =zd(A_1) = - = zd(z) - - 61 (2)¢~*(\i), hence
Me=¢7 'z ¢f ek = gt (V).

Thus, any solution of (5.2) is in the form given in (iii).

It follows from (i) that the conditions of Proposition [5.1] are satisfied. Thus, for
a left K-invariant measure A if we define () as in the proposition, we get that Ay
satisfies Ay = p * p(M\g_1) forall k € Z. [ |
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Corollary 5.3 Let G, ¢, and (&), p be as in Proposition[5.20 Suppose 1 @ p has the
shifted convolution property and 1 ® p is not dissipating. Then there exists a compact
subgroup K such that extremal solutions (ny) of the equation

(5.3) e = &Pp(m—1), keZ

are in one-to-one correspondence with the elements of the coset space K\G.

Proof Let K be as in Proposition Then it follows from Proposition that
left K-invariant measures and laws of solutions to equation (5.3]) are in one-to-one
correspondence.

Suppose A is a left K-invariant measure and z is in the support of A\. Leta € K
and U be a neighborhood of az. Then A(U) = A(a~'U) > 0. This implies that az is
in the support of A. Thus, support of A is a union of cosets of K. If the support of A
contains more than one coset, then the corresponding solution to the equation
is not extremal. This proves the corollary. ]

We have the following converse to Proposition[5.21

Proposition 5.4 Let G be a locally compact group and let ¢ be an automorphism of
G. Let (&) be G-valued random variables with common law . Suppose the laws of the
solutions (ny) of the equation

M = §p(k—1), keZ

are left K-invariant for some compact subgroup K of G such that uz=! is supported on
K = z¢(K)z™! for any z in the support of . Then 1 @ p on 7 X 4 G has the shifted
convolution property.

Proof Let p = 1 ® p. We first assume that G is separable. Since the equation has
solutions, by Proposition[4.1] 1 ® p on Z x4 G is not dissipating. As in Proposition
[ 4.1} there are x; € G and a probability measure v on G such that i * ¢(p) * - - - *
@ _1(,u)x]- — v and a solution (\g) with Ay = ~. The hypothesis implies that - is
left K-invariant.

Let z be in the support of 1 and define z; as in (L3). Let p1j = p * p(p) * - - - *
¢'~!(p) for j > 1. We now claim by induction that x; is supported on Kz; for
all j > 1. If p; is supported on Kz; for some j > 1, then pj;; is supported on
sz¢j(K)¢j(z). Since Kz = zp(K), we get that ¢*(z)¢*" 1 (K) = ¢*(K)¢*(z) for all
k > 0. This shows that zy¢*(K) = Kz, hence ju .1 is supported on Kz;¢/ (K)¢/(z) =
Kz;¢!(z) = Kzjy,. Since p1; = pu is supported on Kz, the claim follows by induction.

For j > 1,let o; = pjxj. Then oj * &; — v * ¥ and ij;I is supported on
Kz;. This implies that o; * &; is supported on K, hence v * 7 is supported on K.
Since 7 is left K-invariant, y * - is also left K-invariant and hence  * ¥ = wg. Now
p=ji® U]-_lxj:ll, hence p/ * p/ = oj_; x &;_; forall j > 1. This implies that
o’ * pJ — wi. By [Ei92, Theorem 4.3], for any g in the support of p, p/g=/ — wi.
For any g in the support of p = 1 ® u, there is a z in the support of 1 such that
g = (1,2) and hence gKg=! = z¢(K)z~! = K. This proves that p has the shifted
convolution property.
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We now assume that G is any locally compact group. Then as in Proposition [4.1]
replacing G by the smallest ¢-invariant closed subgroup of G containing the support
of 11, we may assume that G is o-compact and hence Z x4 G is also o-compact. Then
by [HeR79, Theorem 8.7], each neighborhood U of e in G contains a compact normal
subgroup Ky of Z x4 G such that (Z x4 G) /Ky is separable. Since Ky is a compact
normal subgroup of Z x4 G, Ky is ¢-invariant. Thus, each neighborhood U of e in
G contains a ¢-invariant compact normal subgroup Ky such that G/Ky, is separable.
It can easily be verified that the assumptions in the proposition are valid for G/Ky
with KKy /Ky and for the image of p on G/Ky. It follows from the previous case
that image of p on Z x4 (G/Ky) has the shifted convolution property. By [[RaS10}
Proposition 2.3] we get that p itself has the shifted convolution property. ]

We now extend the results of [AkUY08.Ta09,Yo92]] when &; is stationary on distal
groups with distal automorphisms.

Proof of Theorem[I.1] Suppose G is a locally compact distal group and ¢ is a distal
automorphism. Then as in Proposition replacing G by the smallest ¢-invariant
closed subgroup of G containing the support p, we may assume that each neighbor-
hood U of e in G contains a ¢-invariant compact normal subgroup Ky such that
G/Ky is separable. By [RaS10, Theorem 3.1] we get that each G/Ky is distal and
¢ is distal on each G/Ky. Then Proposition B.I]implies that Z x 4 (G/Ky) is distal.
By [RaS10, Theorem 6.1] we get that 1 @ y has the shifted convolution property on
7.x 4 (G/Ky). By [RaS10} Proposition 2.3] we get that 1 ®  has the shifted convolu-
tion property. Now the result follows from Proposition[5.2]and Corollary[5.3] ]

Remark 5.5 Theorem [LI]is true even if Z x, G is a pointwise distal group. It is
easy to construct examples of pointwise distal groups G with distal automorphisms
¢ so that 7Z x; G is pointwise distal but not distal (see [Ra09, Example 1.1]).

Remark 5.6 We would like to remark that if 1 ® 1 does not have the shifted convo-
lution property, then the conclusion on extreme points of the solutions in Theorem
[L1l may not be true even on compact groups. Consider the two dimensional torus
K = (R/7)? and let ¢ be an automorphism of K such that

Cd)={xeK|¢"(x) > easn — oo}

is dense in K, for instance if we take ¢ to be ¢(x,y) = (x+ y + Z,x + 2y + 7Z) for

all x, y € R, then C(¢) = {(t + 7Z, (1_2‘/§)t +7) |t € R} ~ Ris a vector (non-
closed) subgroup of K and is dense in K. Take yu to be a probability measure on K
such that support of p is a compact subset contained in C(¢). Since ¢ on C(¢) is
multiplication by 2 _Zﬁ, [Za96] implies that there is a probability measure p on C(¢)
such that yu * ¢(p) * - - - * ¢'(u) — p in the space of probability measures on C(¢).

This implies that

p=Tlimp s () % - % ¢ () = px G(lim(px - % ¢ (w)) = px¢(p).

Taking Ay = p for all k € 7, we get a stationary solution to equation (2.1I). Further,
assume that y4 # 6, for any x € K. Then A\ = p are also not dirac measures. If x\;, =
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A for some x € K, then since M\ (C(¢)) = 1, we get that A\ (C(¢)) = 1 = xA(C(0)),
hence x € C(¢) as C(¢) is a group. By [He77, Theorem 1.2.4], {g € C(¢) | gp = p}
is a compact subgroup of C(¢). Since C(¢) is a vector group, C(¢) has no non-trivial
compact subgroup, and hence x = e. Thus, A is not left invariant for any nontrivial

compact subgroup of K. Hence, the conclusion on the extreme points of solutions in
Theorem[L1ldoes not hold.

We now present a situation where distality of ¢ is sufficient to guarantee the con-
clusion of Theorem[I.1} the proof is based on [Ja99},[RaS10].

Theorem 5.7 Let G be a locally compact group and let ¢ be a distal automorphism of
G. Let (&) be a sequence of G-valued random variables with common law p. If e is in
the support of 1 and the equation

(5.4) e = &Pp(m—1), keZ

has a solution, then the conclusions of Theorem[LIl hold.

Proof Assume that e is in the support of y and equation has a solution. Let
G = /Zx4Gand p = 1® . We now prove that p has the shifted convolution property.
Since equation (5.4)) has a solution, p is not dissipating (cf. Proposition[4.]). Let N be
the smallest closed normal subgroup of G such that a coset of N contains the support
of p. Since G is a closed normal subgroup of Gand p(G(l,e)) =1, N C G. Since N
is normal in G, N is a ¢-invariant subgroup of G.

If p(N(k,g)) = 1 for some g € G and k € 7, then p((k,Ng)) = 1. This implies
that k = 1 and pu(Ng) = 1. Since e is in the support of i, e € Ng, hence g € N. This
implies that p(N(1,e)) = 1. By [Ja99, Theorem 3.9], ¢ restricted to N is contractive
modulo a compact subgroup K (that is, ¢"(x)K — K for all x € N). Since ¢ is distal
on G, ¢ is distal on N. By [RaS10} Corollary 3.2], N = K.

We denote the restriction of ¢ to N also by ¢. Let H = Zx 4N. Then p is supported
on H. Since N is compact and ¢ is distal, we get that H is distal. By [RaS10, Theorem
6.1] we get that p has the shifted convolution property. Now the result follows from
Proposition[5.21and Corollary[5.31 ]

6 Examples

We first provide examples of groups for which the group of automorphisms is com-
pact.

(i) Compact p-adic Lie groups: Let K be a compact p-adic Lie group. Then Aut(K)

is a compact group (see [DidMS99, Corollary 8.35] or [Ra04]). The following are

examples of compact p-adic Lie groups:

(a) If Q) is the field of p-adic numbers with valuation |- [,, then Z,» = {x € Q) |
x|, < p"'} is a compact p-adic Lie group.

(b) The group GLi(Z,) of all invertible k x k-matrices over Z,.

(c) Pro-p group of finite rank, that is a totally disconnected group of finite rank in
which every open normal subgroup has index equal to some power of p.
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(ii) A Compact abelian group: For n > 1, let A,, be the group of all n-th roots of unity
and A = [JA,. Then A is a countable abelian group. Equip A with discrete topology.
Let K be the dual of A. Then K is a compact (totally disconnected) metrizable group
with dual A (see [HeR79, 24.15]).

Let K, be the closed subgroup of K such that K/K,, is the dual of A,,. Since A, is
finite, K/K,, is finite. Then K,, is an open subgroup of K. Now, if x € (K, then
x € K, foralln > 1. This implies that a(x) = 1 foralla € A, and for all n > 1. Since
A=|JA,, a(x) = 1foralla € A. Since A is the dual of K, x = e. Thus, K, = e.

Let « be an automorphism of K and let & be the corresponding dual automor-
phism on A. Then it is easy to see that a(A,) = A, for all n > 1. This implies that
«a(K,) = K,. This proves that (K,) is a sequence of arbitrarily small characteristic
open subgroups, hence the group of automorphisms of K is compact.

(iii) All automorphisms are distal but the group of automorphisms is not compact: Let
IR/Z be the one-dimensional torus and let K be the compact group in (i) or in (ii).
Let G = R/Z x K be the direct product of R/Z and K. Then G is a compact group.

Let 7 be an automorphism of G. We now claim that there is an automorphism «
of K and a character y of K such that 7(z,x) = (z*'y(x), a(x)) for all (z,x) € G.
Since the connected component of identity in G is R/Z, we get that 7(R/Z) = R/Z,
hence 7(z,e) = (zt',e) for all z € R/Z. Let a: K — K be defined by a(x) =
p(7(1,x)) where p: G — K is the canonical projection of G onto K. It is easy see
that « is a continuous homomorphism. If a(x) = e, then p(7(1,x)) = e, and hence
7(1,x) = (z,¢) for some z € R/Z. But 7(z’,e) = (z,e) forz’ = zorz' = z7 L.
Since 7 is an automorphism, (z’,e) = (1,x), hence x = e. This shows that « is
injective. For x € K, let y € K and z € R/Z be such that 7(z, y) = (1, x) as 7 is onto.
This implies that a(y) = p(7(1, y)) = p(7(z, y)) = x. This proves that « is bijective.
Continuity of a™! follows from open mapping theorem, as K is a compact metrizable
group (cf. [HeR79, 5.29 ]). Thus, « is an automorphism of K. Let x: K — R/Z be
defined by x(x) = q(7(1,x)) where qg: G — IR/Z is the canonical projection of G
onto R/Z. Then y is a continuous homomorphism. For z € R/Z and x € K,
7(z,x) = (¥, e)7(1,x) = (z', e)(x(x), (x)) = (zF'x(x), a(x)). This proves the
claim.

We now claim that 7 is distal. Suppose that (1, e) is in the closure of {7"(z,x) | n €
7}. Then e is in the closure of {&"(x) | n € Z}. Since the group of automorphisms
of K is compact, x = e. This implies that (1, e) is in the closure of {7"(z,¢e) | n €
7} = {(z*',e)}, and hence z = 1. Thus, 7 is distal. In fact, one can show that each
T generates a compact subgroup.

If K is not a finite group, then the group of automorphisms of G is not a compact
group, as it is homeomorphic to {£1} x K x Aut(K), where Aut(K) is the group of
automorphisms of K.
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