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THE STABILITY OF SOLUTIONS OF 
GENERALIZED EMDEN-FOWLER EQUATIONS 

BY 

HUGO TEUFEL, JR. 

ABSTRACT. This paper gives several monotonicity properties of 
all oscillatory solutions of equations with separable and non-
separable nonlinearities which are more general than the Emden-
Fowler equations 

(*) x"+a(t) \x\y sgn x = 0, a(t) > 0, 0 < y < oo. 

Principally, if x(t) is an oscillatory solution, conditions are given 
such that; if a(t)^ co as / -> oo, then *(0 -> 0; and, if a(t)[0 as 
t -> oo, then lim sup |JC(/)| = oo. 

1. Introduction. The equations considered in this paper are of the form 

(1) x"+F(t, x) = 0, xF > 0 for t, x 5* 0; 

where, if x^0, either (|) xF f 00 as t -* oo, or {[) xF [ 0 as t -> 00. The objective 
is to state general dual sufficient conditions additional to (f), (J,), such that, given 
any solution x{t) of (1); if (f), then x(f)->0 as f->co, and, if (J), then 
limsup|x(f)| = °o as t-> 00. Also, corollaries are given about the asymptotic dis­
tribution of the zeros. 

These questions have been studied intensively for the linear version of (1); for 
instance, Hartman [4] gave refined sufficient conditions for (f) and (I); and, 
recently, De Kleine [3] gave a counter-example for (|). 

The study of the indicated limiting behaviors for nonlinear equations (1) where 
(Î) or (J,) holds is intrinsically more difficult. However, Hinton [6] has discussed 
both these cases, as well as the distribution of zeros, for instances of (1) where 
F=a(t)xy, y>\, & ratio of odd, positive integers. Another recent work on (f) is by 
Burton and Grimmer [1], The present work improves these by not requiring F to be 
separable, and by easing the smoothness required of the /-dépendance of F. 

Of course, if, as in Wong [8], the f-dependance of F is roughly intermediary 
between (f) and (I); then, Liapunov methods apply and, typically, all solutions 
are asymptotically stable, e.g., both x(t) -> 0 and x'(t) ~> 0 as t ~> 00. 

2. Preliminaries. Since the conditions and the arguments are dual, the case 
(Î) is considered in the main text, and the case (j) is considered contiguously, in 
brackets. 
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All functions are required to be continuous at each (f, x) in [0, oo) x (— oo, co) 
unless otherwise designated. Moreover, 

i). xF>0 for t, x^O, F(t, —x)= —F(t, x), for each x-value F is a non-decreas­
ing [non-increasing] function of t which is absolutely continuous on each finite 
/-interval, while for each /-value F is a non-decreasing function of x. 

Furthermore, it is supposed for each T > 0 that there are functions h, H, and G, 
h(t)=Eh(T9t), H(t,x)=H(T,t,x), and G(x)=G(T, x), such that h(t)H(t,x)= 
F(t, x) for t>T where h(t) is absolutely continuous on each finite /-interval. Also, 

ii). h(t)>0, h'(t)>0 [<;] almost everywhere, /*(/)-> °o [0] as t-+ oo, h\t) is 
non-decreasing [non-increasing] almost everywhere; 
iii). xHt(t,x)<fi [>] almost everywhere, and $% H(t9 s) ds -+ G(x) as / -> oo, 
where G(x)>0 if x^O. 

REMARK. The conditions on F in case (Î) include such non-separable functions 
as, for example, F(t9 x)=tx+t2xz. Here, for instance, A(/)=/2, H(t, x)=t~1x+xz

9 

and G(x)=ix*. 

Several properties of solutions of (1) prerequisite to the main results are stated 
next. Proofs are not given, for these results are routine extensions of what is known. 

Observe that the continuity condition on F ensures that for any initial triple 
(T, x09 JCi), r > 0 , — oo<x0, xt< oo, there is a solution of (1) which exists on some 
maximal, non-trivial interval [T9 T^). It will, without loss of generality, be assumed 
that 7 > 0 in what follows. 

Given a specific solution x(t) of (1) defined on [T, 7^), define the functions E(t) 
and W{t) on [T, TJ by 

fx(t) 
(2) £(0 = i/T1(0(*'(0)2+ H(*, s) ds, 

Jo 
rx(t) 

(3) ^ ( 0 = K*'(0)"+ F(t9s)ds. 
Jo 

LEMMA. E(t) is a non-increasing [non-decreasing] function, absolutely continuous 
on finite subintervals of [T9 7\). W{t) is a non-decreasing [non-increasing] function, 
absolutely continuous on finite subintervals of [T9 J^). 

Proof. Let (JJ(t) H(t, s) ds)t denote the /-derivative with respect to the first 
argument (it is not necessary to differentiate under the integral sign). By writing 
difference quotients it is readily shown that 

(4) E' = x'h-\x" + F) + IQi-^Xx'Y + (J'H), a.e. 

Since x(t) is a solution of (1), the first term of (4) is zero. Assumptions ii) and 
iii), respectively, imply the second and third terms are non-positive [non-negative] 
a.e. The assumptions on h and H ensure E is absolutely continuous on finite sub-
intervals of [r , 7i); whence, E'(t)<,0 [>] a.e., and the first assertion of the lemma 
is proved. 
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Similar arguments show that 

W = x'(xT+F)+ ( J*{t)F(t, s) ds) ^ 0 [<], a.e. 

Thus, the second assertion of the lemma is proved. 
a. It follows in a straightforward way from the monotonicity of E in case (Î) 

and of Win case {[) that any solution of (1) exists throughout the positive half-line 
to the right of its initial t-value. 

b. In case (Î) works such as Wong's [9] show that every solution of (1) is 
oscillatory (has a zero in each positive half-line). However, the situation in case 
(I) is more complex. 

Here, it is possible that all solutions are oscillatory (necessary and sufficient 
conditions are given in [9]); or, all solutions are non-oscillatory (sufficient con­
ditions are given by Chiou [7]), or, (1) may have both oscillatory and non-
oscillatory solutions (sufficient conditions for the existence of an oscillatory solution 
are discussed by Heidel and Hinton [5]). Thus, the results for case (J) hold only for 
all oscillatory solutions of (1), if they exist. 

c. The monotonicity of E implies the trivial solution of (1) is right [left] unique; 
and, the monotonicity of W implies the trivial solution of (1) is left [right] unique. 
Hence, a continuity argument shows the zeros of any oscillatory solution of (1) 
are discrete and may be enumerated as an unbounded, strictly increasing sequence 
{tin}, rt=0, 1,2, The monotonicity of ^implies \x\tj)\£\x\t%n+à\[ï>]. 

d. In each interval (t2n, n̂+2) there is a single zero of x'(t), call it n̂+i» Argu­
ments like those given by Das [2] show that the monotonicity of Fin its /-variable 
implies t2n+1—t2n> ̂ 2n+2 ^2n+l 

[<] and \x(t2n+1)\>\x(t2n+3)\[£l 
3. The Main Results 

THEOREM. Ifx(t) is any oscillatory solution of (I); then, the conditions for case (Î) 
imply |x(/2n+i)l i 0, and /rK^nX*'^?»))21 0 as n -> 00; and the conditions for case 
(I) imply \x(t2n+1)\ î co, and h-\t2n)(x

l\t2n)f î 00 as n -> 00. 

Proof. Some information about the convexity of \x'(t)\ is required in the 
ensuing. Thus, differentiate (1) to obtain 

(5) x'" == -F,(f, x)-FJLt9 x)x\ a.e. 

According to condition i) x'"<0 [>], a.e., if x>09 x'>0 [x>09x'<0] and 
*'"i>0 [<£], a.e., if x<0, x'<0 [x<0, x'>0]. Hence, \x'\ is convex upward on 

[t2n, W i ] i n c a s e (Î) [and o n IW» WJ i n c a s e (J)]-
If the theorem is false; then, there is a constant C0>0 [< 00] such that, by 2.c, 

l̂ (̂ 2n+i)l i CQ [\] as n -> 00. In view of the definition of G(x), it follows from the 
Lemma, and the monotonicity of E(t)9 that there is a constant C>0 [<oo] such 
that E(t2n+1) I C [f] as n -> 00. 
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Consider the derivative of E{f) in (4), and by neglecting ( JQ ( < ) H(t, s) ds)t obta in 

(6) E'(t) < Kh-\t))'(x'(t)f [£] , a.e. 

Let £>0 be given. Then, there is an m=m(s) so large that t>t2m implies 
C<E(t)<C+s[C-e<E(t)<C]. 

Since E and h are absolutely cont inuous , (6) may be integrated OVer [t2mi ^2n] tO 

produce 

(7) s > T-\ (h-Wf = T ; 2 (T1) '^ ')2 

where the minus [plus] sign holds in case (î) [JJ. 
According to 2.c. \x'(t2^\^\x'(t2m)\ [>\x'(t2n)\, m^k^n]. Moreover, if (Î), the 

convexity of \x'(t)\ implies \xf(t)\^i\x\t2k)\ on [t2k, t2k], t2k=i(t2k+t2k+1) [and, if 
(i), \x'(t)\^.\x'(t2k+2)\ on [ 4 , *2fc+2], 4 = i ( W i + W 2 ) ] - These bounds substantiate 
the inequalities 

(8) 

fhk+2 n _ f *2*+2 _ f *2* 

Jhk Jhk Jhk 

D%*+2 , ft f *2*+2 n f*2fc+2 ., "I 

(h-'nx'fzl ( ) ^ K ^ 2 J ) 2 (r1)'. Since A' is non-decreasing [non-increasing] it follows from the inequalities stated 
for the r-intervals in 2.d. tha t 

(9) 

f*2ife , 1 r*2fc+2 

(h-1)' < \ (/r1)' 
Jhk 4 Jtak 

4k 4 J*2A: J 

N o w , inequalities (8) and (9) can be combined in (7) t o give 

e > 2-\xXt2J)\h-\t2J-h-\t2n» 
( 1 0 ) [s > 2^{x\t2Mh~\hn)-h-\t2J)l 

In the case (f) it follows from the unboundedness of A and the definitions of E and 
the constant C that (10) implies s>2-\x\t2m)fh~1{t2m)>2-zC. In the case (J) 
note in equation (2) that the assumed boundedness of E and the zero limit of h 
imply (x'(t2n))

21 0 as n —>• oo. Hence, in the limit as n -> oo, the second inequality 
of (10) implies s>2~3C. In both cases the selection e=2~3C provides a contra­
diction, and the theorem is proved. 

COROLLARY. If (Î), then t2n+2—t2n -> 0 as n -> oo. If (J,), f/zera t2n+2—t2n -> oo 
&y « -> oo. 
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Proof. (Î). According to the remarks preceding inequality (8) and 2.C., |x'(OI> 
2"*1|x'(^2n)l>2~1|x,(^0)l

 o n lAn> *2n]- Then, an integration over this interval leads to 
W W i ) l ^ W2JI^Tr1 |*'('o)l (t2n-t2n). Since ̂ - r t o ^ i ( W r U the theorem 
implies the desired result. 

(j). Since |*XOI^I*'(Wa)l:£l*'('o)l> Wi<^<^2n+2> an integration gives 
l*('2n+i)l<l*'('o)I (*2n+2—'2n+i)- The theorem implies the desired result; and, the 
corollary is proved. 

REMARK. It is noteworthy that Hinton [6] also showed, under his conditions, 
that, if (Î), then, lim sup\x'(t)\ = co as t-> 00, and, if (J,), then lim|jc'(0l=0 as 
f - > 00. 
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