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Automorphisms of the semigroup
of all onto mappings of a set

Suchat Chantip and G.R. Wood

The semigroup of all onto mappings of a set to itself and the
semigroup of all one-to-one mappings of a set to itself are shown

to have the property that every automorphism is inner.

1. Introduction

Let X be a non-empty set. Let G denote the group of permutations
of X and E, M, and F the semigroups of onto mappings, one-to-one
mappings and all mappings from X +to itself respectively. Throughout, the
operation on G, E, M , and F will be mapping composition. Finally, let
R denote the semigroup of all binary relations on X , the composition

operation given by
fog=1{x,y) €xxX: (x, 38 €f and (z, y) € g for some z € X}
for elements f and g in R.

An automorphism ¢ of a group or semigroup (S) of mappings or
relations is said to be imner if there exists a permutation A% of X such
that

(%) fo = h_lfh for every f in S.
(Functions juxtaposed imply composition.)

It is well known that for finite sets other than those with six
elements (|X| # 6) , G has the property that every automorphism is
inner. Schreier and Ulam in 1937 [3] extended this to infinite sets, while

Schreier [2] showed that every automorphism of F is inner for any set
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X . More recently Magill proved that every automorphism of R 1is inner
[7]. The purpose of this note is to show that the semigroups £ and M
(|x] # 6) also have this property.

The core of the proofs for G, F , and R is the following: an
automorphism ¢ is shown to preserve a subset of the group or semigroup,
allowing a natural definition of a permutation %7 of X with the property
(*). 1In the case of G the set is the conjugacy class of a transposition,
for F it is the unique minimal ideal of constant functions, while for R
it is the set of constant relations with domain X . Here our technique is
different. We observe that ¢ has the form (*) on G and show that the
form extends to E (M) using the composition properties of transpositions

and arbitrary onto (one-to-one) mappings.

The following notions will be useful. If a € X is the only element
in X carried to af by f €F we say f ie one-to-one at a . That

is, (af)fPl = {a} . Let Mf denote the set of all such points for the

mapping f . If af’l = S5 consists of more than one point we call S a

condensation set of f and a a condensation point of f .

2. Automorphisms
We proceed to the proof of the main theorem.
THEOREM 1. Every automorphiem ¢ of E is immer, for |X| # 6 .
Proof, If X is finite, E = G , so the result follows from well
known group theory. For infinite X the proof is in five steps.
1. There exists a permutation h of X such that f¢ = h-lfh for
every f in G.

Since Gp = G , ¢ restricted to G is an automorphism of G . The

result of Schreier and Ulam [3] guarantees the existence of a permutation
h of X such that f¢ = h_lfh for every f in G .
The next result shows that condensation sets are preserved.

2. 5 18 a condensation set for f in E if and only if Sh is a
condensation set for fo .

Take gh and bk in Sh . Now f = (a, b)f , where (a, b) in G
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is the transposition reversing elements a and b in S . Hence
76 = ((a, D))o = (a, BIG(£$) = (ah, DR)(FB) ,

using

(a, b)é = K (a, b)h = (ah, bh) .
Thus ah(f$) = bh(f¢) , so f¢ is constant on Sh .

A result true for ¢ is true also for ¢-l , S0 if f¢ is constant
on Sk, (f¢)¢-l = f 1is constant on (Sh)h'l =5.

3. For all a in Mf » f in E, ah(fo) = afh .

We show this for those f in £ which are one-to-one at three or
more points. Maps which are one-to-one at two points or one point can be

expressed as a composition of two such maps and the result will follow.

Suppose a and b are in Mf and a#b . Now

f = (a, b)f(af, bf) ,
50
¢ = (ah, bh)fé(afh, bfh) .
Suppose ah(f$¢) = x # afh or bfh . Then
bh(f¢) = bh(ah, bh)fé(afh, bfh)

=x’

also.

Since a#b , ah # bh so f¢ is not one-to-one at ah ,
contradicting step two. So ah(f9) = afh or bfh . Applying the same
argument to @ and ¢ in X where a#c # Db gives ah(f¢) = afh .

Suppose now that f is one-to-one at only a and b in X . Take a
condensation set S of f and suppose Sf = 2z . Define fi and fé in

E as follows,

zf if z € S v {a, b} ,
xfi =
zg if z € X\(S v {a, b}) ,

vhere g 1is a one-to-one correspondence between X\(S u {a, b}) and
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X\{af, bf, 2} . The former set is of the same cardinality as the latter
since f is onto. Let xf, =yf when =z = yfl .

Then fl and f2 are in E , flf2=f and both fl and f2 are
one-to-one at three points or more. Consequently

ah(£) = ah(f)8) (£,9) = afh(f,8) = afh ,

bh(f$) = bfh .

A similar construction shows that if f 1is one-to-one at only one point,
the result holds.

4, If f in E has precisely one condensation set S then
-1
fo=h"fh.

We have only to show that the single condensation point of f¢ is
Sfh . From step three it follows that f¢ affords a one-to-one and onto
correspondence between (X\S)h and (X\Sf)h . But since f¢ is onto,

Sh(fd)

X\(X\Sf)h
X\(x\Sfn)
Sfh .

S. Forevery f in E, fo=hfh.

We must show that if a € S , a condensation set of f , then

ah(f$) = afh . We do this by writing f as a composition of a map fl in
t with single condensation set S and a map f2 in E which is one-to-
one at afl . Specifically, let

af if xz €8,

xfl=
xk if x € X\S ,

where % is a one-to-one correspondence from X\S onto Xi\{af} . Let
xf2 = yf when =z = yf'l . Note that fl and f2 are in € , f1f2 =f,

and that f2 is one-to-one at afl . As before

ah(£9) = ah(f 6) (F8) = afh ,

completing the proof.
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With only small modifications of steps one and two we have the next

theorem.

THEOREM 2. Every automorphiem ¢ of M is inmer, for |X| #6 .

3. Automorphism groups
Let AS be the automorphism group of the semigroup (or group) S .

We have the following relationship between AS and G .

THEOREM 3. For S =R, F,E, M or G,
Ag = G
except for S=G (= E=M) when |X|] =2 or 6.

Proof. The map G - Ag (for S any of R, F, E, M, or G ) which
takes h in G to the automorphism which carries f in S to h-lfh s
is always a homomorphism. It is one-to-one precisely when gf = fg for
all f in S implies g in G is the identity mapping on X . This is
so in all cases except for S =G and |X| <2 . When |X| =2,

AG $ G . The homomorphism is onto precisely when every automorphism of S

is inner. This is so in all cases except for S =G and |X| =6 , and in

this case AG $ G . To complete the proof we may check that when

x| =1, AR’ AF , and G are the trivial group.
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