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We study the set of points at which two algebraically independent

meromorphic functions have algebraic coefficients in their

Laurent expansions. After a survey of the present knowledge in

this field, we obtain two general transcendence criteria which

sharpen previous results of Straus, Schneider and Lang. As a

corollary, we give a new proof, based on Gel'fond's method, of

some of Siegel's results on ff-functions.

Let f , /_ be two functions meromorphic on C , of finite order

pl' P2 ' w h i c h a r e algebraically independent. We denote by B(f f) the

set of points w in <C such that the Laurent expansions of / and /?

at w have algebraic coefficients. When /, (s) = z and f~ = f is a

transcendental meromorphic function of order p , we denote this set by

It is well known (see 1122, §36 for similar constructions) that one

can construct an entire transcendental function / of order 0 such that

for any algebraic number a , the Taylor coefficients of / at a belong

to <?(a) ; thus A(/) can be the set Q of all algebraic numbers.

However in certain circumstances one can expect that E[f , f ) is a

finite set of cardinality at most p + p . We obtain some results in
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248 Daniel Bertrand and Michel Waldschmidt

this direction under further arithmetical assumptions on the Laurent

coefficients, involving the growth of their heights.

Although we limit our study to meromorphic functions on the complex

plane, it is worth mentioning that our results can be extended to the case

where the functions under consideration are meromorphic except at a finite

set of points (not only the point at infinity), assuming their orders at

these essential singularities are finite (see [3], Proposition 1 and §5).

Multidimensional analogues of our results can also be obtained (see [20],

and the end of this paper).

We start with a short historical survey of both problems A(/) and

B(/ , / ) . Further references are given in [2], [7] and [«].

It will be convenient to introduce the following two notations, where

m is a rational integer:

if m is non negative, U denotes the mth iterate of the

derivative operator D = d/dz ;

if / is a function which is meromorphic at a point z , then

— A f[zQ) denotes the coefficient of [z-zA in the Laurent

expansion of / a t z .

1. Historical survey

1. PROBLEM A(/)

Po Iya was the first to study the connections between the growth of an

entire function and the arithmetic nature of its Taylor coefficients at the

origin. In particular, he gave a lower bound for |/| = max 1/(̂ )1
\z\=R

when f i« a transcendental entire function such that all the numbers

z/j(O) , m € N , are rational integers [73].

By a completely different method (which has been extended to the case

of several variables by Gross [9]), Straus [79] extended Polya's estimate

to the case where all numbers iffih) (for m € N , h = 0, 1, ..., k-1 )

are rational integers. Straus proved that such a function is of order at

least k , where the order p of an entire function is defined by
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Log Log\f\R

Log* •

Moreover, in the case p = k , Straus gave a lower bound for the type of

f . We now enunciate the most far reaching generalization obtained by

Straus (disregarding type).

THEOREM 1.1 (Straus [19], Theorem h). Let f be a transcendental

entire function of finite order p . Let K be a number field of degree

6 over Q , and let s. , t be two non negative real numbers. Denote by

S the set of points w of K such that all the numbers ETfiw) (with

m € N ) are in K , and such that

(1.1.1) lim sup

and

iff(u)

Log d

where d is the least positive integer such that all the numbers

d D f(w) (for 0 5 y - m ) are algebraic integers.

Then S is finite, and card S 5 pS^+t^ + p(6-l)e .

As usual, we have assumed that the algebraic closure of Q is

embedded into C , and we have denoted by [a] the maximum of the absolute

values of the conjugates of an algebraic number a .

Under a slightly stronger hypothesis on the denominators (see Remark

2.2 below), we shall improve the conclusion of Theorem 1.1 to

card S < p(l+6t ) + p(6-l)s (cf. Theorem A below). But, as we shall

see, Straus1 theorem is the single result requiring such a weak assumption

on denominators. Unfortunately, his method can be applied only to an

entire transcendental function at algebraic points, and has not yet been

generalised either to a meromorphic transcendental function or to the

general problem B[f, f ) .
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2. PROBLEM B ^ , f2)

In 19^9, Schneider obtained a very powerful result concerning

algebraically independent meromorphic functions of finite order. Recall

that a meromorphic function in C is said to be of finite order at most p

if it can be expressed as a quotient of two entire functions of order at

most p (Nevanlinna's theory shows that this definition makes sense).

Then:

THEOREM 1.2 (Schneider [15], SatzIII). Let {^n)ri>1 be a sequence

of complex numbers. For n > 1 , we denote by z\ , ..., zY1 the
0 n

distinct elements of the set {t, , . . . , £ } , and, for 0 2 x £ k , let

m^ + 1 be the multiplicity of z in this set, so that

kn

x=0

and

kn n r , s

T T (Y r 1 - TT v Sn>
v=l x=0 l

for all n i l . We then define

=

max

05X5A

max

n

V

and

and we assume that

a = lim inf ((Log n)/[hog r ) ) ,

m n 5 n/Log n for all n > 1 .

https://doi.org/10.1017/S0004972700007620 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007620


Algebraic Laurent coefficients 251

Let K be a number field, and f , ..., f7 be I algebraically

independant meromorphic functions of order at most p., ..., p^

respectively, such that all the numbers D f .\z , for 0 £ y £ m ,
3 \ * ) x

0 5 x £ /c j n > 1 , 1 £ j £ Z- are defined and belong to K . For

n S 1 , O £ x £ f e and 1 £ j £ I , we denote by d .\z a common
n J I x J

denominator of the algebraic numbers \lxf.\z \; 0 5 y £ m \ .
I 3 \ x J x J

Finally, for 1 £ j £ Z ^ Z.et ft . be an entire function of order at
3

most p . , such that h .f. is entire [hence of order at most p . ) , and
3 3 3 3

h .(c ) ^ 0 for all n 5 1 . We assume that

h.\z"n
3[ x

lim sup Log Log max

and

lim sup Log Log max •( | D f As |; d . z

Then p + ... + p, s (l-l)a .

In spite of its technical nature, this result should be better known.

It is the first general criterion of transcendence which contains the

theorem of Hermite-Lindemann, as well as Schneider's solution of Hirbert's

seventh problem (take fAz) = z , f2(z) = a
Z , and m = 0 for all

n , so toiat, in this case, no derivative is involved). Gel1fond's solution

is not contained in Theorem 1.2 (indeed, the hypothesis m £ n/hog, n

implies that the sequence {r } contains infinitely many distinct points).

This fact led Schneider to give another version of his theorem.

THEOREM 1.3 (Schneider [76], Satz 12). Let f f he two

algebraically independent meromorphic functions of order at most p . Let

K be a number field of degree 6 over Q and let s be a non negative
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real number. Denote by S^ the set of complex points w such that, for

j = 1, 2 , and all m € N , the numbers uf .{w) are defined, belong to K
3

and satisfy

Log|z/"/.(u) I
(1.3.1) lim sup — m T

 2 £S,
rn Log m

(1.3.2) q\ z/"/.(u) are algebraic integers,

where q denotes a positive rational integer depending only on w , f

and f2 .

Then S2 is finite, and card S2 £ (2p+l)(6(2s+l)-s+(%)) .

2. Variations with the degrees

Now let / be a transcendental meromorphic function of finite order

p . Let S{f) be the set of w in C where / is analytic and such

that rffiu) € TL for all m in N . From Straus1 result, we deduce that

the intersection of S(f) with any number field K has at most [K : Q]p

elements if / is entire. In the general case where / is meromorphic,

Theorem 1.3 still implies that K n S(f) is finite (with a slightly weaker

bound for its cardinality). Using a development of Schneider's method

which involves a refined version of Siegel's lemma due to Mignotte, it is

possible to show that the set of w in S(f) which are algebraic of

degree less than or equal to d is finite with at most dp elements ,

d0
card(Q, n S(f)) 2 d p ,

i f Qj i s the set of algebraic numbers of degree d . In [ / ] , the sharper

inequal i ty

I | card(Qd n S(f)) £ p ,

was proved. Using his method of conjugate auxiliary functions, Choodnovsky

[4] succeeded in proving that <S) n S{f) is finite and Card Q n S(f) 5 p .
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THEOREM 2.1 (Choodnovsky [4]). Let f be a transcendental

meromorphic function of order p . The set of algebraic numbers a such

that d"f{a) is defined and belongs to 7L for all m (. U is finite with

at most p elements.

A simpler proof of this result has been derived by Reyssat [74].

Further discussion of this topic and its generalization to several

variables can be found in [5] and [6].

We now present some general results concerning the dependence on the

degrees in problems A(f) and 8(/ , / ) . We recall the notation

introduced in the beginning of this paper.

1. Problem A(f)

THEOREM A. Let f be a transcendental meromorphic function of order

at most p and let S be a subset of the field of algebraic numbers. To

each element w of S , we associate a number field K , and two non

negative real numbers s , t . We denote the degree of K over Q by

&w if K is not totally imaginary, by 26 otherwise.

Assume that for all w belonging to S , and all rational integers

m j the numbers w and A f(w) are elements of K , and, for H E N ,

denote by d . the least common denominator of the algebraic numbers

; u £ m , 0 S A 2 A } . Suppose further that

(2.A.I) lim sup < 8wLog m w

and

Log d .
(2.A.2) for all A € N , lim sup "'w'fl 5 t .

Tn-v+oo m Log w w

to (<5 -ljs +6 t +1
wiS *• w ' w w w

S p .
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REMARK 2.0. The following obvious consequence should be kept in mind

while reading this paper: under the hypothesis of Theorem A, if there

exist an algebraic number w such that (6 -l)s + 6 t + 1 = l/p , then

w w w w
the set 5 is finite (and reduced to {w} ).

We now turn to the computation of s , t in special cases.
w w

REMARK 2.1. Assume that for all m £ 7L and w € S1 , the numbers

A f{w) are in an imaginary quadratic extension of Q . Then, hypothesis

(2.A.I) is satisfied with

su = 1 - (l/p) if f is entire,

s = 1 in the general case

(see [20], Lemma 5.3, and [7], Appendix).

REMARK 2.2. As can easily be checked with the help of Leibnitz

formula, Straus' hypothesis

implies

In particular, if t, = 0 , then (2.A.2) is satisfied with t = 0 . Note
l w

that for u = 0 , the assumption t = 0 is the condition imposed on the

denominators of the Taylor coefficients of Siege I's E-functions (see [/S]

Condition 3, p. 33).

REMARK 2.3. Here is another situation where t , is easily bounded:

w

we assume [of. [/], Condition H^ , p. 2} that (2.A.2 fcis) there exists a

non negative integer v , and a sequence of positive integers q = q (u)
v

such that, for all m £ N , d , divides a (m!) w , and
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% . . .
lim sup is finite.

m

Then we deduce from Leibnitz formula that (2.A.2) is satisfied with

t 2 y, . Note that the assumption V = 0 is the condition on the
\o IO \j

denominators of the Taylor coefficients of E-functions in Lang's

definition ([??], Condition E2, p. 76).

Of course, hypothesis (2.A.2) is satisfied with t = 0 if the

numbers u f(w) are algebraic integers. As a corollary one obtains the

transcendency of such numbers as IT, Log 2, Log(p/q) .

Finally, we note that the method of conjugate auxiliary functions [4]

enables us to replace the hypothesis w i. K in Theorem A by W € Q (see

Theorem 2.2 below for a similar situation).

2. Problem 8 ^ , fA

The assumption on denominators in the study of the general problem

are, as we shall see, slightly stronger than in the preceding theorem.

THEOREM B. Let f , f be two ^-algebraically independant

meromorphic functions, of order at most p , p_ respectively, and let S

be a set of distinct complex numbers. To each element w of S we

associate a number field K , two non negative real numbers sAw), sAw) ,

and three non negative integers q , v', v" . We denote the degree of K

over Q by 6 if K is not totally imaginary, by 26 otherwise.

Assume that, for all w belonging to S , and all rational integers m ,

the numbers &mfAw) and iff Aw) are elements of K . Suppose further

that, for o = 1, 2 ,

Log|Amf.(u)|
(2.B.I) lim sup m ^ m Ss.(u)

and
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v"
(2.B.2) the numbers qm+ [(v'm)l] WAmf.(w) are algebraic integers.

Then

fc 6 v ' V " + 1 + I 6 - l l s '

where s' = maxfl; max s.(w)} . Moreover., if s .(w) = 1 - ( l /p-)
U J= l ,2 J J J

all w £ S and j = 1, 2 , then

5 1 .

REMARK 2.4. Lemmas 6 and 7 of [20] show that the set of functions

sa t i s fy ing (2.B.1) and (2.B.2) at w i s a R -algebra. More speci f ica l ly ,

Le i tn i t z formula implies tha t under the assumption (2.B.2), Condition

(2.1 .2) i s s a t i s f i e d with £ £ v 'v" . Note that (2.B.2) i s a
w w w

generalisation of hypothesis (1.3.2), where v" = 0 .

Once again one can study the particular case of Gaussian integers and

entire functions. For instance the transcendency of e follows from

Remarks 2.0 and 2.1 and the consideration of the function f,{z) = exp z .

In the special case where f,{z) admits a law of addition over ip in

the sense of [5], that is fAz) is either z or exp z , or else p(z) ,

where p is a Weierstrass elliptic function with rational invariants, a

stronger result can be proved by means of the method of [4]. The result is

essentially due to Choodnovsky (see [5], Theorem 10).

THEOREM 2.2. If fAz) is z , ezp z , or p{z) with

<72, g € {) , then it is possible to replace in Theorem B the assumption

tFfAw) € Kw by tmfAw) € Q for all m 12L .

3. Algebraic differential equations

Theorems A and B above deal with "small" subsets of A(/") and
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B(/ , /"?) . In order to describe larger subsets, we shall now restrict our

study to solutions of differential equations of a certain type. The

results of this section are taken from [)] and [2].

1. Problem 8 ^ , fj

We first note that the K -algebra of functions satisfying (2.B.1) and

w

(2.B.2) at w is mapped into itself by differentiation. However, if we

impose that the bound v' is fixed, this will remain true if and only if
v" = 0 . Conversely, Lang proved (see Lemma 3.2 below) that finitelyw

generated algebras of analytic functions stable under differentiation

provide examples of functions satisfying (2.B.2) with V" = 0 .
w

Schneider had already noted this fact in the special case where the

algebra generated by the derivatives of a given function is finitely

generated, a situation from which he could deduce a lot of transcendence

results (see [76], Chapter II, §U). But later on, for his study of the

exponential map on group varieties, Lang needed the more general system of

differential equation

Df. = Pjif^ ..., fz) (j = 1, ..., I) ,

where the P.'s are polynomials with algebraic coefficients. He proved
3

the following related transcendence result.

THEOREM 3.1 (Lang [70], [H]). Let K be a number' field, and let

f', ... , fy be I meromorphic functions of order at most p . Assume

that f and f2 are algebraically independent over K , and that the

derivation D maps the algebra #[/, , ..., f-,'] into itself. Denote by

E1 the set of complex numbers w such that f, ..., f^ simultaneously

take values in K at w .

Then Z is finite and has at most 2Qp[K : <Sj] elements.

The following lemma explains the connection between the differential

hypothesis and Theorem 1.3.

LEMMA 3.2. Assume the hypothesis of Theorem 3.1 are fulfilled, and
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let w be a complex number such that K = K[fAw), ..., fAw)) is a

number field. Then, for j - 1, . . . , I , the function f. satisfies
3

Condition (2.B.2) of Theorem B with v" = 0 (that is Condition 1.3.2 of

Theorem X.3), and Condition (2.B.1) with s = 1 .
w

For a proof of this result, see [7J] (Chapter III, Lemma 1), and [7]

(Proposition 2 bis), where explicit computations can be found. Applying

Theorem B we therefore obtain:

THEOREM 3.3 ([2], Theorem l). Assume the hypotheses of Theorem 3.1

are fulfilled, and, for any positive integer 6 , denote by 1(6) the set

of complex numbers w such that K.[f Aw), ..., fAw)) is an algebraic

extension of K of degree 6 . Then

I C a r V ( 6 ) S (P1+P2) [*:«].
5=1

A further result concerning the case K = Q when /. satisfies a law

of addition has been given by Choodnovsky ([5], Theorem 5).

2. Problem A(f)

So far we have discussed polynomial differential equations. Suppose

now that the differential system Df. = P-[f, , ..., /7) is satisfied with

rational functions P. in ^[x , ..., X7) , and let Q denote a common
3 1 t

denominator of the P. 's . Then Theorem 3.3 holds with the additional

condition that the numbers W are not zeroes of Q[fAz), ..., fAz))

consider the functions /' ... , f, , and /^ = 1/6(/, ..., /,) .

In fact, this additional condition cannot be omitted, as can be seen

from the following example, taken from [2 7], Denote by p a Weierstrass

elliptic function with algebraic invariants g^, g- , and by a, t, the

corresponding sigma and zeta functions. Let u be a point which is not a

pole of p and such that p(u) i Q , and let K be a number field

containing g~, 9-., P("), P'(«) . We consider the functions
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Then we have the following system of differential equations:

f (z)+p'(u) „ g

and for all periods u of p , the three functions take values in K at

the points u + u . It should be noted however that the derivative f^ of

f- takes transcendental values at these points {cf. [21], §3). We now

discuss a situation related to the case of regular points of linear

differential equations where the analysis can be taken further. Namely:

THEOREM 3.4 ([7], Theorem I). Let m e N , P € Q ^ , X^\ , and

assume that the differential equation z Dy = P(z, y) has a solution f

regular at the origin. Suppose further that f is a transcendental

meromorphic function of order p 5 1 satisfying hypothesis (2.A.2 bisJ

of Remark 2.3 at w = 0 , with KQ = Q , vQ £ (1/p) - 1 . Then, if a is

a non zero algebraic number which is not a pole of f , the number /(a)

is transcendental.

Proof. Assume that /(a) is algebraic, and let 6 denote the

degree of $(a, /(a)) over $ . Applying Lemma 3.2 to the functions

fAz) = s , fAz) = f{z) , fAz) = X/z , we conclude that / satisfies

hypotheses (2.A.1) and (2.A.2) of Theorem A at w = a , with s = 1 ,

t = 0 (for this last assertion see Remark 2.2). On the other hand, the

assumptions of Theorem 3.U, together with Remarks 2.1 and 2.3 imply that

these hypotheses are satisfied at w = 0 , with sQ = 1 , t 5 (l/p) - 1 .

Therefore it follows from Theorem A that

1 > f i P i

this inequality provides the desired contradiction.

As explained in [/], the ideas discussed above can be used to recover

in a very simple way some of Siegel's results on E-functions. For

instance, Theorem A, applied to the logarithmic derivative of the Bessel

function of order 0 yields the transcendency of the continued fraction

[l, 2, 3, ...] (see [2], §U). Theorem B, on the other hand, implies
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another well known result of Siege I, namely, the zeroes of the incomplete

gamma function

are irrational (see [?], I, §3).

To prove this assertion consider a complex number X ^ -1, -2, ... .

The differential equation

zy' + (X-z)y = X

admits a solution F, regular at the origin where its Taylor expansion is

given by F.(0) = 1 , and, for ffl 2 1 , by

A

x ) ... (X+m)] .

Hence F. is an entire function of order 1 . On the other hand, Satz 5

of [JS] implies that F satisfies (2.A.2 bis) at w = 0 , with vQ = 0 ,

if X is a rational number.

Now F. is the analytic continuation of the function

X + f *X-V*d* ,Jo

while F, is given, for positive real values of X , by

FAz) = \ez \ tX-Xe-tzdt .
X J0

Thus T.(X) = (l/Xe)F,(l) . But Theorem 3.h implies that F,(l) is
V A A

transcendental if X is rational, and the claim follows.

4. The proofs

We now turn to the proof of Theorems A and B. The ideas and notations

of [20] enable us to give a single proof for both theorems: in the case of

Theorem A we put v = 1 , fx=f, p% = p , S = S ; in the case of

Theorem B we put v = 2 , p = p1 + p2 , S = S2 , and .
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sw ~ sw if max

t7=l jt

p.
s = 1 - min ^r "- otherwise;

t = v'v" (see Remark 2.6).
U W W

Let u , ..., w be p distinct elements of S t and, for i = 1, ..., p ,

set e. = (6 , -l)s , , y. = 6 t . We shall prove that the inequality

holds for any positive real number £ . Hence the family is

summable, and its sum is bounded by p . This implies the conclusions of

Theorems A and B.

We first note that since we are trying to obtain non strict

inequalities, there is no restriction in assuming that the orders of the

functions are taken in the "strict" meaning of [20], §2. With this

convention the global estimates of [20], §*+, 3rd step (computation of

|*|^ ) are still valid. On the other hand, the arithmetical computations

will of course be the same as the ones of [20] (Lemma !*.l). In fact, our

proof resembles that of [20] so closely that we shall limit ourselves to a

sketch of the constructions, and stress the arguments only when they differ

from [20].

From now on w , ..., w are fixed. We choose a sufficiently large

integer A , and we denote by e., ..., £._ positive numbers depending on

A , and which tend towards 0 as A tends to infinity. Using the

notation stated above (notice that this is consistent with those of [20]),

we then consider a sufficiently large integer N , and we define A., L ,
3

and cp, z as in [20], §U, with n = 1 .

We shall describe two ways of proving inequality (I) . As we shall

see, the second one is more suitable to generalisation to the case of n

variables.
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a. FIRST METHOD {of. [ J ] , [2])

1st Step. There exist ra t ional integers p(X, I) , not a l l zero,

bounded in absolute value by exp (e N Log N) , such that the function

has a zero of order at least N at each point w, ..., w

Indeed, this amounts to solving a linear system with coefficients in

the composition of the number fields K . We note that if /, g are
Is

meromorphic at 3 and if n is a rational integer, then

Therefore the estimates of §3 of [20] are still valid in the present

context, and Siegel's lemma furnishes the desired solution (note, however,

that the number of equations here depends on the A.'s ).
3

2nd Step. For each i = 1, ..., p , the point W- is a zero of F
Is

of order greater than or equal to N . We denote this order by m. , and
ts

m.
we set £. = D VF{W.) . Then

is Is

This is an application of the usual size inequality in the number field

K , together with the estimates of [20].
i

3rd Step. The analytic nature of this step makes it easier (and

sharper) than in the many variables situation of [20]. We claim that, for

all i = 1, ..., p ,

m +...m +...+m
Î 2 (l+£3)'"i Log mi - 2- Log m^ .

We fix an integer i in the range 1, ..., p , and we first note

that, since we are in the case of one variable, the denominator h . of the
3
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meromorphic function /. (see [20], §U) can be assumed, for
3

A.
3 = 1, . . . , V , to be non zero at w. . The entire function * = F ~| f h P

Z 3=1 °
m. v A.

then satisfies D t*(u.) = £. 1 \ h P {u .) # 0 , and has order at least m.

at each point w, , for k = 1, ..., p . Hence * has at least

m + ... + m zeroes (counted with their multiplicities) in the disk

\z\ < r , where r = max (|u, |+l) . Using the estimates of [20] we

see that the one variable version of Schwarz lemma, applied to the function

* on a disk of radius R = m. , and Cauchy's inequalities at W. ,

imply the desired upper bound for |C-| •

4th Step. Combining the preceding inequalities, we obtain, for all

i = 1, ••-, P ,

m + ... + m 5pfc.+Y-+l+e.)m. .
1 p v % 4 i,

A term to term summation yields

which is inequality (I) , with e = e^ .

B. SECOND METHOD

The idea of this method consists in weighting the orders of the

zeroes w , ..., w . The integral part of a positive real number x will

be denoted by [x] .

1st Step. Let N. = for i = 1, ..., p . There exist

rational integers p(X, I) , not all zero, bounded in absolute value by

exp(e_/V Log //) , such that the function F = ££p(X, £)(p. 7 has a zero of

order at least N. at each point w. , for i = 1, ..., p .

2nd Step. There exists a minimal integer M > N such that, for each
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i = 1, . . . , p , and a l l non negative integers k. < — + . , we have
Lr Is

k.
D VF(U.) = 0 . Let u = u. be one of the points w. at which F has

a zero of order m = m. = — — — , and set £ = L)F{w) . Then
0 l0 t0

Log |C| > -{o^ +Y^ +£g)w Log m .

3rd Step. Follow the 3rd step of the preceding method, replacing i

by i. . The definition of M shows that the function $ has here at

least V — zeroes (counted with their multiplicities) in thei r * i
i=l >-i 'i, -J

disk |s| < r . Applying Schwarz' lemma on a disk of radius m , we

obtain

M
Log|£| < (l+e )m Log m - -

.i e .+Y .
1=1. % %

Log m .

4th Step. A comparison of the preceding inequalities yields

E i , ,
W > ; 5 p e. +Y. +l+cAm .

Recalling the definition of m , and dividing both terms by M , we obtain

=̂l it 8

from which inequality (I) follows.

Y. A REMARK ON THE n-DIMENSIONAL CASE

Using the latter method, together with the arguments of [20] and [2/],

Chapter 7, it is not difficult to extend the previous results to

meromorphic functions in C . For the sake of brevity, we shall merely

state the corresponding generalization of Theorem A; now, S is a set of

algebraic points in C and, for all m in Nn , if denotes the partial
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I t f ̂n "* 1
derivative 3'm'/ 3 z ... dnz . The conclusion is then the following:

I 1 n)

For any finite subset 5 of S and any positive real number M ,

there exists a non zero polynomial P.. in C|s , ..., z \ , of degree at

most (W+n-l)p , such that each element w of S is a zero of P̂ . of

f M 1
order at least \-—r?—TT— . . .1+1 o -11 s +6 t^ <• w ' w w u-1

This result obviously implies Theorems A of [20] and of the present

paper.
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