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Abstract. In this paper we consider the special case of the planar circular restricted three-body
problem by the example of the problem of the Earth, the Moon and a point mass, where the
gravitational potentials of the Earth and the Moon are given as the Kislik potential. The Kislik
potential takes into account the flattening of a celestial body on the poles. We find the relative
equilibria solutions for a point mass and analyze their stability. We describe the difference
between the obtained points and the classical solution of the three-body problem.
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1. Introduction
In classical celestial mechanics for most cases it is quite enough to research the problem

when the actual attracting masses are considered as material points. This situation can
be easily explained by the fact that the size of attracting bodies compared with the
distances between them is usually small enough to neglect. Completely different situation
is observed in celestial ballistics. Sometimes the spacecraft is located near the body, and
the distance between them is comparable with the size of the body. In this case it is
necessary to consider the shape of the body. Therefore the ways of representing the
gravitational potential of the planet are of interest from a practical point of view. A
variety of main problems of celestial ballistics has been described in the middle of the
20th century. Those problems are connected with the motion of a spacecraft in the non-
central gravitational field. The differential equations of motion are the following:

ẍ−2ωẏ−ω2x = U ′
x , ÿ+2ωẋ−ω2x = U ′

y , z̈ = U ′
z , U =

γm

r
+μR(x, y, z, t, μ), (1.1)

where γ is the gravitational constant, r is the position vector of a moving point, ω is the
angular velocity of the rotating coordinate system, μR is the perturbation function, μ is
a small parameter. Potential of the planet U can be written as

U =
γm

r
+

∞∑
k=2

Jk (R/r)kPk (z/r), (1.2)

where Pk is the Legendre polynomial, R is the average equatorial radius of the planet,
Jk is the constant. J2 characterizes the flattening of the planet, J3 characterizes the
asymmetry of the planet relative to the equatorial plane (J2 ∼ −10−3 , J3 ∼ 10−5).
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It is known that L. Euler has reduced to the quadratures the problem of the motion of
the point mass in the gravitational field of two fixed points. This idea gets a new impor-
tant application for the theory of the artificial satellites of the Earth. M. D. Kislik was the
first who proposed to use the problem of two fixed masses to describe the gravitational
potential. In 1961 V. G. Dyomin has showed that the potential of the two fixed points can
represent the gravitational field of flattened planet with high accuracy (Dyomin (1968)).
The potential can be determined by the following formula

U =
γm

2

(1 + iδ

r1
+

1 − iδ

r2

)
, r1,2 =

√
x2 + y2 + (z − c(δ ± i))2 . (1.3)

Constants c and δ characterize the shape of the planet. Thus, if a celestial body is
compressed along its axis of dynamic symmetry, we can assume that the gravitational
potential is approximated by the potential of two points with complex conjugate masses
located at the imaginary distance, the gravitational potential is still a real value. If we
know the constants J2 and J3 from (1.2), then c and δ can be expressed as

c =

√
−J2

3 − 4J3
2

2J2
R, δ =

J3√
−J2

3 − 4J3
2

. (1.4)

When δ = 0, the formula (1.3) does not take into account the asymmetry of the
planet relative to the equatorial plane. In this case the form of gravitational potential
corresponds to the Kislik potential.

2. Overview
In this paper we consider the special case of the planar circular restricted three-body

problem by the example of the problem of the Earth (E), the Moon (M) and a point
mass (P), where the gravitational potentials of E and M are given as the Kislik potential.

Let us consider the planar circular restricted three-body problem. We neglect the mass
of the P. E and M have masses m and m − μ, respectively, and perform circular motion
around their barycenter O. The rotating coordinate system is as usual: O is the origin of
coordinates, x-axis goes through E and M. E, M and P move in the plane z = 0. �ω = ω �ez

is the angular velocity of the moving coordinate system. If we take the Kislik potential
in the Earth-Moon problem, ω satisfies the following equation:

ω2 =
γ(m − μ)

((xE + xM )2 − c2)3/2 +
γμ

((xE + xM )2 − λ2c2)3/2 .

To simplify the analytical calculus let us take the classical solution of the two-body
problem:

ω2 = γm/(xE + xM )3 .

Then the gravitational potentials of E and M take the form

UE =
γ(m − μ)√

(x + xE )2 + y2 − c2
, UM =

γμ√
(x − xM )2 + y2 − λ2c2

, (2.1)

where λ is the constant coefficient. Motion of P is determined by the system of equations
(1.1). Constant c for E is equal to 209.9 km. Ellipticity of M is 3 times less than ellipticity
of E, the radius of M is equal to 0.273 radius of E. So in the numerical calculations we
assume that λ = 0. We define the effective potential energy as

Vω = −1
2
ω2(x2 + y2) − UE − UM . (2.2)

https://doi.org/10.1017/S1743921314007807 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314007807


The Kislik potential in the three-body problem 47

0.000 0.002 0.004 0.006 0.008 0.010
c

0.1

0.2

0.3

0.4

0.5

µ

Stable

Unstable

0.002 0.004 0.006 0.008 0.010
c

0.038500

0.038505

0.038510

0.038515

0.038520

µ

Figure 1. On the figure there is shown dependence of μ on c, if λ = 0. If c = 0, the condition
for the stabilization L4 and L5 is the same as the condition for the stabilization in the classical
three-body problem, i.e. μ < 0, 0385209.
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Figure 2.

Libration point. Relative equilibrium equations are

ω2x =
γ(x + xE )(m − μ)

((x + xE )2 + y2 − c2)3/2 +
γ(x − xM )μ

((x − xM )2 + y2 − λ2c2)3/2 ,

ω2y =
γy(m − μ)

((x + xE )2 + y2 − c2)3/2 +
γyμ

((x − xM )2 + y2 − λ2c2)3/2 .

If y = 0, we have 3 unstable libration points L1,2,3 as in the usual three-body problem.
L1 , L2 and L3 can be obtained from the equation:

ω2x =
γ(x + xE )(m − μ)
((x + xE )2 − c2)3/2 +

γ(x − xM )μ
((x − xM )2 − λ2c2)3/2 . (2.3)

The second member function has 4 vertical asymptotes (x = −xE ± c, x = xM ±λc) and
decreases monotonically.

If y �= 0, then the coordinates of P can be found analytically, the coordinates of points
L4 and L5 satisfy the equations: (x + xE )2 + y2 = (xE + xM )2 + c2 , (x − xM )2 + y2 =
(xE +xM )2 +λ2c2 . In the classical solution of the three-body problem EML4 and EML5
satisfy the equations: (x + xE )2 + y2 = (xE + xM )2 , (x − xM )2 + y2 = (xE + xM )2 .
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If we assume that xE + xM = 1, m = 1, μ = μ̃, the condition for the stabilization of
L4 and L5 in the first approximation takes the following form:

1 − 27μ̃ + 27μ̃2 + 9c4(1 + (−1 + λ4)μ̃) + 6c2(−1 − 2(1 + 2λ2)μ̃ + 3(1 + λ2)μ̃2) > 0.

On Fig.1 there is shown the dependence of μ̃ on c, if λ = 0.
Our calculations give us the value of the shift of each libration point. It approximately

equals to 0.05 km. Fig.2 schematically shows the directions of the shifts of the libration
points from their positions in the classical problem.

3. Conclusion
Thus, we can conclude that in the problem considered above, the shape of the bodies

does not provide substantial changes in the solutions. But the Earth is not the most
flattened planet of the Solar system.

The value of c was calculated for several planets:

c, km

Earth 209.9
Mars 150.013

Jupiter 8461.57
Saturn 7547.368

The polar flattening of Jupiter is equal to 0.065 (0.0033 for the Earth), the flattening
of Saturn is equal to 0.1 . These values are greater, so in the problem, where we use a
gravitational potential according to our algorithm for these planets, we can expect more
visible effect.
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