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Closed Convex Hulls of Unitary Orbits in
Certain Simple Real Rank Zero C∗-algebras

P. W. Ng and P. Skoufranis

Abstract. In this paper, we characterize the closures of convex hulls of unitary orbits of self-adjoint
operators in unital, separable, simple C∗-algebras with non-trivial tracial simplex, real rank zero,
stable rank one, and strict comparison of projections with respect to tracial states. In addition, an
upper bound for the number of unitary conjugates in a convex combination needed to approximate
a self-adjoint are obtained.

1 Introduction

Approximate unitary equivalence of objects is an essential notion to the theory of
operator algebras. For example, approximately unitary equivalence of homomorphisms
produces K-theoretic data, and the notion of when two self-adjoint operators are
approximately unitarily equivalent inside a unital C∗-algebra has been important
concept for decades.
A problem that has received less attention is to characterize the closure of the

convex hull of the unitary orbit of an operator inside a unital C∗-algebra. From the
operator-theoretic standpoint, unitary conjugates of a self-adjoint operator a inside a
unital C∗-algebra are, for all intents and purposes, the same operator as a, whereas
elements in the convex hull can be viewed as “averages” of diòerent copies of a. _us,
characterizing the closure of the unitary orbit of a self-adjoint operator (an equivalent
method for determining approximate unitary equivalence) need not characterize its
convex hull, as it is not clear that spectral data is well-behaved with respect to this
averaging process.

One reason for pondering this problem is that given a self-adjoint operator a in a
C∗-algebraA, we o�en take limits of elements ofA of the form,

1
n

n
∑
k=1

u∗kauk ,

where uk ∈ A are unitary operators. Consequently, the closure of the convex hull of
the unitary orbit of a characterizes which operators can be obtained. In addition, there
aremany other problems in operator algebras where closed convex hulls of unitary
orbits plays a vital role including the classical theorem of Schur andHorn (see [18,38]),
which characterizes the possible diagonal n-tuples of a self-adjoint matrix based on
its eigenvalues, the extension of the Schur–Horn _eorem to other C∗-algebras (see

Received by the editors March 30, 2016; revised October 18, 2016.
Published electronically February 16, 2017.
AMS subject classiûcation: 46L05.
Keywords: convex hull of unitary orbits, real rank zero C*-algebras simple, eigenvalue function,

majorization.

https://doi.org/10.4153/CJM-2016-045-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-045-5


1110 P. W. Ng and P. Skoufranis

[2, 4, 8, 9, 23, 24, 31, 37] to name but a few), and to generalized numerical ranges of
operators (see [10, 13,36] to name but a few).
All of the above applications have mainly been pursued in the von Neumann

algebra setting. Using a notion ofmajorization ûrst deûned for L1-functions by Hardy,
Littlewood, and Pólya (see [14, 15]) and extended to self-adjoint operators in von
Neumann algebras with faithful tracial states by Kamei in [20] (also see [3, 4, 11, 12,
16, 21, 22, 35]), it is possible to characterize the convex hull of the unitary orbit of
self-adjoint operators in tracial von Neumann algebras (see [17]). Recently, the second
author extended these results to certain unital C∗-algebras with real rank zero (see
[39]), whereas the ûrst author provided a characterization for certain C∗-algebra with
no non-trivial projections (see [33]).

_e goal of this paper is to characterize closed convex hulls of unitary orbits of
self-adjoint operators in unital, separable, simple C∗-algebras with non-trivial tracial
simplex, real rank zero, strict comparison ofprojections, and cancellation ofprojections.
In addition to this introduction, this paper contains ûve additional sections structured
as follows.

In Section 2, many preliminaries on eigenvalue functions will be analyzed for
arbitrary unital C∗-algebras. In particular, the notion and properties of eigenvalue
functions can be directly imported from von Neumann algebra theory. _is leads to
the notion of majorization of self-adjoint operators in C∗-algebra. _e goal of this
paper is to connect the notion ofmajorization for self-adjoint operators to the closed
convex hull of unitary orbits.

In Section 3, a technical result on comparing eigenvalue functions in tracially
approximately ûnite dimensional C∗-algebras (TAF C∗-algebras) will be developed.
_e reason for analyzing TAF C∗-algebras is that every C∗-algebra we wish to study
contains a TAF C∗-algebra with identical K-theoretical data. As such, the single
operator theory problem under consideration in this paper can then be solved by
placing the operators inside a TAF C∗-algebra. TAF C∗-algebras are particularly suited
to this problem as, up to a portion of the algebra of arbitrarily small trace, TAF C∗-
algebras look like ûnite dimensional C∗-algebras where a solution to our problem
exists. Consequently, Section 3 shows that if one self-adjoint operator almost majorizes
another, then the same holds for the ûnite dimensional approximates.

In Section 4, many additional approximation results relating to convex hulls of
unitary orbits will be developed using matricial results. In particular, we demonstrate
that if a self-adjoint matrix B almost majorizes a self-adjoint matrix A, then A is almost
in the convex hull of the unitary orbit of B. Subsequently, we also develop amethod
for handling the portion of the TAF C∗-algebra with arbitrarily small trace.
Finally, Section 5 combines the results of the previous sections alongwith some sim-

ple approximations to prove themain result of this paper,_eorem 5.3. Consequently,
for the C∗-algebras under consideration in this paper, _eorem 5.3 classiûes when
one self-adjoint operator is in the closed convex hull of the unitary orbit of another
self-adjoint operator using the notion ofmajorization from Section 2. Furthermore,
analyzing the proof of_eorem 5.3 yields amethod for constructing the convex combi-
nation of unitary conjugates in such C∗-algebras provided one knows how to construct
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convex combination of unitary conjugates in matrix algebras (and such a method
exists by [1, 5] and Lemma 6.7).

It is interesting to note the existence of an AF C∗-algebraA with strict comparison
of projections with respect to a unique faithful tracial state τ such that there exist
projections p, q ∈ A where τ(p) = τ(q), and yet p and q are not approximately
unitarily equivalent (see [6]). However, as τ(p) = τ(q) implies that p and q have the
same eigenvalue functionswith respect to τ,_eorem 5.3 implies that p is in the closed
convex hull of the unitary orbit of q. Consequently, the extreme points of the convex
hull of the unitary orbit of p are not in the unitary orbit of p.

To conclude the paper, Section 6 analyzes how many unitaries are required in a
convex combination of a self-adjoint operator to obtain a given self-adjoint operator. It
is known that if p is a rank one projection in the n × n matrices, then 1

n In is a convex
combination of unitary conjugates of p. However, a simple rank argument implies that
at least n unitaries are required in a convex combination of unitary conjugates of p to
obtain 1

n In . Consequently, as we desire a uniform bound over all n, this question will
not be well deûned unless we restrict our attention to approximating another operator
instead of precisely obtaining it. By amatricial result obtained in Section 6 and under
the hypotheses of this paper,_eorem 5.3 can be extended to show that if a is in the
closed convex hull of the unitary orbit of b, then a can be approximated within O( 1

n )
by a convex combination of O(2n3/3) unitary conjugates of b.

2 Preliminaries on Eigenvalue Functions

In this section, the preliminary structures needed to discuss closed convex hulls
of unitary orbits will be developed. _roughout this paper, A will denote a unital
C∗-algebra,Asa will denote the set of self-adjoint elements ofA,A+ will denote the
set of positive elements ofA,U(A) will denote the set of unitary elements ofA, T(A)

will denote the set of tracial states onA (which will be assumed to be non-empty), and
∂extT(A) will denote the extreme boundary of T(A). Given a ∈ Asa, the spectrum of
a will be denoted sp(a), and the unitary orbit of a in A will be denoted

U(a) = {u∗au ∣ u ∈ U(A)}.

Furthermore, conv(U(a)) will be used to denote the convex hull of U(a), and
conv(U(a)) will be used to denote the norm closure of conv(U(a)). Finally, given
n ∈ N,Mn will denote the C∗-algebra of n × n matrices, tr will denote the normalized
tracial state on Mn , and Tr will denoted the unnormalized trace on Mn .

Given a ∈ Asa and τ ∈ T(A), notice that the isomorphism C∗(a, 1) ≅ C(sp(a)) in-
duces a Borel probabilitymeasure µτ ,a on sp(a) by the Riesz Representation _eorem.
Using µτ ,a , we can deûne the following concept that originated in the work ofMurray
and von Neumann.

Deûnition 2.1 ([11, 12,32]) Given a unital C∗-algebraA, a ∈ Asa, and τ ∈ T(A), the
eigenvalue function of a associated with τ, denoted λτ

a , is deûned for s ∈ [0, 1) by

λτ
a(s) ∶= inf{ t ∈ R ∣ µτ ,a((t,∞)) ≤ s} .
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It is elementary to see that λτ
a depends only on the values of {τ(an) ∣ n ∈ N}. One

particular example that will be of great use throughout the paper is as follows.

Example 2.2 Let A be a unital C∗-algebra and let τ ∈ T(A). Let {αk}
n
k=1 ⊆ R be

such that αk > αk+1 for all k and let {pk}
n
k=1 ⊆ A be a collection of pairwise orthogonal

projections such that∑n
k=1 pk = 1A. If a = ∑n

k=1 αk pk , then it is elementary to see that
µτ ,a = ∑

n
k=1 τ(pk)δαk , where δx denotes the point-mass measure at x. Consequently,

we see that if sk = ∑k
j=1 τ(p j) for each k, then λτ

a(s) = αk for all s ∈ [sk−1 , sk).

Many properties of eigenvalue functions can be recovered directly via vonNeumann
algebra theory. For a unital C∗-algebra A and τ ∈ T(A), let πτ ∶A → B(L2(A, τ))
denote the GNS representation of A with respect to τ. Recall that this implies that
there exists a unit vector ξ ∈ L2(A, τ) such that ξ is a cyclic vector for π and

τ(a) = ⟨πτ(a)ξ, ξ⟩

for all a ∈ A. Let M be the von Neumann algebra generated by πτ(A), i.e.,

M = πτ(A)
WOT

,

and deûne τ0∶M → C via τ0(x) = ⟨xξ, ξ⟩ for all x ∈ M. Using πτ and the weak-
operator topology density of πτ(A) in M, it is elementary to show that τ0 is a tracial
state onM. Furthermore, τ0 is faithful onM. To see this, suppose x ∈M+ is such that
τ0(x) = 0. By the Cauchy–Schwarz inequality, this implies that τ0(x

1
2 πτ(a)) = 0 for

all a ∈ A. Consequently, for all a ∈ A+,

0 = τ0(x
1
2 πτ(a2

)) = τ0(πτ(a)x
1
2 πτ(a)) = ⟨πτ(a)x

1
2 πτ(a)ξ, ξ⟩ = ∥x

1
4 πτ(a)ξ∥

2 .

Hence, x 1/4πτ(a)ξ = 0 for all a ∈ A+. _erefore, as πτ(A)ξ is dense in L2(A, τ), we
obtain that x 1/4 = 0 and hence x = 0. Hence, τ0 is faithful on M.

Since λτ
a = λτ0

πτ(a) as τ(an) = τ0(πτ(a)n) for all n ∈ N, the following is easily
imported from von Neumann algebra theory.

_eorem 2.3 LetA be a unital C∗-algebra, let τ ∈ T(A), and let a, b ∈ Asa. _en the
following are true:
(i) _emap s ↦ λτ

a(s) is non-increasing and right continuous.
(ii) lims↗1 λτ

a(s) ≥ inf{t ∣ t ∈ sp(a)} and lims↘0 λτ
a(s) ≤ sup{t ∣ t ∈ sp(a)}, with

equalities if τ is faithful.
(iii) If a ≤ b, then λτ

a(s) ≤ λτ
b(s) for all s ∈ [0, 1).

(iv) For all α ∈ [0,∞), λτ
αa(s) = αλτ

a(s) for all s ∈ [0, 1).
(v) For all α ∈ R, λτ

a+α1(s) = λτ
a(s) + α for all s ∈ [0, 1).

(vi) ∣λτ
a(s) − λτ

b(s)∣ ≤ ∥a − b∥ for all s ∈ [0, 1).

Proof If πτ ∶A→ B(L2(A, τ)) is the GNS representation ofA with respect to τ and
τ0 is the faithful tracial state induced by τ on the von Neumann algebra generated
by πτ(A), then the result holds when λτ

a and λτ
b are replaced with λτ0

πτ(a) and λτ0
πτ(b)

(with equalities in (ii)) by [11, 12,35]. Consequently, the result follows.
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Using eigenvalue functions, it is possible to deûne a notion ofmajorization with
respect to a tracial state.

Deûnition 2.4 Let A be a unital C∗-algebra, let τ ∈ T(A), and let a, b ∈ Asa . It is
said that a is majorized by b with respect to τ, denoted a ≺τ b, if
(i) ∫

t
0 λτ

a(s) ds ≤ ∫
t
0 λτ

b(s) ds for all t ∈ [0, 1], and
(ii) ∫

1
0 λτ

a(s) ds = ∫
1
0 λτ

b(s) ds.

_e following theorem provides the connection between majorization of eigenvalue
functions and closed convex hulls of unitary orbits of self-adjoint operators in tracial
von Neumann algebra factors.

_eorem 2.5 (see [1, 3–5, 16, 17, 20–22]) Let M be a von Neumann algebra with a
faithful tracial state τ and let a, b ∈M+. _en the following are equivalent:
(i) a ≺τ b.
(ii) τ((a − α1M)+) ≤ τ((b − α1M)+) for all α > 0 and τ(a) = τ(b).
(iii) τ( f (a)) ≤ τ( f (b)) for every continuous convex function f ∶R→ R.
Furthermore, ifM is a factor, then for all self-adjoint a, b ∈ Msa, a ≺τ b is equivalent
to:
(iv) a ∈ conv(U(b)).
(v) a ∈ conv(U(b))

w∗
.

(vi) _ere exists a unital, trace-preserving, positivemap Φ∶M→M such that Φ(b) =
a.

(vii) _ere exists a unital, trace-preserving, completely positivemap Φ∶M→M such
that Φ(b) = a.

_e following lemma describes an alternate way of viewing the quantities in the
deûnition ofmajorization without the need of eigenvalue functions and will have a
technical use later in the paper.

Lemma 2.6 IfA is a unital C∗-algebra, τ ∈ T(A), a ∈ Asa, and t ∈ [0, 1], then

∫

t

0
λτ
a(s) ds = sup{ τ(ac) ∣ c ∈ A, 0 ≤ c ≤ 1A , τ(c) = t} .

Hence,

∫

1

0
λτ
a(s) ds = τ(a).

Furthermore, if a ∈ A+, then

∫

t

0
λτ
a(s) ds = sup{ τ(ac) ∣ c ∈ A, 0 ≤ c ≤ 1A , τ(c) ≤ t} .

Proof Let πτ ∶A → B(L2(A, τ)) be the GNS representation ofA with respect to τ,
let M be the von Neumann algebra generated by πτ(A), and let τ0 be the faithful
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tracial state on M induced by τ. _en

∫

t

0
λτ
a(s) ds

= ∫

t

0
λτ0
πτ(a)(s) ds

= sup{ τ0(πτ(a)x) ∣ x ∈M, 0 ≤ x ≤ 1M0 , τ(x) = t} by [35,_eorem 3]

= sup{ τ0(πτ(a)πτ(c)) ∣ c ∈ A, 0 ≤ c ≤ 1A , τ(c) = t} by Kaplansky Density

= sup{ τ(ac) ∣ c ∈ A, 0 ≤ c ≤ 1, τ(c) = t} .

Furthermore, if a ∈ A+, then λτ
a(s) ≥ 0 for all s ∈ [0, 1) by _eorem 2.3(iii). Hence,

∫

t

0
λτ
a(s) ds = sup{∫

r

0
λτ
a(s) ds ∣ 0 ≤ r ≤ t}

= sup{τ(ac) ∣ c ∈ A, 0 ≤ c ≤ 1, τ(c) ≤ t}.

3 An Asymptotic Argument in TAF C∗-Algebras

In this section, speciûc inequalities relating eigenvalue functions will be discussed. In
particular, the goal of this section is to prove Lemma 3.4, which enables one to transfer
inequalities involving integrals of eigenvalue functions to matricial subalgebras in
certain C∗-algebras. _e C∗-algebras under consideration in this section are the TAF
C∗-algebras due to Lin.

Deûnition 3.1 (see [25, Def. 2.1, Prop. 3.8, and _m. 3.4], [27, S 3.6], [29], and the
references therein) Let A be a unital, separable, simple, non-elementary C∗-algebra.
It is said that A is tracially approximately ûnite dimensional (TAF) if for every a ∈

A+ ∖ {0}, for every ûnite subset F ⊆ A, and for every є > 0, there exists a ûnite
dimensional C∗-subalgebraD such that
(i) 1A − 1D is Murray–von Neumann equivalent to a projection in Her(a) ∶= aAa,
(ii) ∥1Dx − x1D∥ < є for all x ∈ F, and
(iii) for every x ∈ F, there exists yx ∈D such that

∥x − (1A − 1D)x(1A − 1D) − yx∥ < є.

Remark 3.2 TAF C∗-algebras are also called C∗-algebras with tracial rank zero (see
[27, Section 3.6], [28,_eorem 7.1], [29], and the references therein). Furthermore, by
[25,_eorems 3.4 and 3.6] (see also [7,_eorem 6.8.5 and Corollary 6.9.2]), and by
[27,_eorems 3.6.11 and 3.7.2], all unital, simple TAF C∗-algebras have real rank zero,
stable rank one, and strict comparison of projections with respect to tracial states.

Remark 3.3 By [25, Lemma 6.10], the ûnite dimensional C∗-algebraD in Deûni-
tion 3.1 can always be chosen so that its simple summands have arbitrarily large rank;
that is, for every N ≥ 1, we can chooseD so that ifD ≅Mn1 ⊕Mn2 ⊕ ⋅ ⋅ ⋅ ⊕Mnk , then
n j ≥ N for all j. For the convenience of the reader, we quickly sketch this result.

Since unital, simple, TAF C∗-algebras have real rank zero, it suõces to prove that if
A is a unital, simple, non-elementary C∗-algebra with real rank zero andD ⊆ A is a
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ûnite-dimensionalC∗-subalgebra, then for everyN ≥ 1 there exists a ûnite dimensional
C∗-subalgebraD ⊆D1 ⊆ A such that every simple summand ofD1 has rank at least
N .

Since compressions ofA preserve the hypotheses on A, we can assume that D is a
full matrix algebra. Let {e i , j}n

i , j=1 be a systemofmatrix units forD. By [34, Proposition
5.3] (see also [40]) there exists a ûnite dimensional C∗-algebraD0 with each simple
summand having rank at least N and a unital *-embedding ϕ∶D0 → e1,1Ae1,1. IfD1 is
the C∗-algebra generated byD and ϕ(D0), then D1 has the required desired property.

In order to state and prove Lemma 3.4, it is necessary to ûx some notation and
perform some constructions. Let A be a unital, separable, simple, non-elementary
TAF C∗-algebra and let {Fn}

∞
n=1 be an increasing sequence of ûnite subsets of the

closed unit ball ofA that are closed under adjoints such that ⋃∞n=1 Fn is dense in the
closed unit ball ofA.
By the deûnition and properties of TAF C∗-algebra stated previously, and by [25,

Proposition 2.4], for all n ≥ 1 there exists a ûnite dimensional C∗-algebraDn ⊆ A such
that
(a) τ(1A − 1Dn) < 1/n for all τ ∈ T(A),
(b) ∥1Dn x − x1Dn∥ < 1/n for all x ∈ Fn , and
(c) for every x ∈ Fn , there exists a xn ∈Dn such that

∥x − (1A − 1Dn)x(1A − 1Dn) − xn∥ < 1/n.

Since⋃∞k=1 Fk is dense in the closed unit ball ofA, for all x ∈ A there exists a sequence
(xn)n≥1 such that xn ∈Dn for all n ≥ 1 and

lim
n→∞

∥x − (1A − 1Dn)x(1A − 1Dn) − xn∥ = 0.

Notice if (x̂n)n≥1 is another sequence such that x̂n ∈Dn for all n ≥ 1 and

lim
n→∞

∥x − (1A − 1Dn)x(1A − 1Dn) − x̂n∥ = 0,

then limn→∞ ∥xn − x̂n∥ = 0. For the purposes of this section, given an element x ∈ A,
(xn)n≥1 will denote such a sequence.

If y ∈ A and (yn)n≥1 is such that yn ∈Dn for all n ≥ 1 and

lim
n→∞

∥ y − (1A − 1Dn)y(1A − 1Dn) − yn∥ = 0,

then (xn + yn)n≥1 and (y∗n)n≥1 are such sequences for x + y and y∗, respectively. To
see that (xn yn)n≥1 is such a sequence for xy, notice that if x , y ∈ Fk for some k, then

lim
n→∞

∥xy − (1A − 1Dn)xy(1A − 1Dn) − xn yn∥

= lim
n→∞

∥xy − xy(1A − 1Dn) − xn yn∥

= lim
n→∞

∥x(y − y(1A − 1Dn) − yn) + (x − xn)1Dn yn∥

= lim
n→∞

∥x(y − y(1A − 1Dn) − yn) + (x1Dn − xn)yn∥

= lim
n→∞

∥x(y − y(1A − 1Dn) − yn) + (x − x(1A − 1Dn) − xn)yn∥
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= lim
n→∞

∥x(y − (1A − 1Dn)y(1A − 1Dn) − yn)

+ (x − (1A − 1Dn)x(1A − 1Dn) − xn)yn∥ .
_e result for general x and y then follows from the density of ⋃∞k=1 Fk in the closed
unit ball ofA.

Let x ∈ Asa. By the above, we can assume that each xn is self-adjoint. Furthermore,
we see that if f ∶R→ R is continuous, then

lim
n→∞

∥ f (xn) − f (x)n∥ = 0.

Consequently, we can further assume that ∥xn∥ ≤ ∥x∥ and sp(xn) ⊆ sp(x) for all n ≥ 1.
Since each Dn is a ûnite dimensional C∗-algebra, we can write

Dn =Dn ,1 ⊕Dn ,2 ⊕ ⋅ ⋅ ⋅ ⊕Dn ,mn ,
where each Dn , j is a full matrix algebra. For all x ∈ A, n ≥ 1, and 1 ≤ j ≤ mn , let
xn , j ∈Dn , j denote the compression of xn onto Dn , j .

_e following lemma shows that certain inequalities involving eigenvalue functions
pass to the ûnite dimensional approximates.

Lemma 3.4 Using the above construction and notation, we have the following:
(i) Suppose that a ∈ Asa and α ∈ R are such that τ(a) ≥ α for every τ ∈ T(A).

For every є > 0 there exists an N ≥ 1 such that τ(an) + є ≥ α for all n ≥ N and
τ ∈ ∂extT(Dn).

(ii) Let a, b ∈ Asa have ûnite spectrum and let є > 0. Suppose for all τ ∈ T(A) and
t ∈ [0, 1] that

∫

t

0
λτ
a(s) ds ≤ єt + ∫

t

0
λτ
b(s) ds and є + ∫

1

0
λτ
a(s) ds > ∫

1

0
λτ
b(s) ds.

_en for every є′ > є there exists an N ≥ 1 such that for all n ≥ N , for all τ ∈ ∂extT(Dn),
and for all t ∈ [0, 1], we have

∫

t

0
λτ
an(s) ds ≤ є′t + ∫

t

0
λτ
bn(s) ds and є′ + ∫

1

0
λτ
an(s) ds > ∫

1

0
λτ
bn(s) ds.

Proof To see that (i) is true, suppose to the contrary that there exists an є > 0 and
sequences (nk)k≥1 and ( jk)k≥1 of natural numbers with 1 ≤ jk ≤ mnk for all k ≥ 1 such
that
(3.1) trDnk , jk

(ank , jk) + є < α

for all k ≥ 1. To simplify notation, for all k ≥ 1, let Ek =Dnk , jk and let τk be the unique
tracial state on Dnk , jk .

Let∏∞
l=1 El denote the l∞-direct sumof {El}

∞
l=1 and let⊕∞

l=1 El denote the c0-direct
sum. For all k ≥ 1, let τ̃k denote the tracial state on∏∞

l=1 El deûned by
τ̃k((y l)l≥1) = τk(yk).

Since T(∏
∞
l=1 El) is weak∗ compact, there exists a subnet (τ̃kα)α∈I of (τ̃k)k≥1 and a

µ ∈ T(∏
∞
l=1 El) such that µ = w∗- limα τ̃kα . By deûnition, it is clear that

∞
⊕
l=1

El ⊆ ker(µ),
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and thus µ induces a tracial state on∏∞
l=1 El /⊕

∞
l=1 El , which will also be denoted µ.

By previous discussions, there exists a well-deûned unital ∗-homomorphism

Φ∶AÐ→
∞
∏
l=1

El /
∞
⊕
l=1

El

deûned for all x ∈ A by
Φ(x) = [(xn l , j l )

∞
l=1].

_erefore, µ ○Φ is a tracial state on A. However by the deûnitions of Φ and µ, and by
(3.1),

µ(Φ(a)) + є = lim
α

τkα(ankα , jkα ) + є ≤ α

which contradicts our hypotheses on a and α. Hence, (i) must be true.
_e proof of (ii) will invoke amore complicated version of the asymptotic algebra

argument used above, so some of the notation will be similar.
To begin, suppose that a, b, and є satisfy the hypotheses of (ii). If necessary, choose

δ0 > 0 so that a + δ01A and b + δ01 are positive. Since λτ
a+δ0 1A(s) = δ0 + λτ

a(s) and
λτ
b+δ0 1A(s) = δ0 + λτ

b(s) by _eorem 2.3 (v), we can assume without loss of generality
that a, b ∈ A+.

Since a, b have ûnite spectrum, let {pk}
L
k=1 , {qk}

M
k=1 ⊆ A be collections of pairwise

orthogonal, non-zero projections and let {αk}
L
k=1 , {βk}

M
k=1 ⊆ R be such that

(a) ∑L
k=1 pk = ∑

M
k=1 qk = 1A,

(b) α1 > α2 > ⋅ ⋅ ⋅ > αL > 0,
(c) β1 > β2 > ⋅ ⋅ ⋅ > βM > 0,
(d) a = ∑L

j=1 α jp j , and
(e) b = ∑M

k=1 βkqk .
SinceA is unital and simple, and since p1 /= 0 and q1 /= 0,

inf
τ∈T(A)

τ(p1) > 0 and inf
τ∈T(A)

τ(q1) > 0.

Let t̂ > 0 be such that

t̂ < min{ inf
τ∈T(A)

τ(p1), inf
τ∈T(A)

τ(q1)} .

Hence, for all 0 ≤ s ≤ t̂ and τ ∈ T(A), we have that

λτ
a(s) = α1 and λτ

b(s) = β1 .

Since, by the hypotheses on a and b, for all τ ∈ T(A) and t ∈ [0, t̂] we have that

∫

t

0
λτ
a(s) ds < єt + ∫

t

0
λτ
b(s) ds,

it must be the case that α1 t < єt + β1 t for all t ∈ [0, t̂]. Hence, α1 < є + β1 .
Let f , g∶ [0,∞)→ [0, 1] be the continuous functions deûned by

f (s) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 s ∈ [0, α1+α2
2 ],

1 s ∈ [α1 ,∞),
linear on [ α1+α2

2 , α1],
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and

g(s) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 s ∈ [0, β1+β2
2 ],

1 s ∈ [β1 ,∞),
linear on [

β1+β2
2 , β1].

Note that f (a) = p1 and g(b) = q1.
Now, suppose to the contrary that there exists an є′ > є, sequences (nk)k≥1 and

( jk)k≥1 of natural numbers with 1 ≤ jk ≤ mnk for all k ≥ 1, and a sequence (tk)k≥1
with tk ∈ [0, 1] for all k ≥ 1 such that

(3.2) ∫

tk

0
λ
trDnk , jk
ank , jk (s) ds > є′tk + ∫

tk

0
λ
trDnk , jk
bnk , jk

(s) ds

for all k ≥ 1.
Notice by part (i) of this result that

trDnk , jk
( f (ank , jk)) , trDnk , jk

( g(bnk , jk)) > t̂,

provided k is suõciently large. Furthermore, by the construction preceding this lemma,
we can assume that sp(ank , jk) ⊆ sp(a) and sp(bnk , jk) ⊆ sp(b) for all k ≥ 1. Hence, for
suõciently large k, we obtain that

λ
trDnk , jk
ank , jk (s) = α1 < є + β1 = є + λ

trDnk , jk
bnk , jk

(s)

for all s ∈ [0, t̂]. _us,

∫

t

0
λ
trDnk , jk
ank , jk (s) ds < єt + ∫

t

0
λ
trDnk , jk
bnk , jk

(s) ds

for t ∈ [0, t̂], provided k is suõciently large. _erefore, as є′ > є, passing to a subse-
quence of (nk)k≥1 if necessary, we can assume that tk > t̂ for all k ≥ 1.

Repeating ideas from the ûrst part of this proof, for all k ≥ 1 let Ek =Dnk , jk , let τk
be the unique tracial state on Dnk , jk , and let∏∞

l=1 El and⊕∞
l=1 El be as before. For all

k ≥ 1, let τ̃k denote the tracial state on∏∞
l=1 El deûned by

τ̃k((y l)l≥1) = τk(yk).

Since T(∏
∞
l=1 El) is weak∗ compact, there exists a subnet (τ̃kα)α∈I of (τ̃k)k≥1 and a

µ ∈ T(∏
∞
l=1 El) such that µ = w∗- limα τ̃kα . Finally, since tk > t̂ for all k ≥ 1 and since

[̂t, 1] is compact, passing to a subnet if necessary, we can assume that there exists
r ∈ [̂t, 1] such that limα tkα = r.
By deûnition, it is clear that

∞
⊕
l=1

El ⊆ ker(µ),

and thus µ induces a tracial state on∏∞
l=1 El /⊕

∞
l=1 El which will also be denoted µ.

By previous discussions, there exists a well-deûned unital ∗-homomorphism

Φ∶A→
∞
∏
l=1

El /
∞
⊕
l=1

El

deûned for all x ∈ A by Φ(x) = [(xn l , j l )
∞
l=1]. _erefore, µ ○Φ is a tracial state on A.
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We claim for all d ∈ A+ and t ∈ [0, 1] that

∫

t

0
λµ○Φ
d (s) ds = lim

α ∫
t

0
λτkα
dnkα

(s) ds.

To see this, ûrst note by Lemma 2.6 that

∫

t

0
λµ○Φ
d (s) ds = sup{ µ(Φ(dc)) ∣ c ∈ A, 0 ≤ c ≤ 1A , µ(Φ(c)) = t} .

Let δ > 0 be arbitrary and choose c ∈ A with 0 ≤ c ≤ 1A such that µ(Φ(c)) = t and

µ(Φ(dc)) + δ > ∫
t

0
λµ○Φ
d (s) ds.

Notice that

µ(Φ(dc)) = lim
α

τkα(dnkα
cnkα

) and lim
α

τkα(cnkα
) = t

(as τkα(dnkα
cnkα

) = τkα(dnkα , jkα cnkα , jkα )). Since Lemma 2.6 implies

0 ≤ τkα(dnkα
cnkα

) ≤ ∫

τkα (cnkα )

0
λτkα
dnkα

(s) ds

= ∫

t

0
λτkα
dnkα

(s) ds − ∫
t

τkα (cnkα )
λτkα
dnkα

(s) ds

and part (vi) of_eorem 2.3 implies that

∣∫

t

τkα (cnkα )
λτkα
dnkα

(s) ds∣ ≤ ∣ t − τkα(cnkα
)∣ ∥dnkα

∥ ≤ ∣ t − τkα(cnkα
)∣ ∥d∥,

we have for all suõciently large α that

∫

t

0
λτkα
dnkα

(s) ds + 1
2
δ > ∫

t

0
λµ○Φ
d (s) ds.

_erefore, since δ > 0 was arbitrary, we have that

lim inf
α ∫

t

0
λτkα
dnkα

(s) ds ≥ ∫
t

0
λµ○Φ
d (s) ds.

To complete the claim, notice by Lemma 2.6 that for each k ≥ 1 there exists a c̃k ∈ Ek
such that 0 ≤ c̃k ≤ 1Ek , τk(c̃k) = t, and

τk(dnk c̃k) +
1
k
> ∫

t

0
λτk
dnk

(s) ds.

Let c̃ = (c̃ l)l≥1 and d̃ = (dn l , j l )l≥1, which are elements of∏∞
l=1 El . _erefore,

µ(d̃ c̃) = lim
α

τkα(dnkα
c̃kα) ≥ lim sup

α
(−

1
kα

+ ∫

t

0
λτkα
dnkα

(s) ds)

= lim sup
α

∫

t

0
λτkα
dnkα

(s) ds.

Furthermore, we clearly have that 0 ≤ c̃ ≤ 1 and µ(c̃) = limα τkα(c̃kα) = t. _erefore,
by Lemma 2.6,

∫

t

0
λµ
d̃
(s) ds ≥ lim sup

α
∫

t

0
λτkα
dnkα

(s) ds.
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_us, as λµ○Φ
d = λµ

d̃
, we obtain that

∫

t

0
λµ○Φ
d (s) ds ≥ lim sup

α
∫

t

0
λτkα
dnkα

(s) ds

thereby completing the proof of the claim.
Choose є′′ such that є < є′′ < є′. Since ank , jk and bnk , jk are self adjoint elements

such that sp(ank , jk) ⊆ sp(a) and sp(bnk , jk) ⊆ sp(b) for all k ≥ 1 by construction, we
have that λτk

ank , jk and λτk
bnk , jk

are bounded in the L∞-norm by _eorem 2.3. _erefore,
as limα tkα = r, we obtain by (3.2) that

∫

r

0
λτkα
ankα , jkα

(s) ds > є′′r + ∫
r

0
λτkα
bnkα , jkα

(s) ds,

for all suõciently large α. Hence, by taking the limit and applying the claim, we have
that

∫

r

0
λµ○Φ
a (s) ds ≥ є′′r + ∫

r

0
λµ○Φ
b (s) ds,

which contradicts the assumptions on a, b (as є′′ > є and r > 0). Hence, the ûrst
inequality of part (ii) has been demonstrated.

_e proof of the second inequality in part (ii) follows by similar arguments (or by
repeating the proof of the ûrst inequality with tk = 1 for all k and reversing the roles of
a and b).

4 Approximations in TAF C∗-Algebras

One can interpret Lemma 3.4 as saying that in a TAF C∗-algebra, if one self-adjoint
operator is close tomajorizing anotherwith respect to every tracial state, then so are the
ûnite dimensional approximates. _us, the ûrst goal of this section is to demonstrate
that if one self-adjoint matrix A is close to majorizing another self-adjoint matrix B,
then B is almost in the closed convex hull of the unitary orbit of A (see Lemma 4.2).
Once the ûnite dimensional portion is handled,wewill demonstrate that the remainder
outside the ûnite dimensional C∗-algebra can also bemanipulated in a similar manner.

To begin,we note the following useful result pertaining tomajorization of functions,
which is elementary to prove.

Lemma 4.1 Let f and g be bounded non-increasing functions on [0, 1]. Suppose that
there exists a t0 ∈ [0, 1] such that
● ∫

t
0 f (s) ds ≤ ∫

t
0 g(s) ds for all t ∈ [0, t0],

● ∫
1
0 f (s) ds = ∫

1
0 g(s) ds, and

● f (s) ≥ g(s) for all s ∈ [t0 , 1].
_en ∫

t
0 f (s) ds ≤ ∫

t
0 g(s) ds for all t ∈ [0, 1].

Lemma 4.2 Let є > 0 and let r ∈ (0, 1). _ere exists a δ > 0 such that if
(i) n ≥ 1,
(ii) A, B ∈ (Mn)+,
(iii) tr(Pker(B)) ≥ r (where Pker(B) is the projection onto the kernel of B),
(iv) tr(B) ≤ tr(A) + δ (i.e., ∫

1
0 λtr

B (s) ds ≤ δ + ∫
1
0 λtr

A(s) ds),
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(v) ∫
t
0 λtr

A(s) ds ≤ δt + ∫
t
0 λtr

B (s) ds for t ∈ [0, 1 − tr(Pker(B))], and
(vi) ∫

t
0 λtr

A(s) ds ≤ δt+є(t−(1−tr(Pker(B))))+∫
t
0 λtr

B (s) ds for t ∈ [1 − tr(Pker(B)), 1],

then there exists a self-adjoint B′ ∈ Mn such that ∥B′ − B∥ < 2є and A ≺tr B′. In fact,
one can take

δ = min{ є
3
, єr
4
} ≤

1
4
єr.

Proof Fix n ≥ 1 and choose positive contractions A, B ∈Mn that satisfy the assump-
tions of the lemma with δ as described. Without loss of generality, we can assume
that

A = diag(α1 , α2 , . . . , αn) and B = diag(β1 , β2 , . . . , βn),
where w ≥ α1 ≥ α2 ≥ ⋅ ⋅ ⋅ ≥ αn ≥ 0 and w ≥ β1 ≥ β2 ≥ ⋅ ⋅ ⋅ ≥ βn ≥ 0.

Since tr(Pker(B)) ≥ r, ker(B) /= {0}, so we can select k ∈ {0, 1, . . . , n − 1} such that
βk+1 = 0 yet βk /= 0 (or k = 0). Notice that

(4.1) tr(Pker(B)) =
n − k
n

≥ r.

Let
B0 = diag(β1 + δ, . . . , βk + δ, 0, 0, . . . , 0).

_erefore, ∥B − B0∥ < δ and, by assumption (v),

∫

t

0
λtr
A(s) ds ≤ ∫

t

0
λtr
B0(s) ds

for all t ≤ k
n .

_e remainder of the proof is divided into two cases:

Case 1: tr(B0) ≥ tr(A). Note that tr(B0) − k
n δ = tr(B). Hence, by assumption (iv),

tr(B0) −
k
n
δ < tr(A) + δ

so tr(B0) < tr(A) + 2δ. Hence,
tr(A) ≤ tr(B0) ≤ tr(A) + 2δ.

_erefore, there exists an 0 < α ≤ 2δ such that tr(B0) − α = tr(A).
By the deûnition of δ and by (4.1),

2δ ≤ 1
2
єr ≤ є

2
n − k
n

.

_erefore,
0 < α

n − k
≤

є
2n

.

Let
x = αn

n − k
.

_us, 0 ≤ x ≤ є
2 . Finally deûne

B′ = diag(β1 + δ, β2 + δ, . . . , βk + δ,−x ,−x , . . . ,−x).
By construction, ∥B′ − B∥ < є and tr(B′) = tr(A).
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To see that A ≺tr B′, notice that λtr
B′(s) = λtr

B0
(s) for all s ∈ [0, k

n ), and thus

∫

t

0
λtr
B′(s) ds = ∫

t

0
λtr
B0(s) ds ≥ ∫

t

0
λtr
A(s) ds

for all t ∈ [0, k
n ). Furthermore, notice that if s ∈ [ k

n , 1), then

λτ
B′(s) = −x ≤ 0 ≤ λτ

A(s),

since A is positive. Hence, A ≺tr B′ by Lemma 4.1.

Case 2: tr(B0) < tr(A). Note by assumption (vi) that

tr(A) ≤ tr(B0) + (δ + є)( n − k
n

) .

Hence, there exists an m1 ∈ {1, . . . , n − k} and a γ ∈ [0, δ + є] such that

tr(A) = tr(B0) + (δ + є)m1 − 1
n

+ γ 1
n
.

Let

B′ = diag(β1 + δ, β2 + δ, . . . , βk + δ, δ + є, . . . , δ + є
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m1−1

, γ, 0, . . . , 0) .

By construction, ∥B′ − B∥ < 2є and tr(B′) = tr(A).
To see that A ≺tr B′, notice that

λtr
B′(s) ≥ λtr

B0(s) = λtr
B (s) + δ

for all s ∈ [0, k
n ), and thus

∫

t

0
λtr
B′(s) ds ≥ ∫

t

0
λtr
B0(s) ds = δt + ∫

t

0
λtr
B (s) ds ≥ ∫

t

0
λtr
A(s) ds

for all t ∈ [0, k
n ). Furthermore, notice that if t ∈ [ k

n ,
k+m1−1

n ), then

∫

t

0
λtr
B′(s) ds ≥ ∫

k
n

0
λtr
B0(s) ds + ∫

t

k
n

(є + δ) ds

≥ ∫

k
n

0
λtr
B (s) ds + δ

k
n
+ (є + δ)( t − k

n
)

= ∫

t

0
λtr
B (s) ds + δt + є( t − k

n
)

≥ ∫

t

0
λtr
A(s) ds

as k
n = 1 − tr(Pker(B)). Next, since λtr

B′(s) and λtr
A(s) are constant on [ k+m1−1

n , k+m1
n ),

we note since

∫

k+m1−1
n

0
λtr
B′(s) ds ≥ ∫

k+m1−1
n

0
λtr
A(s) ds,

that

∫

t

0
λtr
B′(s) ds ≥ ∫

t

0
λtr
A(s) ds
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for all t ∈ [ k+m1−1
n , k+m1

n ) if and only if

tr(A) = tr(B′) = ∫
k+m1

n

0
λtr
B′(s) ds ≥ ∫

k+m1
n

0
λtr
A(s) ds,

which is true as A ≥ 0. Finally, notice that if s ∈ [ k+m1
n , 1), then

λτ
B′(s) = 0 ≤ λτ

A(s)

since A is positive. Hence, A ≺tr B′ by Lemma 4.1.

To see the necessity of some lower bound on the size of the kernel for the conclusions
of Lemma 4.2 to hold, for each n ∈ N consider

An = diag(1, 1, . . . , 1, 0) and Bn = In .

It is elementary to see that given a δ > 0 there exists an n such that An and Bn satisfy
the assumptions of Lemma 4.2. However, it is not possible to perturb Bn to B′n such
that An ≺tr B′n unless ∥Bn − B′n∥ ≥ 1.
Due to the necessity of having a non-trivial kernel in our matrix approximates, we

will need some control over the trace of the kernel. _is is provided by the following
result.

Lemma 4.3 Let A be a unital, simple C∗-algebra and let a ∈ A+ such that 0 ∈ sp(a).
Given є > 0 there exists a δ > 0 such that if b ∈ A+ and ∥a − b∥ < δ, then

µτ ,b([0, є)) ≥
1
2
µτ ,a([0, є))

for all τ ∈ T(A).

Proof Since 0 ∈ sp(a) and sinceA is unital and simple, for all r > 0, it must be the
case that

inf
τ∈T(A)

µτ ,a([0, r)) > 0

(i.e., GNS representations are faithful).
Since T(A) is weak∗-compact, there exists a δ1 with 0 < δ1 < є such that

µτ ,a([0, δ1)) ≥ 2
3 µτ ,a([0, є))

for all τ ∈ T(A). Let f ∶ [0,∞)→ [0, 1] be the continuous function deûned by

f (t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 t ∈ [є,∞),
0 t ∈ [0, δ1],
linear on [δ1 , є].

Again, since T(A) is weak∗-compact, there exists a δ2 > 0 such that
2
3 µτ ,a([0, є)) − δ2 > 1

2 µτ ,a([0, є))

for all τ ∈ T(A). Finally, it is well-known that there exists a δ > 0 such that if b ∈ A+
and ∥a − b∥ < δ then

∥ f (a) − f (b)∥ < δ2 .
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_erefore, if b ∈ A+ is such that ∥a − b∥ < δ, then for all τ ∈ T(A) we have that
µτ ,b([0, є)) ≥ 1 − τ( f (b)) > 1 − τ( f (a)) − δ2

≥ µτ ,a([0, δ1)) − δ2 ≥ 2
3 µτ ,a([0, є)) − δ2 > 1

2 µτ ,a([0, є)) .

As the abovewill handle the ûnite dimensional portions of our self-adjoint operators,
the following technical result will be the key to handling the remainders.

Lemma 4.4 Let є1 > 0, let 0 < є2 < 1, and let C be a unital, simple C∗-algebrawith non-
trivial tracial simplex, strict comparison of projections by tracial states, and cancellation
of projections. Suppose that p, q are non-zero projections in C and a, b ∈ pC+p are such
that
(i) p and q are orthogonal,
(ii) 2τ(p) < τ(q) < є1 for all τ ∈ T(C),
(iii) ∥a∥, ∥b∥ ≤ 1, and
(iv) sp(a) and sp(b) each have a ûnite number of points.
_en for every projection r ∈ C such that r is orthogonal to p + q and τ(r) > 6( є1

є2 ) for
all τ ∈ T(C), there exists a C∗-subalgebraD ⊆ C and an element c ∈ rDsar such that
(a) 1D = p + q + r,
(b) p, q, r, a, b, c ∈D,
(c) ∥c∥ < є2, and
(d) a ∈ conv(UD(b + q + c)).

Proof Since 2τ(p) < τ(q) for all τ ∈ T(C), there exists mutually orthogonal projec-
tions q1 , q2 ≤ q such that p is Murray–von Neumann equivalent to q1 and q2. Choose
v1 , v2 ∈ C such that v∗1 v1 = q1, v∗2 v2 = q2, and v2v∗2 = v1v∗1 = p, and let q0 = q − q1 − q2.

Write a = ∑n
k=1 αk pk , where αk ∈ R, αk /= α j for all k /= j, and {pk}

n
k=1 are pairwise

orthogonal projections such that p = ∑
n
k=1 pk . If D1 = C∗({q1 , a, v1}), then D1 is a

ûnite dimensional C∗-algebra containing a unitary u1 ∈D1 such that u∗1 au1 ∈ q1D1q1.
In particular,D1 ≅ (M2)

⊕n , where
a = (α1 ⊕ 0)⊕ (α2 ⊕ 0)⊕ ⋅ ⋅ ⋅ ⊕ (αn ⊕ 0),
p = (1⊕ 0)⊕ (1⊕ 0)⊕ ⋅ ⋅ ⋅ ⊕ (1⊕ 0),
q1 = (0⊕ 1)⊕ (0⊕ 1)⊕ ⋅ ⋅ ⋅ ⊕ (0⊕ 1),

u∗1 au1 = (0⊕ α1)⊕ (0⊕ α2)⊕ ⋅ ⋅ ⋅ ⊕ (0⊕ αn).

Hence, q1D1q1 ≅ C⊕n .
Similarly, write b = ∑m

k=1 βk p′k where βk ∈ R, βk /= β j for all k /= j, and {p′k}
m
k=1 are

pairwise orthogonal projections such that p = ∑m
k=1 p′k . IfD2 = C∗({q2 , b, v2}), then

D2 is a ûnite dimensional C∗-algebra. In particular,D2 ≅ (M2)
⊕m , where

b = (β1 ⊕ 0)⊕ (β2 ⊕ 0)⊕ ⋅ ⋅ ⋅ ⊕ (βm ⊕ 0),
p = (1⊕ 0)⊕ (1⊕ 0)⊕ ⋅ ⋅ ⋅ ⊕ (1⊕ 0),

q2 = (0⊕ 1)⊕ (0⊕ 1)⊕ ⋅ ⋅ ⋅ ⊕ (0⊕ 1).

Notice that τ(q0 + q1 + 1D2) < 2є1 for all τ ∈ T(C) by the assumptions on p
and q. _erefore, since τ(r) > 6( є1

є2 ) for all τ ∈ T(A), since C has strict comparison
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of projections by tracial states, and since r is orthogonal to p + q, we can construct
ûnite dimensional C∗-algebras D3, D4, and D5 such that q1D1q1 ⊆ D3, D2 ⊆ D4,
{q0} ⊆ D5, x is orthogonal to y for all x ∈ Dk and y ∈ D j whenever k, j ∈ {3, 4, 5}
and k /= j, and, if ℓ = ⌊ 3

є2 ⌋, then

D3 ≅ (Mℓ+1)
⊕n , D4 ≅ (M2(ℓ+1))

⊕m , D5 ≅Mℓ+1 ⊕C

in such a way that if

r1 = (0⊕ 1ℓ)⊕ (0⊕ 1ℓ)⊕ ⋅ ⋅ ⋅ ⊕ (0⊕ 1ℓ) ∈D3 ,

r2 = ((0⊕ 0)⊕ 12ℓ) ⊕ ⋅ ⋅ ⋅ ⊕ ((0⊕ 0)⊕ 12ℓ) ∈D4 ,
r3 = (0⊕ 1ℓ)⊕ 1 ∈D5 ,

then r = r1 + r2 + r3, and in such a way that in D3,

u∗1 au1 = (α1 ⊕ 0ℓ)⊕ (α2 ⊕ 0ℓ)⊕ ⋅ ⋅ ⋅ ⊕ (αn ⊕ 0ℓ),
q1 = (1⊕ 0ℓ)⊕ (1⊕ 0ℓ)⊕ ⋅ ⋅ ⋅ ⊕ (1⊕ 0ℓ),

in D4,
b = ((β1 ⊕ 0)⊕ 02ℓ) ⊕ ⋅ ⋅ ⋅ ⊕ ((βm ⊕ 0)⊕ 02ℓ) ,

p = ((1⊕ 0)⊕ 02ℓ) ⊕ ⋅ ⋅ ⋅ ⊕ ((1⊕ 0)⊕ 02ℓ) ,

q2 = ((0⊕ 1)⊕ 02ℓ) ⊕ ⋅ ⋅ ⋅ ⊕ ((0⊕ 1)⊕ 02ℓ) ,
and in D5,

q0 = (1⊕ 0ℓ)⊕ 0.

Let D be the C∗-subalgebra of C generated by D1, D3, D4, and D5. Hence, by con-
struction, 1D = p + q + r and p, q, r, a, b ∈D.

Notice if u = u1 + q2 + q0 + r, then u ∈D is a unitary such that u∗au = u∗1 au1 ∈D.
We claim that there exists a c ∈ rDsar such that ∥c∥ < є2 and

u∗au ∈ conv(UD(b + q + c)).

Note this will complete the proof, since this clearly implies a ∈ conv(UD(b + q + c)).
Since u∗au ∈D3, b ∈D4, q1 ∈D3, q2 ∈D4, q0 ∈D5, since q = q1+q2+q0, and since

D3,D4, andD5 are pairwise orthogonal, it suõces to show that there exist self-adjoint
c3 ∈D3, c4 ∈D4, and c5 ∈D5 with ∥c j∥ < є2 and c j ∈ rDr for all j ∈ {3, 4, 5} such that
u∗au ∈ conv(UD3(q1+c3)), 0 ∈ conv(UD4(b+q2+c4)), and 0 ∈ conv(UD5(q0+c5)).
First we will construct c3. To begin, we can assume without loss of generality that

there is only one copy ofMℓ+1 in D3 and that

u∗au = α ⊕ 0ℓ and q1 = 1⊕ 0ℓ ,

where 0 ≤ α ≤ 1 as 0 ≤ a ≤ 1C. Let

c3 = 0⊕ (−
(1 − α)

ℓ
) 1ℓ .

Clearly, c3 is self-adjoint and

∥c3∥ = ∣
(1 − α)

ℓ
∣ ≤

1
ℓ
≤
є2
2
,
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as ℓ = ⌊ 3
є2 ⌋. Notice that if trℓ+1 is the normalized tracial state on Mℓ+1, then

trℓ+1(q1 + c3) =
1

ℓ + 1
− ℓ (1 − α)

ℓ(ℓ + 1)
=

α
ℓ + 1

= trℓ+1(u∗au).

Hence, by applying Lemma 4.1 with t0 = 1
ℓ , f = λtrℓ+1

a , and g = λtrℓ+1
q1+c3 , we see that

u∗au ≺trℓ+1 (q1 + c3). Hence, u∗au ∈ conv(UD3(q1 + c3)) by [1, 5].
Next we will construct c4. To begin we can assume without loss of generality that

there is only one copy ofM2(ℓ+1) in D4 and

b + q2 = (β ⊕ 1)⊕ 02ℓ ,

where 0 ≤ β ≤ 1 as 0 ≤ b ≤ 1C. Let tr2(ℓ+1) denote the normalized tracial state on
M2(ℓ+1). _en

tr2(ℓ+1)(b + q2) ∈ [
1

2(ℓ + 1)
, 2
2(ℓ + 1)

] .

Let
γ = ℓ + 1

ℓ
tr2(ℓ+1)(b + q2) ∈ [

1
2ℓ
, 1
ℓ
] ⊆ [0, є2

2
] ,

and let
c4 = (0⊕ 0)⊕ (−γ)12ℓ .

Clearly, c4 is self-adjoint and
∥c4∥ = ∣γ∣ ≤ є2

2
.

Furthermore,

tr2(ℓ+1)(b + q2 + c4) = tr2(ℓ+1)(b + q2) − γ 2ℓ
2(ℓ + 1)

= 0.

Hence, 0 ∈ conv(UD4(b + q2 + c4)) by [1, 5].
Since we can construct c5 in a similar manner to c4 so that 0 ∈ conv(UD5(q0 + c5)),

the proof is complete.

In order to invoke both Lemma 4.2 and Lemma 4.4, we will need to modify our
operators to have a bit of kernel. _e following lemma provides the necessary modiû-
cation.

Lemma 4.5 Let A be a unital C∗-algebra, let τ ∈ T(A), and let {pk}
n
k=1 ⊆ A be

pairwise orthogonal non-zero projections such that ∑n
j=1 p j = 1A. Let a = ∑n

j=1 α jp j
where α1 > α2 > ⋅ ⋅ ⋅ > αn ≥ 0.

Suppose q1 is a subprojection of p1 such that τ(q1) < τ(p1), δ > 0, and β1 > 0 are
such that

α1 + δ > β1 >
α1τ(p1)

τ(p1) − τ(q1)
> α1 .

If ã = β1(p1 − q1) +∑
n
j=2 α jp j , then

∫

t

0
λτ
a(s) ds ≤ ∫

t

0
λτ
ã(s) ds ≤ δt + ∫

t

0
λτ
a(s) ds.

for all t ∈ [0, 1].
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Proof Let γ = τ(p1) and r = τ(p1) − τ(q1) > 0. Note by the assumptions that

β1r > α1γ and rβ1 < r(α1 + δ).

Using Example 2.2, it is elementary to see that

λτ
ã(s) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

β1 if s < r,
λτ
a(s + γ − r) if r ≤ s < 1 − (γ − r),

0 if 1 − (γ − r) ≤ s < 1.

To see that ∫
t
0 λτ

a(s) ds ≤ ∫
t
0 λτ

ã(s) ds for all t ∈ [0, 1], ûrst notice that if t ∈ [0, r],
then

∫

t

0
λτ
ã(s) ds = tβ1 ≥ tα1 = ∫

t

0
λτ
a(s) ds.

Next, if t ∈ [r, 1 − (γ − r)], then

∫

t

0
λτ
ã(s) ds = rβ1 + ∫

t

r
λτ
a(s + γ − r) ds ≥ α1γ + ∫

t+γ−r

γ
λτ
a(x) dx

= ∫

t+γ−r

0
λτ
a(x) dx ≥ ∫

t

0
λτ
a(x) dx ,

as λτ
a(x) ≥ 0 for all x ∈ [0, 1]. Finally, if t ∈ [1 − (γ − r), 1], then

∫

t

0
λτ
ã(s) ds = ∫

1−(γ−r)

0
λτ
ã(s) ds = rβ1 + ∫

1−(γ−r)

r
λτ
a(s + γ − r) ds

≥ α1γ + ∫
1

γ
λτ
a(x) dx = ∫

1

0
λτ
a(x) dx ≥ ∫

t

0
λτ
a(x) dx ,

as λτ
a(x) ≥ 0 for all x ∈ [0, 1]. Hence, the ûrst inequality has been demonstrated.

To see that ∫
t
0 λτ

ã(s) ds ≤ δt + ∫
t
0 λτ

a(s) ds for all t ∈ [0, 1], ûrst notice that if
t ∈ [0, r], then

∫

t

0
λτ
ã(s) ds = tβ1 ≤ t(α1 + δ) = δt + ∫

t

0
λτ
a(s) ds.

Next, if t ∈ [r, γ], then

∫

t

0
λτ
ã(s) ds = β1r + ∫

t

r
λτ
ã(s) ds ≤ (α1 + δ)r + α1(t − r)

≤ α1 t + δr ≤ ∫
t

0
λτ
a(s) ds + δt,

as λτ
ã(s) < α1 on [r, γ]. Next, if t ∈ [γ, 1 − (γ − r)] (if said interval is non-empty), then

∫

t

0
λτ
ã(s) − λτ

a(s) ds = β1r + ∫
t+γ−r

γ
λτ
a(x) dx − ∫

t

0
λτ
a(s) ds

= β1r + ∫
t+γ−r

t
λτ
a(x) dx − ∫

γ

0
λτ
a(s) ds

≤ β1r + (γ − r)α1 − ∫

γ

0
λτ
a(s) ds

= β1r + (γ − r)α1 − γα1 = β1r − α1r < rδ < tδ.
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Finally, if t ∈ [max{γ, 1 − (γ − r)}, 1] then, as λτ
ã(s) = 0 for all s ∈ [1 − (γ − r), 1], we

have that

∫

t

0
λτ
ã(s) ds = ∫

1−(γ−r)

0
λτ
ã(s) − λτ

a(s) ds + ∫
1−(γ−r)

0
λτ
a(s) ds

≤ (1 − (γ − r))δ + ∫
1−(γ−r)

0
λτ
a(s) ds ≤ tδ + ∫

t

0
λτ
a(s) ds,

as λτ
a(s) ≥ 0 for all s ∈ [0, 1]. Hence, the second inequality (and thus the lemma) has

been demonstrated.

Finally, we are in a position to combine the above ingredients to obtain our ûnal
technical result of this section. _is result says, under minor assumptions, that if b
almostmajorizes a in a TAFC∗-algebra, then a is almost in conv(U(b)). For technical
purposes in the statement and proof of the result, for each t > 0, let ht ∶ [0,∞)→ [0, 1]
denote the continuous function deûned by

(4.2) ht(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 x ∈ [0, 2t
3 ],

0 x ∈ [t,∞),
linear on [ 2t

3 , t].

Lemma 4.6 Let A be a unital, separable, simple, non-elementary, TAF C∗-algebra.
For every є > 0 and for every γ ∈ (0, 1), there exists a δ > 0 such that if a, b ∈ A+ have
ûnite spectrum, 0 ∈ sp(b), ∥a∥ ≤ ∥b∥ = 1,

∫

t

0
λτ
a(s) ds ≤ δt + ∫

t

0
λτ
b(s) ds and ∫

1

0
λτ
a(s) ds + δ > ∫

1

0
λτ
b(s) ds

for all τ ∈ T(A) and t ∈ [0, 1], and

inf
τ∈T(A)

τ(h 1
1000 є(b)) > γ,

then
dist( a, conv(U(b))) ≤ є.

Proof Fix є > 0. Without loss of generality, we can assume that є < 1. Let δ0 > 0 be
the resulting δ from Lemma 4.2 where γ is used for r and 1

5є is used for є. Without
loss of generality, we can assume that δ0 < 1

10є. Finally, let δ > 0 be such that

δ < 1
100

δ0 .

We claim that δ works for the pair (є, γ).
Fix a, b ∈ A+ satisfying the hypotheses for this δ. For simplicity, let δ1 = γ. _us,

δ1 < inf
τ∈T(A)

µτ ,b([0,
1

1000
є)) .

By the assumptions on b, we can write sp(b) = {αk}
L
k=1, where

1 = α1 > α2 > ⋅ ⋅ ⋅ > αL = 0.
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Let f ∶ [0,∞)→ [0, 1] be the continuous function such that

f (s) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 s ∈ [ 1+α2
2 ,∞),

0 s ∈ [0, α2],
linear on [α2 , 1+α2

2 ].

Hence, f (b) ∈ A is a non-zero projection. _erefore, there exists a δ2 > 0 such that

δ2 < inf
τ∈T(A)

τ( f (b)).

Choose δ3 > 0 such that δ3 < δ2 and

(4.3) 1 + 1
100

δ0 >
δ2

δ2 − δ3
> 1,

and let
δ4 = (

є
10000

) min{δ1 , δ2 , δ3}.

By Remark 3.3 and Lemmas 3.4 and 4.3, there exists a ûnite dimensional C∗-algebra
C ⊆ A, a0 , b0 ∈ (1A − 1C)A+(1A − 1C), and a1 , b1 ∈ C+ such that:
(a) τ(1A − 1C) < δ4 for all τ ∈ T(A),
(b) a0 , a1 , b0 , b1 ≥ 0,
(c) ∥a0∥, ∥b0∥, ∥a1∥, ∥b1∥ ≤ 1,
(d) sp(a0+a1) ⊆ sp(a) and sp(b0+b1) ⊆ sp(b) (so a0, a1, b0, b1 have ûnite spectrum),

(e) every simple summand of C has rank greater than 1
δ4 ,

(f) ∥a0 + a1 − a∥, ∥b0 + b1 − b∥ < 1
100є,

(g) ∫
t
0 λτ

a1(s) ds ≤
δ0
100 t + ∫

t
0 λτ

b1
(s) ds for all τ ∈ ∂extT(C) and t ∈ [0, 1],

(h) ∫
1
0 λτ

a1(s) ds +
δ0
100 > ∫

1
0 λτ

b1
(s) ds for all τ ∈ ∂extT(C),

(i) τ( f (b1)) > δ2 for all τ ∈ ∂extT(C),
(j) µτ ,b0+b1([0, 1

100є)) ≥
1
2 µτ ,b([0, 1

100є)) >
1
2 δ1 for all τ ∈ T(A), and

(k) τ(h 1
100 є(b1)) > γ = δ1 for all τ ∈ ∂extT(C).

Let j0 be the unique number such that α j0 >
1

100є and α j0+1 ≤
1

100є. Let g∶ [0,∞)→

[0, 1] be the function given by

g(s) =
⎧⎪⎪
⎨
⎪⎪⎩

0 s ∈ [0, α j0+α j0+1
2 ],

s s ∈ [
α j0+α j0+1

2 ,∞).

_en by property (d), g is continuous on sp(b0) ∪ sp(b1) and ∥g(b j) − b j∥ ≤
1

100є for
j = 0, 1.

Since b0 and b1 have ûnite spectrum, the range projections r0 and r1 of g(b0) and
g(b1) respectively must be elements ofA. By property (j),

τ( 1 − (r0 + r1)) >
1
2
δ1

for all τ ∈ T(A). Since r0 ≤ 1A − 1C and r1 ≤ 1C, property (a) implies that

τ(1A − 1C) < δ4 <
1

100
δ1
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for all τ ∈ T(A). Let r3 = 1C − r1. _erefore, as r3 is orthogonal to g(b1) + (1A − 1C);
we obtain that

δ1
2
< τ(r3 + (1A − 1C − r0)) < τ(r3) +

1
100

δ1

for all τ ∈ T(A), we obtain that

(4.4) τ(r3) >
49
100

δ1 ≥
4900δ4

є
for all τ ∈ T(A).
From properties (g), (h), the deûnition of g, and _eorem 2.3(iii), for all τ ∈

∂extT(C) we have that

(4.5) ∫

t

0
λτ
a1(s) ds ≤

δ0
100

t + ∫
t

0
λτ
g(b1)(s) ds

for all t ∈ [0, τ(r1)],

(4.6) ∫

t

0
λτ
a1(s) ds <

δ0
100

t + є
100

(t − τ(r1)) + ∫
t

0
λτ
g(b1)(s) ds

for all t ∈ [τ(r1), 1], and

(4.7) ∫

1

0
λτ
a1(s) ds +

δ0
100

> ∫

1

0
λτ
g(b1)(s) ds.

Write C = C1 ⊕ C2 ⊕ ⋅ ⋅ ⋅ ⊕ CM , where each C j is a full matrix algebra with rank
m j ≥

1
δ4 by property (e). Furthermore, write b1 = ∑M

j=1 b1, j and a1 = ∑
M
j=1 a1, j , where

a1, j , b1, j ∈ Ck for all 1 ≤ j ≤ M and let τ j be the unique tracial state on C j . Hence, by
(4.5), (4.6), and (4.7), we have for all 1 ≤ j ≤ M that

(4.8) ∫

t

0
λτ j
a1, j(s) ds ≤

δ0
100

t + ∫
t

0
λτ j

g(b1, j)(s) ds

for all t ∈ [0, τ j(r1)],

(4.9) ∫

t

0
λτ j
a1, j(s) ds ≤

δ0
100

t + є
100

( t − τ j(r1)) + ∫
t

0
λτ j

g(b1, j)(s) ds

for all t ∈ [τ j(r1), 1], and

(4.10) ∫

1

0
λτ j
a1, j(s) ds +

δ0
100

> ∫

1

0
λτ j

g(b1, j)(s) ds.

Furthermore, τ j( f (b1, j)) > δ2 for all 1 ≤ j ≤ M by property (i), which, along with
property (d), implies that 1 ∈ sp(b1, j) (and hence ∥b1, j∥ = 1). By the deûnition of g,
we obtain that τ j( f (g(b1, j))) > δ2, 1 ∈ sp(g(b1, j)), and ∥g(b1, j)∥ = 1. _erefore, for
each 1 ≤ j ≤ M there exist p j , c j ∈ C+ such that
(i) p j is a non-zero projection,
(ii) ∥c j∥ < 1,
(iii) p j is orthogonal to c j ,
(iv) sp(c j) ⊆ sp(g(b1, j)) ∖ {1} ⊆ sp(b) ∖ {1},
(v) τ j(p j) > δ2, and
(vi) g(b1, j) = p j + c j .
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Since rank(C j) = m j ≥
1
δ4 , we see that 1

m j
≤ δ4 ≤ єδ2

100 . Hence, there exists a
projection q j ∈ C j such that q j ≤ p j and
(4.11) 3δ4 < τ j(q j) < 4δ4 < δ3 .

Since τ j(p j) > δ2 > δ3 > τ j(q j) for all 1 ≤ j ≤ M,we have that δ2τ j(q j) < δ3τ j(p j).
Hence,

τ j(p j)

τ j(p j) − τ j(q j)
<

δ2
δ2 − δ3

for all 1 ≤ j ≤ M. _erefore, by (4.3), we obtain for all 1 ≤ j ≤ M that

1 + δ0
100

>
δ2

δ2 − δ3
>

τ j(p j)

τ j(p j) − τ j(q j)
> 1.

Hence, there exists a β1 ∈ R be such that

(4.12) 1 + δ0
100

> β1 >
τ j(p j)

τ j(p j) − τ j(q j)
> 1

for all 1 ≤ j ≤ M.
For every 1 ≤ j ≤ M, let

b′1, j = β1(p j − q j) + c j = g(b1, j) − p j + β1(p j − q j) ∈ (C j)+ .
Notice by (4.12) and Lemma 4.5 that

∫

t

0
λτ j

g(b1, j)(s) ds ≤ ∫
t

0
λτ j

b′1, j
(s) ds ≤ δ0

100
t + ∫

t

0
λτ j

g(b1, j)(s) ds

for all t ∈ [0, 1]. _erefore, combining with (4.8), (4.9) and (4.10), we obtain for all
1 ≤ j ≤ M that

(4.13) ∫

t

0
λτ j
a1, j(s) ds ≤

δ0
100

t + ∫
t

0
λτ j

b′1, j
(s) ds

for all t ∈ [0, τ j(r1)],

(4.14) ∫

t

0
λτ j
a1, j(s) ds ≤

δ0
100

t + є
100

(t − τ j(r1)) + ∫
t

0
λτ j

b′1, j
(s) ds

for all t ∈ [τ j(r1), 1], and

(4.15) ∫

1

0
λτ j
a1, j(s) ds +

δ0
50

> ∫

1

0
λτ j

b′1, j
(s) ds.

Let e ∈ C be the projection given by

e =
M
∑
j=1

q j .

Since g(b1) = e +∑M
j=1(p j − q j + c j),

∥ g(b1) − ( e +
M
∑
j=1
b′1, j)∥ = ∥

M
∑
j=1

g(b1, j) − ( e +
M
∑
j=1
b′1, j)∥

= ∥
M
∑
j=1

p j −
M
∑
j=1

q j −
M
∑
j=1
β1(p j − q j)∥ = ∣β1 − 1∣ < δ0

100
.
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Hence,

(4.16) ∥b − (b0 + e +
M
∑
j=1
b′1, j)∥ <

(δ0 + є)
10

.

By (4.11), 3δ4 < τ j(q j) < 4δ4 for all 1 ≤ j ≤ M, which implies that
3δ4τ(1C j) < τ(q j) < 4δ4τ(1C j)

for all τ ∈ T(A) and 1 ≤ j ≤ M (since τ(1C j) /= 0 as A is simple, so 1/τ(1C j)τ is the
unique tracial state on C j). Hence,
(4.17) 3δ4τ(1C) < τ(e) < 4δ4τ(1C) = 4δ4
for all τ ∈ T(A). Furthermore, we see that
(4.18) τ(e) > 3δ4(1 − δ4) > 2δ4 > 2τ(1A − 1C)
for all τ ∈ T(A).
By (4.4), (4.17), and (4.18),we can invoke Lemma 4.4 (with a0 for a, b0 for b, 1A−1C

for p, e for q, 4δ4 for є1, r3 for r, and 1
100є for є2) to obtain a C∗-subalgebraD ⊆ A and

a d ∈ r3Dsar3 such that
(a) 1D = (1A − 1C) + e + r3,
(b) (1A − 1C), e , r3 , a0 , b0 , d ∈D,
(c) ∥d∥ < 1

100є, and
(d) a0 ∈ conv(UD(b0 + e + d)).
For each 1 ≤ j ≤ M, notice that if Pker(b′1, j) ∈ C j is the projection onto the kernel of

b′1, j in C j , then property (k) and the deûnitions of g and b′1, j imply that

τ j(Pker(b′1, j)) > γ = δ1 .

Notice that
1 − τ j(Pker(b′1, j)) ≤ 1 − τ j(Pker(g(b1, j))) = τ j(r1).

_erefore, equations (4.13), (4.14), (4.15) hold with 1 − τ j(Pker(b′1, j)) replacing τ j(r1).
Hence, by the deûnition of δ0, we can invoke Lemma 4.2 (with γ for r, 1

5є for є, a1, j for
A, and b′1, j for B, which produces δ0) to obtain that

dist( a1 , conv(UC(
M
∑
j=1
b′1, j))) ≤

є
5
.

Hence, by (d),

dist( a0 + a1 , conv(U(b0 + e + d +
M
∑
j=1
b′1, j))) ≤

є
5
.

Hence, since by (4.16) and (c), we have

∥b − (b0 + e + d +
M
∑
j=1
b′1, j)∥ <

є
100

+
(δ0 + є)

10

and also
∥a − (a0 + a1)∥ <

є
100

,
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we obtain that

dist(a, conv(U(b))) ≤ є
100

+
(δ0 + є)

10
+

є
100

+
є
5
≤ є.

5 The Main Result

In this section, we will complete the proof of our main result (_eorem 5.3) via
Lemma 4.6. All that remains in the proof is to show that the hypotheses of Lemma 4.6
can be obtained, and to invoke some classiûcation results. We begin with the following.

Lemma 5.1 Let C be a unital, separable, simple, non-elementary C∗-algebra with
T(C) /= ∅. If a, b ∈ Csa are such that a ≺τ b for all τ ∈ T(C), then

sp(a) ⊆ conv(sp(b)).

Proof Let τ ∈ T(A) be arbitrary. Since a ≺τ b, the deûning inequalities in Deûni-
tion 2.4 imply that

lim
s↗1

λτ
a(s) ≥ lim

s↗1
λτ
b(s) and lim

s↘0
λτ
a(s) ≤ lim

s↘0
λτ
b(s).

Furthermore, since A is simple, τ must be faithful. Hence, the result follows from
_eorem 2.3(ii).

Lemma 5.2 Let A be a unital, separable, simple, non-elementary, TAF C∗-algebra. If
a, b ∈ Asa are such that a ≺τ b for all τ ∈ T(A), then a ∈ conv(U(b)).

Proof By parts (iv) and (v) of_eorem 2.3 and by Lemma 5.1, we can replace a, b
with γ1(a + γ21A), γ1(b + γ21A) for appropriate γ1 , γ2 ∈ R with γ1 > 0 if necessary to
assume that a, b ≥ 0, 0 ∈ sp(b), and ∥a∥ ≤ ∥b∥ = 1.

Let є > 0 be arbitrary and let hє be the function in (4.2). Notice that hє(b) /= 0, as
0 ∈ sp(b). _erefore, as A is simple, there exists a γ ∈ (0, 1) such that

γ < inf
τ∈T(A)

τ(h 1
1000 є(b)).

Furthermore, choose α > 0 such that

γ < inf
τ∈T(A)

τ(hє(b)) − α.

Let δ > 0 be the δ produced in the conclusions of Lemma 4.6 using 1
10є for є and γ for

γ.
SinceA has real rank zero, there exist a′ , b′ ∈ A+ such that

● a′ , b′ have ûnite spectrum,
● ∥a′ − a∥, ∥b′ − b∥ < min{ 1

10є,
1
10 δ},

● 0 ∈ sp(b′),
● ∥h 1

1000 є(b
′) − h 1

1000 є(b)∥ <
1
3α, and

● ∥a′∥ ≤ ∥b′∥ = 1.
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_erefore, by _eorem 2.3(vi), the hypothesis a ≺τ b for all τ ∈ T(A) implies that

∫

t

0
λτ
a′(s) ds ≤

δ
5
t + ∫

t

0
λτ
b′(s) ds and ∫

1

0
λτ
a′(s) ds +

δ
5
> ∫

1

0
λτ
b′(s) ds

for all τ ∈ T(A) and t ∈ [0, 1]. Furthermore,

inf
τ∈T(A)

τ(h 1
1000 є(b

′
)) > γ.

Hence, as δ was chosen via Lemma 4.6, we obtain that

dist(a′ , conv(U(b′))) ≤ 1
10
є,

and thus
dist(a, conv(U(b))) ≤ є.

_erefore, as є was arbitrary, the result follows

_eorem 5.3 Let A be a unital, separable, simple, non-elementary, C∗-algebra with
non-empty tracial simplex, real rank zero, strict comparison of projections, and can-
cellation of projections. If a, b ∈ Asa, then a ≺τ b for all τ ∈ T(A) if and only if
a ∈ conv(U(b)).

Proof If a ∈ conv(U(b)), then a ≺τ b for all τ ∈ T(A) by [39, Lemma 2.20] (the
assumption that τ must be faithful is not required by the same argument as in _eo-
rem 2.3).

Suppose that a ≺τ b for all τ ∈ T(A). By [26,_eorem 4.5], there exists a unital C∗-
subalgebra C ⊆ A such that C is a simple, non-elementary, AH algebra with bounded
dimension growth and real rank zero, and if i∶C → A is the inclusion map, then i
induces an isomorphism of the K-theory invariants

(K0(C),K0(C)+ , [1C],K1(C)) ≅ (K0(A),K0(A)+ , [1A],K1(A)) .

(Note in Lin’s theorem and argument, the hypothesis of nuclearity is not necessary.)
Hence, [30, Lemma 5.1] and [19,_eorem 5.6] imply that every positive element

of A is approximately unitarily equivalent to a positive element of C. Hence, every
self-adjoint element ofA is approximately unitarily equivalent to a self-adjoint element
of C.

_e result then follows from Lemma 5.2 and from the fact that C is TAF (see, for
example, [25, Proposition 2.6]).

6 A Bound for the Number of Unitaries Conjugates

To complete this paper, we seek a bound for the number of unitary conjugates of a
self-adjoint operator needed in a convex combination to approximate another self-
adjoint operator for the C∗-algebras studied in _eorem 5.3. As all of the convex
combinations constructed are viamatrix algebras, it suõces to bound the number of
unitary conjugates in a convex combination for matrix algebras independently of the
size of thematrix algebras. Consequently, the following result will enable a result in
the context of_eorem 5.3.
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_eorem 6.1 Let n ∈ N. _en there exists an f (n) ∈ N such that for all m ∈ N and
positive contractions A, B ∈Mm with A ≺tr B, there exist unitaries U1 , . . . ,U f (n) ∈Mm
and t1 , . . . t f (n) ∈ [0, 1] such that

f (n)
∑
k=1

tk = 1 and ∥A−
f (n)
∑
k=1

tkU∗
k BUk∥ <

4
n − 1

+
5
n
.

In particular, f (n) = 2 1
6 (n

3−n) .

_e proof of_eorem 6.1will be developed through a ûnite number of perturbations
in order to make certain assumptions on the spectrum and unnormalized traces of
A and B, followed by a recursive argument. Before the ûrst perturbation, we recall a
notion ofmajorization for real n-tuples that will be of use notationally.

Deûnition 6.2 Let α = (α1 , . . . , αm), β = (β1 , . . . , βm) ∈ Rm and let (α′1 , . . . , α′m)

and (β′1 , . . . , β′m) be the non-increasing rearrangements of α and β, respectively; that
is, (α′1 , . . . , α′m) is obtained by rearranging the terms of (α1 , . . . , αm) so that

α′1 ≥ α′2 ≥ ⋅ ⋅ ⋅ ≥ α′m .

It is said that β majorizes α, denoted α ≺ β, if
(a) ∑l

k=1 α′k ≤ ∑
l
k=1 β′k for all l ∈ {1, . . . ,m}, and

(b) ∑m
k=1 α′k = ∑

m
k=1 β′k .

It is elementary to see that if A, B ∈Mn are self-adjoint, then A ≺tr B if and only if
the eigenvalue list of B majorizes the eigenvalue list of A.

Lemma 6.3 Let A, B ∈Mm be positive contractions with A ≺tr B. _en for all n ≥ 2,
there exist positive contractions A′ , B′ ∈Mm such that
(i) A′ ≺tr B′,
(ii) Tr(A′) = Tr(B′) ∈ { k

n−1 ∣ k ∈ N ∪ {0}},
(iii) ∥A− A′∥ < 2

n−1 , and
(iv) ∥B − B′∥ < 2

n−1 .

Proof First notice that A0 = n−2
n−1 A and B0 = n−2

n−1 B are positive contractions with
0 ≤ A0 , B0 ≤ n−2

n−1 Im and A0 ≺tr B0. Furthermore,

∥A− A0∥ ≤
1

n − 1
and ∥B − B0∥ ≤

1
n − 1

.

Since A0 ≺tr B0, we know Tr(A0) = Tr(B0). Let t ∈ [0,∞) such that mt = Tr(A0).
_en there exists a k ∈ N∪ {0} such that k

n−1 ≥ t and ∣ k
n−1 − t∣ < 1

n−1 . Let r =
k

n−1 − t. It
is then elementary to verify that

A′ = A0 + rIm and B′ = B0 + rIm
are positive contractions that satisfy the requirements.

_e following result will enable us to control the spectrum of A.
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Lemma 6.4 Let A, B ∈Mm be positive contractions such that A ≺tr B and

Tr(A) = Tr(B) ∈ {
k

n − 1
∣ k ∈ N ∪ {0}} .

_en there exist positive contractions A′ , B′ ∈Mm such that
(i) A′ ≺tr B′,
(ii) Tr(A′) = Tr(B′) ∈ { k

n ∣ k ∈ N ∪ {0}},
(iii) ∥A− A′∥ ≤ 2

n , ∥B − B
′∥ ≤ 2

n , and
(iv) sp(A′) ⊆ { k

n ∣ k ∈ {0, 1, . . . , n}}.

Proof Let
A0 =

n − 1
n
A and B0 =

n − 1
n
B.

Note that A0 ≺tr B0, 0 ≤ A0 , B0 ≤ n−1
n Im , ∥A− A0∥ ≤

1
n , ∥B − B0∥ ≤

1
n , and

Tr(A0) = Tr(B0) ∈ {
k
n

∣ k ∈ N ∪ {0}} .

Without loss of generality, we can assume that
A0 = diag(α1 , α2 , . . . , αm) and B0 = diag(β1 , β2 , . . . , βm),

where α1 ≥ α2 ≥ ⋅ ⋅ ⋅ ≥ αm and β1 ≥ β2 ≥ ⋅ ⋅ ⋅ ≥ βm . For each k ∈ {1, . . . ,m}, let

α′k = min{ r
n
− αk ∣ r ∈ {0, 1, . . . , n − 1}, r

n
≥ αk} .

Hence, 0 ≤ α′k ≤
1
n for all k.

Let
A′ = diag(α1 + α′1 , α2 + α′2 , . . . , αm + α′m),
B′ = diag(β1 + α′1 , β2 + α′2 , . . . , βm + α′m).

Hence, ∥A− A′∥ ≤ 2
n and ∥B − B′∥ ≤ 2

n . Furthermore, since 0 ≤ A0 , B0 ≤ n−1
n Im , we

see that A′ and B′ are positive contractions. Since Tr(A) = Tr(B), we clearly have
Tr(A′) = Tr(B′). Clearly,

sp(A′) ⊆ { k
n ∣ k ∈ {0, 1, . . . , n}}

by construction, and thus

Tr(B′) = Tr(A′) ∈ { k
n ∣ k ∈ N ∪ {0}} .

Finally, clearly αk + α′k ≥ αk+1 + α′k+1 for all k, and thus the simple inequalities
l
∑
k=1
αk + α′k ≤

l
∑
k=1
βk + α′k

show that A′ ≺tr B′.

To control the spectrum of B, we will ûrst need the following lemma.

Lemma 6.5 Let B = diag(β1 , . . . , βm) ∈Mm be a self-adjoint diagonal. Let j1 , j2 be
two indices such that j1 /= j2 and β j1 ≥ β j2 . Furthermore, let r > 0, β′j = β j if j /= j1 , j2,
β′j1 = β j1 + r, and β′j2 = β j2 − r. Finally, let B′ = diag(β′1 , . . . , β′m). _en B ≺tr B′.
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Proof _e result follows from the deûnition ofmajorization via checking that simple
inequalities hold.

Lemma 6.6 Let B ∈Mm be a positive contraction such that

Tr(B) ∈ { k
n ∣ k ∈ N ∪ {0}} .

_en there exists a positive contraction B′ ∈Mm such that
(i) B ≺tr B′,
(ii) ∥B − B′∥ ≤ 1

n , and
(iii) sp(B′) ⊆ { k

n ∣ k ∈ {0, 1, . . . , n}}.

Proof Let β1 ≥ β2 ≥ ⋅ ⋅ ⋅ ≥ βm be the eigenvalues of B. Without loss of generality, we
can assume that B = diag(β1 , . . . , βm). We will recursively increase the number of βk
that are in the set { k

n ∣ k ∈ N ∪ {0}}, while ensuring conditions (i) and (ii).
At each stage of the recursive process (assuming we are not done), let

k1 = min{ k ∣ βk ∉ { r
n ∶ r ∈ {0, 1, . . . , n}}} ,

k2 = max{ k ∣ βk ∉ { r
n ∶ r ∈ {0, 1, . . . , n}}} .

Note it must be the case that k1 < k2 as if k1 = k2, βk1 is the only eigenvalue that is not
an integer multiple of 1

n which contradicts the fact that Tr(B) ∈ { k
n ∣ k ∈ N ∪ {0}}.

Let

r1 = min{ r
n − βk1 ∣

r
n > βk1 , r ∈ {0, 1, . . . , n}} ,

r2 = min{βk2 −
r
n ∣ r

n < βk2 , r ∈ {0, 1, . . . , n}} .

Furthermore, let r = min{r1 , r2} and let B0 = diag(β′1 , . . . , β′m), where β′j = β j if
j /= k1 , k2, β′k1

= βk1 + r, and β′k2 = βk2 − r. _erefore, B0 is a positive contraction
and, by Lemma 6.5, B ≺tr B0 . Notice by construction that either β′k1

or β′k2 is in
{ k

n ∣ k ∈ {0, 1, . . . , n}}. Consequently, by recursively applying this process (where the
β′k can now need to be reordered), wemust eventually obtain a positive contraction B′
such that B ≺tr B′ and

sp(B′) ⊆ { k
n ∣ k ∈ {0, 1, . . . , n}} .

Furthermore, by analyzing the above process, we see that B′ is obtained from B by
changing the diagonal entries in such a way that if r ∈ {0, . . . , n − 1} is such that
r
n ≤ βk ≤

r+1
n , then the k-th diagonal entry of B′ is either r

n or r+1
n . Hence, ∥B−B′∥ ≤ 1

n ,
as desired.

To obtain a bound for the number of unitaries needed in a convex combination, we
note the following elementary result.

Lemma 6.7 Let r1 , r2 ∈ [0, 1] be such that r1 ≥ r2. _en for each s1 ∈ [r2 , r1] there
exist U1 ,U2 ∈M2 such that

diag(s1 , r1 + r2 − s1) = 1
2U

∗
1 diag(r1 , r2)U1 +

1
2U

∗
2 diag(r1 , r2)U2 .
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Proof Since s1 ∈ [r2 , r1], there exists a t ∈ [0, 1] such that s1 = tr1 + (1 − t)r2. Let
θ ∈ [0, 2π] be such that cos2(θ) = t. We claim that the unitaries

U1 = [
cos(θ) sin(θ)
− sin(θ) cos(θ)] and U2 = [

cos(θ) − sin(θ)
sin(θ) cos(θ) ]

work. Indeed, as sin2(θ) = 1 − t,

U∗
1 diag(r1 , r2)U1 = [

tr1 + (1 − t)r2 cos(θ) sin(θ)(r1 − r2)
cos(θ) sin(θ)(r1 − r2) (1 − t)r1 + tr2

]

and

U∗
2 diag(r1 , r2)U2 = [

tr1 + (1 − t)r2 cos(θ) sin(θ)(r2 − r1)
cos(θ) sin(θ)(r2 − r1) (1 − t)r1 + tr2

] .

Hence,
1
2U

∗
1 diag(r1 , r2)U1 +

1
2U

∗
2 diag(r1 , r2)U2 = diag(s1 , (1 − t)r1 + tr2).

However,
((1 − t)r1 + tr2) + s1 = r1 + r2 ,

so the claim follows.

To progressively apply Lemma 6.7, we note the following triviality.

Lemma 6.8 Let A, B,C ∈Mm be such that A is a convex combination of k1 unitary
conjugates of B and B is a convex combination of k2 unitary conjugates of C. _en A is a
convex combination of k1k2 unitary conjugates of C.

Proof of_eorem 6.1 By applying Lemma 6.3, then Lemma 6.4 to the results, and
then by applying Lemma 6.6 to those results, there exist positive contractions A0 , B0 ∈
Mm such that
(a) A0 ≺tr B0,
(b) ∥A0 − A∥ < 2

n−1 +
2
n , ∥B0 − B∥ <

2
n−1 +

3
n , and

(c) sp(A0), sp(B0) ⊆ { k
n ∣ k ∈ {0, 1, . . . , n}}.

If there exist U1 , . . . ,U f (n) ∈Mm and t1 , . . . t f (n) ∈ [0, 1] such that
f (n)
∑
k=1

tk = 1 and A0 =

f (n)
∑
k=1

tkU∗
k B0Uk ,

then the result will follow, as ∥A0 − A∥ < 2
n−1 +

2
n and

∥

f (n)
∑
k=1

tkU∗
k B0Uk −

f (n)
∑
k=1

tkU∗
k BUk∥ ≤

f (n)
∑
k=1

tk∥B0 − B∥ <
2

n − 1
+

3
n
.

We will now demonstrate a progressive method using Lemmata 6.7 and 6.8 to
obtain that

A0 =

f (n)
∑
k=1

tkU∗
k B0Uk .

Note for that which follows, we can assume that A0 and B0 are both diagonal matrices
with the eigenvalues along the diagonal in non-increasing order.
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For a positive contraction C ∈Mm , let λ(C; x) be the number of eigenvalues of C
(counting multiplicity) equal to x. By assumption, we know that

n
∑
k=0

λ(A0;
k
n
) =

n
∑
k=0

λ(B0;
k
n
) = m.

Since A0 ≺tr B0, it must be the case that λ(A0; 1) ≤ λ(B0; 1). By using direct sums of
unitaries with identity matrices and by decreasing the size of m, we can assume that
λ(A0; 1) = 0 (i.e., both A0 and B0 are diagonal matrices with λ(A0; 1) and λ(B0; 1)
ones respectively along the diagonal; we can ignore the ûrst λ(A0; 1) diagonal entries).

If λ(B0; 1) = 0, we can move on to dealing with n−1
n instead of 1. Otherwise, the ûrst

λ(B0; 1) > 0 diagonal entries of B0 need to be “corrected”. By corrected wemean we
want to replace B0 with B1 where
(a) A0 ≺tr B1,
(b) sp(B1) ⊆ { k

n ∣ k ∈ {0, 1, . . . , n}}, and
(c) λ(B1; 1) = 0 = λ(A0; 1).
To do this, we want to change any occurrences of 1 long the diagonal of B0 into n−1

n .
Notice it must be the case that λ(B0; j

n ) /= 0 for some j ∈ {0, 1, . . . , n − 2}. In-
deed otherwise we would have sp(B0) = {1, n−1

n }. However, since A0 ≺tr B0 implies
Tr(A0) = Tr(B0), the conditions λ(A0; 1) = 0 and sp(A0) ⊆ { k

n ∣ k ∈ {0, 1, . . . , n}}
would contradict Tr(A0) = Tr(B0). Hence,

k = max{ j ∈ {0, 1, . . . , n − 2} ∣ λ(B0; j/n) /= 0}

is well deûned.
Let

p = min{ λ(B0; 1), (n − 1 − k)λ(B0; k
n )} .

We will now describe a process for changing the ûrst p 1s on the diagonal of B0.
For convenience, let x = λ(B0; 1)+ λ(B0; n−1

n ) and let y = λ(B0; 1). Note that p ≤ x.
Assume that α1 ≥ α2 ≥ ⋅ ⋅ ⋅ ≥ αm and β1 ≥ β2 ≥ ⋅ ⋅ ⋅ ≥ βm are the eigenvalues arranged
in non-increasing order of A0 and B0, respectively. _en

(α1 , . . . , αm) ≺ (β1 , . . . , βm).

We claim that

(α1 , . . . , αm) ≺ (
n − 1
n

, β2 , . . . , βx ,
k + 1
n

, βx+2 , . . . , βm) .

To see this, we notice that αq ≤
n−1
n for all q so as β2 , . . . , βx ≥ n−1

n , checking that the
sums for majorization work up to and including index x. Since summing the ûrst x + 1
elements of the right-hand tuple produces∑x+1

j=1 β j , themajorization is then assured.
If k + 1 /= n − 1, then we can apply the same argument to show that

(α1 , . . . , αm) ≺ (
n − 1
n

, n − 1
n

, β3 , . . . , βx ,
k + 2
n

, βx+2 , . . . , βm) .

By continuing this process, we eventually change the ûrst y entries of the right-hand
tuple to n−1

n (only occurs in the case where p = λ(B0; 1)), or the (x + 1)-st entry of the
right-hand tuple becomes n−1

n a�er n − 1 − k progressions. Using the same arguments,
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we can begin to change the (x+2)-nd entry in the samemanner. Repeating ad nauseum,
we eventually obtain

(α1 , . . . , αm) ≺ (
n − 1
n

, . . . , n − 1
n

, βp+1 , . . . , βx ,
n − 1
n

, . . . , n − 1
n

, β′z , . . . , βm) ,

where β′z = βz if βz /= k
n , and otherwise β′z is some element of { k

n , . . . ,
n−1
n }. Hence, if

B0,1 = diag(
n − 1
n

, . . . , n − 1
n

, βp+1 , . . . , βx ,
n − 1
n

, . . . , n − 1
n

, β′z , . . . , βm) ,

then we have A0 ≺tr B0,1 ≺tr B0 by construction (i.e., to see B0,1 ≺tr B0, apply
Lemma 6.7 at each stage of the above process) and sp(B0,1) ⊆ { k

n ∣ k ∈ {0, 1, . . . , n}} .
To count the number unitary conjugates of B0 required in a convex combination to

produce B0,1, notice in the above process that the (x + 1)-st entry of the right-hand
tuple only interacts with the ûrst n − 1 − k entries of the right-hand tuple, the (x + 2)-
nd entry of the right-hand tuple only interacts with the next n − 1 − k entries of the
right-hand tuple, and so on. Hence, using direct sums and Lemmata 6.7 and 6.8, we
obtain that B0,1 can be constructed as a convex combination of at most 2n−1−k unitary
conjugates of B0.

If p = λ(B0; 1), then we have successfully turned all of the 1 diagonal entries in B0
into n−1

n s via B0,1 (so let B1 = B0,1). Otherwise, λ(B0,1; 1) > 0 and

k > max{ j ∈ {0, 1, . . . , n − 2} ∣ λ(B0,1; j
n ) /= 0} /= −∞.

Consequently, we can apply this process again, each time decreasing the value of k. As
there are only a ûnite number of values of k, this process must stop. When the process
terminates, the resulting B0, l must have the property that λ(B0, l ; 1) = 0, for otherwise
if λ(B0, l ; 1) > 0 the process yields sp(B0, l) = {1, n−1

n }, which contradicts the fact that
A0 ≺tr B0, l via comparing traces as λ(A0; 1) = 0 and sp(A0) ⊆ { k

n ∣ k ∈ {0, 1, . . . , n}}.
Analyzing the above process, we see that we need at most

n−2

∏
k=0

2n−1−k
= 2∑

n−2
k=0 n−1−k

= 2∑
n−1
j=1 j

= 2
(n−1)n

2

unitary conjugates in a convex combination to change B0 into B1 (i.e., the worst-case
scenario is that we never have p = λ(B0; 1), and we have to exhaust our way all the way
down).
By repeating the above process, we can obtain B2 via a convex combination of at

most
n−3

∏
k=0

2n−2−k
= 2∑

n−3
k=0 n−2−k

= 2∑
n−2
j=1 j

= 2
(n−2)(n−1)

2

unitary conjugates of B1 such that
(a) A0 ≺tr B2,
(b) B2 ⊆ { k

n ∣, k ∈ {0, 1, . . . , n}}, and
(c) λ(B2; 1) = λ(A0; 1), and λ(B2; n−1

n ) = λ(A0; n−1
n ).

_is process eventually stops at Bn as we will have

λ(Bn ;
n − k
n

) = λ(A0;
n − k
n

)
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for all k ≤ n − 1, so A0 ≺tr Bn will then imply λ(Bn ; 0) = λ(A0; 0). Consequently, the
above process shows that A0 is a convex combination of at most

2∑
n
k=1

(n−k)(n+1−k)
2 = ⋅ ⋅ ⋅ = 2

1
6 (n

3−n)

unitary conjugates of B0.

Corollary 6.9 For any unital, separable, simple, non-elementary C∗-algebraA with
non-trivial tracial simple, real rank zero, strict comparison of projections with respect
to tracial states, and cancellation of projections, for any n ∈ N, and for any a, b ∈ Asa,
there exist constants C1 ,C2 > 0 such that a ≺τ b for all τ ∈ T(A), and there exist
ℓ = C12

1
3 (n

3−n) unitaries u1 , . . . , uℓ ∈ A and t1 , . . . , tℓ ∈ [0, 1] such that∑ℓ
k=1 tk = 1 and

∥ a −
ℓ
∑
k=1

tku∗kbuk∥ <
C2

n − 1
.

Proof Consider the proof of_eorem 5.3. Up to elementary perturbations,we obtain
that a ∈ conv(U(b)) by constructing convex combinations of unitary conjugates only
twice; once via Lemma 4.2 and once via Lemma 4.4. As the proofs of both Lemmas 4.2
and 4.4 us onlymatricial results, we apply _eorem 6.1 in their proofs to obtain the
desired bounds.

Acknowledgments _e ûrst author thanks Leonel Robert for pointing out the idea
of uniform bounds and their relationship to regularity.
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