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SOME PROPERTIES OF A CERTAIN SET 
OF INTERPOLATING POLYNOMIALS 

BY 

DAVID J. LEEMING 

1. Introduction. A Lidstone series provides a (formal) two-point expansion 
of a given function f(x) in terms of its derivatives of even order at the nodes 0 
and 1 and takes the form 

f(x) = / ( l )A 0 (x)+/ (0)A 0 ( l~x)+/Xl)A 1 (x)+r(0)A 1 ( l~x)+- - • 

where An(x) is a polynomial of degree 2n+l defined by the generating function 

sinn t «=o 

The Lidstone polynomials {An(x)}^=0 have been studied extensively (see e.g. 
[9], [10], [11]) and their interpolatory properties are well known. In 1932, J. M. 
Whittaker showed the relationship between the Lidstone polynomials and the 
classical Bernoulli polynomials Bn{x). In fact, Whittaker [10], proved that 

22n+1 

(2^+1)1 
(1.2) Aw(x) = ^—^ B2n+1{^j n = 0, 1, 

During an investigation of a class of infinite interpolation problems with periodic 
conditions defined on the nodes —1,0 and 1 [4] the polynomial set {(?4n(X)}n=o 
defined by the simple generating function 

cosh xt+cos xt " Qtn(x)t*n 

cosh f+cos t w=o {An) 

exhibited some interesting properties in addition to the anticipated interpolating 
properties. This led to further investigations which have yielded a particularly 
interesting relationship between the polynomial set {Qàn(x)} and the Euler poly­
nomials, stated precisely in Theorem 2.1. 

Of additional interest is the fact that the normalized polynomial set {Q^n{
x))n=Q 

i.e. where 

(1.4) Q£(x) = 
(4n)! 
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is a generalized Appell set. Such polynomial sets which have been investigated by 
Osegov [6], and Al-Salaam and Verma [1] can be classified in the following way. 
Let r be a positive integer. A polynomial set {Pn(x)} is in S{r) if there is an operator 
J(D) of the form 7(Z0=2*Lo 0*£*+r Oo^O) where ak(k>0) is independent of x 
and D is the differential operator, such that 

(1.5) J(D)Pn(x) = Pn_r(x) (n = r, r + 1 , . . .)• 

It is easily seen that the normalized polynomial set {g4* (x)} belongs to the 
class S(4). 

NOTE. We do not use the normalized polynomial set throughout the paper as 
the results are simpler stated in terms of the polynomials {Qin(x)}. 

In §2 we develop the relationship between the polynomial set {24n(X)}£Lo a n d 
the Euler polynomials. Defining a sequence of numbers {Q^n}n=o by setting 
84 w=24 w(0), we give, in §3, some properties of this sequence including an asymp­
totic estimate for |<24w|l/w. We also obtain a new result on divisibility of certain 
finite sums of products of Euler numbers. In §4, some of the properties of the poly­
nomials Qtn(x) are discussed, including Theorem 4.1 which gives a zero-free 
interval on the real and imaginary axis. 

2. The Polynomials Q^n{x) and the Euler Polynomials. 

LEMMA 2.1. Q0(x) = 1, and for « = 1 , 2 , . . . Q±n{x) is a monic polynomial of 
degree An given by 

(2.1) *" - | ( £ ) f i « ( * ) . 

Furthermore, for # = 0 , 1, 2 , . . . we have the "difference equation" 

(2.2) Ô 4 n ( x + l ) + Ô 4 n ( x _ l ) + Ô 4 n ( x + 0 + Q 4 n ( x ^ f ) = 4x4n 

Proof. From (1.3) we have 

oo An oo s\ /„\y.4fc oo _,4n*4n 

y _£ ySlikyXjt __ y x i 
n=o(4tt)!fc=o (4k) \ n=o(4n)\ 

Therefore 
00 n n / W 4 & An—4& co „4n*4n oo r n / / | M \ n An oo v4n*4n 

2 ^QuMi—i = 2 £ L ± _ ^ | 2 p W * ) ! — = ^X-L-. 
n=oS, (4fe)! (4n-4Jt)! ^ô(4n)!«tô|jâ)\4fc/ J(4n)! ,£ô(4n)! 

Equating the coefficients off*" yields (2.1).(2.2) follows easily from (2.1) or (1.3). • 

Let En(x), w=0, 1, . . . , denote the Euler polynomial of degree n defined by 

ef+l 7i=o n\ 
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We shall make use of the following well-known properties of the Euler poly­
nomials. The nth Euler number, En, is defined by (2.6) 

(2.4) En(x)+EJl+x) = 2x\ n > 0 

(2.5) En{\-x) = (-l)"£n(x), n^O 

(2.6) En = 2nEM, n £ 0. 

The first relationship between the two sets of polynomials is given by 

LEMMA 2.2. For «;>0, we have 

E,n(x)+E,n(l+x) = 2j^QJx). 

Proof. Immediate from (2.1) and (2.4). • 

We now obtain a representation theorem for the polynomials Q±n(x) in terms of 
the Euler polynomials. 

THEOREM 2.1. For n>0 we have 

(2.7) Qin(x) = (_4)-2 (^)(-l)*£a(l±?)£4 l^(i±*). 

Proof. From (2.3) we have 

ngx 2eXt _ 2e{X~mH _ f g " ( x ) f " 
1 ' ' é+\ em+e-t/2 „fo „! ' 
Replacing x by 1— x and adding yields 

(2.9) 2coSh(x-l/2) t = | [ ^ ) + £ n ( 1 _ x ) ] r 
cosh i/2 «=o w ! 

Now replacing t by 2* and 2x— 1 by x in (2.9) and using (2.5) we have 

(2 10) cosh%t_ " / l + x \ ( 2 Q 2 " 

cosh* »±ô 2n\ 2 /(2n)- ' 

Replacing t by it in (2.10) yields 
cosxf « / l+x\(-l)"(2Q2" (2>11) ^ JoM~) (2,)! * 

Finally, replacing t by ((l + /)/2)r and ((1— i)/2)t respectively in (2.11) and multi­
plying, we have 

cos (i±!)tfcos(y)*f 

cos I If cos I it 
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Using the identity cosh t+cos f=2 cos((l+0/2)*cos((l —Ï)j2)t in (2.12) gives 
(2.7). 

The first few polynomials Qin(x) are: 

&(*) = l 

Qlx) = x 4 - l 

Qs(x) = (x4-l)(x4-69) 

g12(x) = (x4-l)(x8-494x4+335661) 

Q1Q(x) = (x4-l)(x12-1819x8+886,211x4-60,376,809). 

3. The Numbers {ô4JLo and the Euler Numbers. L. Carlitz (see [2], [3]) 
and other authors have considered the properties of the set of numbers {S2n} 
defined by the generating function 

cosh* * x2n 

cos x w-o (2n) 

In particular, Carlitz showed that 

(3.1) J X - l ) * ( ^ E t t
 = S*n = 2^2n 

where S^ is odd. In (3.1) each term in the sum is positive. The next lemma shows 
that a similar divisibility property holds for a special sum of products of Euler 
numbers in which the terms alternate in sign. 

LEMMA 3.1. For n>\, we have 

(3-2) 20(2fc)(_1)fc£2*£4»-2* = (-4)"&n 

where g4n is odd. 

Proof. If we set x=0 in (2.7) and define 

(3.3) Q4n = Q4n(0), n > 0 

then, using (2.6) and simplifying, we get 

(3.4) g4n = (-4)-|^™ J (- 1 ) V M . 

To prove the lemma we need only show that g4n is odd. We have Q0=l, and 
setting x=0 in (2.1) yields 

(3.5) | 0 ( 4 " ) e « = °-
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Thus, g 4 = —1, so assume g4n_4 *s °dd. Then from (3.5) we have 

(3.6) Qin = - 1 - (4
4

n)(Q4+Ô4.-4)-?(S)fi«-

Since, under the inductive assumption, the second and third terms in the right-hand 
member of (3.6) are even, g4n must necessarily be odd. • 

The first seven numbers g4w are listed below 

Go = l, 0 4 = - 1 , 08 = 69, Q12= -33,661, g16 = 60,376,809, 

Q20 = -245,454,050,521, g24 = 3,019,098,162,602,349. 

Symbolically, we can write 

(Q+D4n+(e-i)4n+(e+o4w+(a-o4n = (J "= J 
where g* is replaced by g, after multiplying out, and Qj=0,jjàO (mod 4). 

THEOREM 3.1. The numbers g4n have the property 

(3.7) (-1)WG4«>0, n > 0 . 

Proof. If we set 

(3-8) Ql = - ^ 

then, using (3.5) we get 

(3.9) io(^)(4fc)!Q4fc = 0. 

Thus, g* = 1 > Q*= """AT- If we show that the sign of g4n_4 determines the sign of the 
sum 

(3.10) g(J)(«). 
then, since the left-hand member of (3.5) is equal to zero, the numbers g*n_4 and 
g*n must have opposite sign. Therefore, we will show by induction that, for n>2 

ex 11 ^ 184n-41 ^ 69 Y 84n-431 • 
K 4! h (4/)! 

(Note: 69 is the best constant in the sense that it cannot be replaced by any larger 
integer.) 

Since, 
1 _ 184*1 > 69 \QS\ = 69 

(4!)2 4! 8! 8! 
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(3.11) is true for n = 2 . Now assume inequality (3.11) is true for n=k(>.2). That is, 

(3.12) lôLlJ>69il^=^ 
4! ~2 (4/) 

We wish to prove that 

(3.13) l ^ > 6 9 y M = M i 
4! /=i(4/+4) 

From (3.9) we have 

and, using (3.12) yields 

• * ^ 184fc-41 Xp 164fc-4jl 
4! i=2 (4/)! 

\QStl ^ 68 |64*_4l ^ ct% l£Ul , 18 * 

4! 69 (4!)2 8! 8! 

To complete the proof, we need only show that 

(3.15) K ^ > 6 9 2 l Q f c 4 i [ 
/=i(4/+4)! 

Now, (3.15) will be verified if term-by-term comparison with (3.12) yields the 
inequalities 

(1 1 G\ l84fc-4jl , 4 . 184^-431 , . ___ 0 ^ y x 

(4/+4)! 8! (4/)! 

Inequalities (3.16) are equivalent to 

(3-17) x „ . * _ , . <N < * 
(4/+4)(4/+3)(4/+2)(4/+l) 8 • 7 • 6 • 5 

and (3.17) holds for j = 2 , 3, . . . 9k as required. Therefore, inequality (3.15) 
holds. Substituting (3.15) into (3.14) gives (3.11) for n=k+l and the proof by 
induction is complete. •• 

A useful result to roughly determine the size of |g 4 n | is given by 

LEMMA 3.2. For n>l, we have 

(3.18) g( 4
4 ") |e4„_4| < \Qin\ < g( 4

4 ") |ô4„_â|. 

Proof. From (3.14) we have 

(3.19) |6*B| > fg{~j IQf^l. 
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Using (3.9) and (3.11) 

An-41 (3.20) ,ô*j<i^+2%fl<l%il+(^)i 
4! *-2 (4/)! 4! \69/ 4! 

Combining inequalities (3.19) and (3.20) we have 

4W-41 /68\ie*n_4i » / 7 o \ i e L 

i69J"7r<,e4j<w~^ 
which, by (3.8) is equivalent to (3.18). • 

Repeated application of inequality (3.18) provides an asymptotic estimate for 
|<24J1/n. Roughly speaking |2 4 J 1 / n ~ow 4 where a^0.193. 

COROLLARY 3.1. For the numbers {ô4w}n=o defined by (3.3) we have 

\0 l1/2 

(3.21) 0.192535 < 4 , ' < 0.198198 (n - oo.) 
n (87m) ' n 

Proof. Applying inequality (3.18) « times we have 

(3.22) ( ^ f ^ < | e 4 J < ( ™ ) ^ ( n - . c c ) . 
V \69/ (4!)n '^4wl \69/ (4!)n V J 

Using Stirling's formula in (3.22) yields 

„,v,x 2176 |Ô4J1/W 2240 
(3.23) < ^n]

 1/9 < (n -> oo). 
V 207e4 n\S7rn)1/2n 207e4 V ' 
Approximating the right and left-hand parts of inequality (3.23) to six significant 
figures we get (3.21). • 

REMARK. If we set Tn=n-\%<Trn)-ll2n | g 4 J 1 / n we have 

Tx = 0.1994711402 T4 = 0.1935040648 

T2 = 0.1949786679 T5 = 0.1932707501 

T3 = 0.1939383963 T6 = 0.1931265334. 

4. Some properties of the Polynomial Set {24w(x)}n=o- Since the polynomials 
Q*n(

x) a r e polynomials in x4, determining the roots for * > 0 , yields all real and 
pure imaginary roots of Q^n(x). The first result is given by 

THEOREM 4.1. The only zeros of the polynomial Q^n(x)9 (w>l), in [—1, 1] are 
at the endpoints x= ± 1. 

Proof. The polynomials Q^n(x) (n>0) are defined by the generating function 
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(1.3). Differentiating successively with respect to x we have 

v ôin<X)'4n '(sinh xt-sin xt) 

(4.1) 

Thus, if we set 

n=i (4n)! cosh t+cos t 

y Qln(x)t*n _ ^(COSh Xf-COS Xt) 

n=i (4n)! cosh t+cos t 

y Q£L(*Yn ^(sinhxf+sinxQ 

7i=i (4n)! cosh t+cos t 

ZQ{£(x)t*n
 = *4(cosh ;+cos 0 = ™Q*n-t(x)t*n 

n=i (4n)\ cosh t+cos * *=i (4n-4) ! 

(4n)4 = (4n)(4n-l)(4n~2)(4n-3) 
we have 

(4.2) QÏÏ(*) = (4n)4g4n_4(x). 

Setting x = 0 in (4.1) yields 

(4.3) Q',M = QUO) = 64n(0) = 0, n > 1. 

By (3.7) and (4.2), Q^(0)=(4n),Q,n_^0. 
Since ô4(x)=x4— 1, g8(x)=(x4—l)(x4—69), the theorem is true for n=l and 

w=2. Assume it is true for n—\ where n is even. Since ô4n(.x) is symmetric in xy 

we consider only the interval [0, 1]. Suppose Ô47i(*i)=0 where 0 < x 1 < l . Since 
(24n(l)=0, « > 1 , applying Rolle's Theorem we get Q^n(x0)=0 for some x0 such 
that x 1 < x 0 < l . From (4.3), Q'±n{x) has a zero of order three at x=0 and, since n 
is assumed even, 04^(0)=(4«)4Ô4W_4<0 so g4n(x) has a (positive) maximum at 
x=0. Therefore, by our assumption, Q^n(x) has at least four zeros in the interval 
[0, 1]. Applying Rolle's Theorem three times, Ô4n(x)==(4/2)4g4n__4(x) has at least 
one zero in the interval (0, 1) which contradicts our inductive assumption. The 
case when n is odd is treated similarly. • 

Since Q<in(x)=(x*—l)Pn(x), n>\ where Pn(x) is a polynomial of degree 4/2—4, 
it is obvious that Q47l(3) is divisible by 80=5 • 42 for n>\. Lemma 4.1 proves a 
much stronger result, namely that Ô4n(3)==0 (mod 5 • 4n+1) and that n+l is the 
highest power of 4 contained in 24w(3). 

LEMMA 4.1. Forn>\, ô4w(3)=0 (mod 4W+1). In fact 

(4.4) Q4n(3) = 4*+ 1[4w+(-Dn + 1] . 

Proof. Setting x = 3 in (2.7) yields 

Ô4n(3) = (-4)- l^^(- l ) f cE 2 f c(2)E 4 n_ 2 f c(2) . 
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Since E0(x) = l9 and En(0)=0(n>l), setting x=l in (2.4) yields En(2)=2(n>\) 
Thus we have 

271-1 /4w\ 
04,(3) = (-4)* 2(-l)*(2fc)(2)(2)+2£0(2)E4n(2) 

= (-l)M-[l+|Vlf(^)] 
2 n" 1 /4w\ 

= (-D"4«+1
ft2(-i)ft^j. 

2 o ( - i ) *m = i[(i+o4"+(i-o*"] = (-4)n 

04.(3) = (-l)M"+ 1[(-4)"-l] 

which is equivalent to (4.5). 
Some of the results in §2 appeared in the author's Doctoral Dissertation at the 

University of Alberta. 
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Now, since 

(4.6) 

we have 
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