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Abstract
In ecological systems, be it a Petri dish or a galaxy, populations evolve from some initial value (say zero) up to a
steady-state equilibrium, when the mean number of births and deaths per unit time are equal. This equilibrium
point is a function of the birth and death rates, as well as the carrying capacity of the ecological system itself.
We show that the occupation fraction versus birth-to-death rate ratio is S-shaped, saturating at the carrying capacity
for large birth-to-death rate ratios and tending to zero at the other end. We argue that our astronomical observations
appear inconsistent with a cosmos saturated with extraterrestrial intelligences, and thus search for extraterrestrial
intelligence optimists are left presuming that the true population is somewhere along the transitional part of this
S-curve. Since the birth and death rates are a-priori unbounded, we argue that this presents a fine-tuning problem.
Further, we show that if the birth-to-death rate ratio is assumed to have a log-uniform prior distribution, then the
probability distribution of the ecological filling fraction is bi-modal – peaking at zero and unity. Indeed, the result-
ing distribution is formally the classic Haldane prior, conceived to describe the prior expectation of a Bernoulli
experiment, such as a technological intelligence developing (or not) on a given world. Our results formally connect
the Drake equation to the birth–death formalism, the treatment of ecological carrying capacity and their connection
to the Haldane perspective.
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The Haldane perspective

In 1968, Edwin Jaynes imagined that we are presented with a jar containing an unknown and
unlabelled compound; call it chemical X. Consider that along a laboratory bench we find a large num-
ber of beakers filled with water and our task is to investigate how often chemical X will dissolve within
them. Jaynes argued that one should reasonably expect the compound to either dissolve in nearly every
instance, or almost never. It would be particularly remarkable if compound X were to dissolve approxi-
mately half of the time. Such an outcome would imply that the small variations in temperature, pres-
sure, etc. across the room were sufficient to tip the outcome either way. Whilst certainly possible, this
scenario implies that the conditions in the room, and indeed the properties of the compound, were
balanced on a knife edge; fine-tuned to yield such an outcome. Indeed, this argument trivially extends
to cases where the conditions are extremely diverse, since again there’s no reason why the range of
conditions should saddle a switch-point that is a-priori unknown.

Jaynes (1968) proposed that the a-priori probability distribution for the fraction of beakers (F) inwhich
the compound will dissolve, lacking any other information, should ∝F−1/2 (1− F )−1/2. Indeed, it can be
shown that this is the Jeffrey’s prior (Jeffreys, 1946) of a Bernoulli process. Jaynes’ prior has a bowl-like
shape, peaking at the extreme values ofF = 0 andF = 1, with aminimum atF = 0.5. In fact, it wasHaldane
(1932) who first introduced a prior distribution with this shape, but he instead suggested∝F−1 (1− F )−1.
Haldane’s prior is improper over the interval [0, 1], not normalizing to unity, but his proposal equally
captures Jaynes’ intuition regarding the outlined gedankenexperiment (Fig. 1).

If we replace the beakers with planets, and the act of dissolving with the act of abiogenesis, it has
been suggested that the Haldane prior is equally appropriate in an astrobiological context (Kipping,
2020). Consider an ensemble of Earth-like planets across the cosmos – worlds with similar gravity,
composition, chemical inventories and climatic conditions. Although small differences will surely
exist across space (like the beakers across the laboratory), one should reasonably expect that life either

Figure 1. In the gedankenexperiment of attempting to dissolve an unknown compound X into a series
of water vessels, Jaynes and Haldane argued that, a priori, X will either dissolve almost all of the time
or very rarely, but it would be contrived for nearly half of the cases to dissolve and half not. The func-
tion plotted here represents the Haldane prior (F−1 (1− F )−1) that captures this behaviour.
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emerges nearly all of the time under such conditions, or hardly ever. As before, it would seem contrived
for life to emerge in approximately half of the cases – again motivated from the fine-tuning perspective.

This argument can be extended to other relevant astrobiology terms too, such as the fraction of
worlds that are occupied with multicellular life, or technologically sophisticated species. As stated,
the Haldane perspective seems persuasive, but perhaps a little qualitative and lacking rigorous justifi-
cation. It’s also unclear what it’s implications really are to astrobiology, since all it really states is that
the two extremes are equally likely – a lonely versus a crowded universe.

One might be tempted to invoke our own existence as a data point here; indeed Jaynes wrote that a
single experimental result can be used to produce a fairly conclusive determination of how the other
experiments will fare. However, Jaynes was considering the case of an outside observer, whose exist-
ential fate was divorced from the outcome as to whether compound X dissolved or not. This is mani-
festly not true here. We only exist because a success occurred. It is quite possible that successes are
extremely rare, but we necessarily must be one of those successes as a self-aware sentient being.
We are describing here an example of the weak anthropic principle (Carter, 1974), which demotes
the observation that we exist to a completely useless datum – given that it’s a conditional necessity.

Many authors have attempted to use the Copernican (or Mediocrity) principle to argue for the plur-
ality of life elsewhere in the cosmos (e.g. Rogers, 2001; Westby and Conselice, 2020), but we caution
against such a path. Consider for example the frequency of surface liquid water on a planet.
Before observing any other planets within the Solar System (i.e. a priori), one might posit that, by
the Copernican principle, liquid water must be typical on planetary surfaces. Such a claim is clearly
wrong with the hindsight of modern observations. The reason that the Copernican principle fails
here is because our very existence is generally accepted to be dependent upon that water (Meadows
and Barnes, 2018; Schwieterman et al., 2018; Hallsworth et al., 2021). In contrast, consider the fre-
quency of Neptune-like planets in the Universe. Neptune and Uranus do not appear to have any sig-
nificant influence on Earth’s development, and thus there’s no obvious objection to invoking the
Copernican principle here. Indeed, such planets have been found to be very common (Bonfils et al.,
2013; Dressing and Charbonneau, 2015; Hsu et al., 2019; Bryson et al., 2020), demonstrating a suc-
cessful and appropriate use of the principle.

How can we interpret Haldane’s perspective to astrobiology then? What are its implications, and is
there ultimately a more rigorous justification for its validity? To make progress, it is necessary to con-
nect Haldane’s perspective to Drake’s – as in the Drake equation (Drake, 1965). Regardless of the con-
siderable and on-going debate concerning its utility (which we will touch on), the Drake Equation is the
foundation upon which theoretical search for extraterrestrial intelligence (SETI) rests. In this work, we
will first bridge the Drake Equation to a more modern and concise formulation that dissolves the com-
mon criticisms levied at it. This also reveals how the problem of fine-tuning emerges for SETI opti-
mists. We will then show how this modern formalism naturally leads to Haldane’s perspective in
and discuss the implications towards the end.

The steady-state Drake equation

The case for simplifying the Drake equation

The Drake equation expresses the mean number of communicative civilizations in the Galaxy (Drake,
1965), given by

NC = Rw × fP × nE × fL × fI × fC × LC, (1)
where Rw is mean rate of star formation, fP is the fraction of stars that have planets, nE is the mean
number of planets that could support life per star with planets, fL is the fraction of life-supporting pla-
nets that develop life, fI is the fraction of planets with life where life develops intelligence, fC is the
fraction of intelligent civilizations that develop communication and LC is the mean length of time
that civilizations can communicate.
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We note that many terms frequently used in the SETI literature are problematic (Almár, 2011),
including the term ‘civilization’ for its Eurocentric implications (Denning, 2011; Smith, 2012).
In what follows, we favour the term extraterrestrial intelligences (ETIs), which although historically
has been interpreted as ‘extra-terrestrial intelligences’, we here use to define ‘extraterrestrial techno-
logical instantiations’.

When discussing the Drake equation, it’s important to emphasize that NC is an expectation value.
It does not represent the exact number of ETIs at any one time (Glade et al., 2012), but rather the average
over some time interval over which the dependent parameters are approximately stable (Kipping, 2021).

A common pedagogical exercise is to ask students to guess the various values and estimate NC for
themselves, and indeed these guesses are typically as reasonable as any other, since the latter four terms
are wholly unknown (Sandberg et al., 2018). Indeed, this ignorance could be easily weaponized to dis-
miss the utility of the Drake equation (Gertz, 2021), to which proponents often counter that it was never
intended to be used as a calculator like this – the original intent was merely to convene a meeting and
‘organize our ignorance’, to quote Jill Tarter (Achenbach, 2020).

Although one must concede that a full set of accurate inputs cannot be supplied to the Drake equa-
tion (Sandberg et al., 2018), that does not mean it has no quantitative utility – the very framing of the
problem implies certain statistical results. For example, Maccone (2010) argued that the choice of
which terms to include is somewhat debatable and one could reasonably conceive of longer lists of
multiplicative parameters e.g. fraction of life forms that go on to develop multicellular life. If the
list of parameters are treated as independently distributed then the central limit theorem dictates that
NC must follow a log-normal distribution, despite the fact we do not know what the probability distri-
butions for each parameter even are.

The birth–death formalism

In our previous work (Kipping, 2021), it was suggested to imagine the reverse. Rather than trying to
expand the Drake equation ad infinitum (Maccone, 2010), one may compress it to the most efficient
form possible. It can be seen that the first six parameters in the Drake equation, including whatever
additional intermediate terms one might wish to add (e.g. Molina Molina, 2019), all describe the
net process of spawning communicative ETIs – the birth rate1. Indeed, these six terms together have
units of inverse time. The final term is conceptually different in describing the death process – how
long the communicative ETI lasts. We may thus re-write the Drake equation as simply

NC = Rw × fP × nE × fL × fI × fC︸����������������︷︷����������������︸
;GC

×LC. (2)

This birth–death formalism is flexible and easily interpretable. For example, it’s trivial to exchange the
terms to cover different variations of N. For example, if NI is the number of ETIs (irrespective of their
communicative intent), then NI = ΓILI. Further, it’s also easy to change the volume from the entire
Galaxy (á la Drake’s original expression), to some relevant sample of interest (e.g. a specific cluster).

This formalism also dissolves many criticisms levied at the Drake equation. First, there is no longer
a problem with temporal retardation effects as pointed out by Ćirković (2004). However in the original
framing it’s unclear as to whether Rw should be the current star formation rate (Gertz, 2021), or the
value from 4.4 Gyr ago, or something in-between, that question is avoided completely by simply stating
that there is some current birth rate at which ETIs emerge, and that’s that. Second, it resolves the terra-
centric tunnel vision effect one might critique the original equation with (Ćirković, 2007), which con-
siders a singular pathway to intelligence that is perhaps ignorant of other roads (e.g. tidally heated
moons of rogue planets; Abbot and Switzer, 2011). Indeed, the apparent subjectiveness of which
terms to include and which to not (e.g. Molina Molina, 2019) is moot here.

1Note that the birth and death rates used here refer to average rates across the ensemble.
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Finally, the formalism is indisputable. Worlds inhabited by species using technology must some-
times emerge (since we are one) and thus one can always define the number of newly birthed examples
per unit time. The mechanism of this emergence is irrelevant in this framing, it could be via natural
evolution (Kipping, 2020), directed panspermia (Crick and Orgel, 1973) or something else entirely –
all pathways simply sum into this one birth rate. Similarly, one can always define the number of ETIs
that terminate per unit time. Of course, these advantages come at the expense of a disadvantage – the
birth–death formalism is not as useful for organizing a scientific conference, the original purpose of the
Drake equation (Gertz, 2021).

Lessons from a previous attempt at the stationary Drake equation

In Kipping (2021), it was argued that the birth–death formalism of the Drake equation allows one to say
something about the distribution of the number of ETIs over time2. Although NC represents the mean
number of communicative ETIs, let’s define nC as the time varying number – the stochastic value
which should fluctuate around NC. Accordingly, one may write that E[nC] =NC. The birth process is
characterized by a mean number of communicative ETIs birthed per unit time, ΓC, which rigorously
defines a Poisson process (Glade et al., 2012). For the death process, an exponential distribution
was assumed in Kipping (2021), following the arguments made in Kipping et al. (2020). It was
then demonstrated that the product of a Poisson and an exponential process yields another Poisson pro-
cess. Hence, nC∼ Po[NC].

However, one feature of this approach seems in error and reveals an apparent weakness in the
birth–death simplification – indeed a weakness that extends to the original Drake equation too. The
two terms, ΓC and LC, have extreme permissible ranges (Lacki, 2016) and thus could be varied
such that NC exceeds the number of stars in the Galaxy (or whatever volume one is considering).
This also rings true for the original Drake equation, since LC is naively unbounded and could likewise
be engineered to yield more ETIs than stars. This might seem like an edge effect; after all, few would
reasonably argue for a value of LC > 1011 years that would create this issue since this exceeds the age of
the Universe (Planck et al., 2020). Nevertheless, it rigorously demonstrates that the Drake equation is
incomplete, missing some detail that leads to the correct asymptotic behaviour.

That something is carrying capacity. In any environment, be is a Petri dish or a galaxy, there is a
finite carrying capacity of that volume to host the life forms under consideration – a fact understood in
ecology since at least the 1840s (Sayre, 2008). Microbial colonies can’t grow ad infinitum in a test tube.
In what follows, we build upon our previous work (Kipping, 2021) to account for this effect, within the
birth–death paradigm.

A steady-state Drake (SSD) equation

In this work, we concern ourselves with the steady-state condition, where the mean number of births
per unit time equals the mean number of deaths per unit time. This equilibrium point will of course
drift over aeons due to the evolution of the cosmos (e.g. the star formation rate), but we assume
that the extant population is in such a steady state. The conditions for this statement to hold are expli-
cated later.

Let us write that the mean number of births per location over a time interval, δt, is given by λBδt.
Note that already we have deviated from the parameterization of Kipping (2021), who consider the
birth rate summed over all worlds (Γ), not per world as done so here3. Also note our deliberately
vaguely defined ‘location’ phrasing above. To some degree, how one defines a location is up to the
user and is inextricable with how one defines an occupied location. It could be planets, rocky objects,

2In contrast, Maccone (2010) consider the prior distribution of the mean number i.e. with respect to our subjective belief.
3Although both are per unit time.
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star systems or even cubic parsecs. We’ll use the term ‘seats’ in what follows, as in potential seats for
occupation.

Consider that there exists NA available seats, and thus we have an expectation value of NAλBδt births
over the interval δt, where the actual birth number in any given time interval will vary stochastically
about this expectation value following a Poisson distribution (Kipping, 2021). The number of available
seats will not be equal to the total number of seats, NT, since we assume here that a birth cannot occur
within a seat that is already occupied. Hence, we write that NA = (NT− NO), where NO is the mean num-
ber of occupied seats.

The mean number of deaths over a time interval, δt, will equal the mean number of occupied seats
multiplied by the fraction that are expected to perish. Let us write that over a time interval δt, the frac-
tion of occupied seats that will extinguish is λDδt. Thus λD represents the death rate (of the current
epoch)4 . We may now balance the births and deaths as

(NT − NO)lB = NOlD, (3)

where the δt time intervals have cancelled out. This expressions defines our condition for a steady state.
Re-arranging, we obtain

F = lBD
1+ lBD

, (4)

where we have used the substitutions F≡ (NO/NT) (i.e. the occupation fraction) and λBD ≡ (λB/λD). We
refer to equation (4) as the SSD equation in what follows. Figure 2 depicts 50 Monte Carlo simulations
where we set δt = 0.01, λB = 3 and λD = 0.2 for NT = 1000 total seats. Since we have a discrete number
of seats and we know the mean number of births/deaths in each interval, then the stochastic realizations
are simply drawn from binomial distributions. Using equation (4), we expect the simulation to stabilize
at a steady state of NO = 937.5, marked by the horizontal red line.

Before continuing, we highlight some nuances in the above. First, we have only stated that there
exists some rate at which ETIs are born, and correspondingly die. The mechanism of these processes

Figure 2. Using the parameters δt= 0.01, λB = 3, λD = 0.2 for NT = 1000, we perform 50 Monte Carlo
simulations of birth/death actions (wiggly black lines). The horizontal red line represents the
steady-state value of NO, as predicted by equation (4), which matches the simulations. The character-
istic time folding time to reach steady state is given by τ. Finally, the blue line shows the predictive
growth towards steady state using equation (13).

4Another way to arrive at this result is to assume a constant hazard function, such that lifetimes follow an exponential distri-
bution and thus the fraction that die will be 1− e−lDdt . In the limit of small δt, this becomes λDδt.
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is not relevant to the mere act of defining that a pair of such rates must exist. Notably, it could happen
via interaction or not; either way one can always still define such quantities. Second, our primary
assumption is that a steady-state condition exists. Again, this could occur via interaction models or
not, our only assumption is that the population is in a steady state regardless. We will explore what
it takes to violate this assumption later in the paper (such as certain interaction behaviours), as well
as the consequences. Third, our model also assumes a finite number of seats for potential occupation,
but this can readily be interpreted as the number of cubic parsecs, and thus can be defined in a way
robust against manipulation. Put together, our reference to a ‘carrying capacity’ refers to the finite num-
ber of seats, but we acknowledge that this can elicit confusion as limits to growth exist along other axes
too, such as nutrition, resources and energy (which would all feed into the birth rate). Our only claim
with respect to ‘carrying capacity’ is that the number of occupied seats cannot exceed the number of
available seats, a third assumption of this work.

The optimist’s fine-tuning problem

The term λBD is unknown to us, and could in fact span many orders of magnitude a priori (Lacki,
2016). Plotting F as a function of λBD on a linear-log scale (see Fig. 3), one sees a familiar
S-shaped curve characteristic of population growth models with finite carrying capacity (Pearl and
Reed, 1920). The saturation at high λBD reflects the finite carrying capacity – increasing λBD any further
has little effect on F. In contrast, at low λBD, we asymptotically approach a lonely universe.

It is this curve that reveals the basic dilemma facing SETI optimists. We first establish that it would
seem most improbable that F≈ 1. Although our historical SETI surveys are woefully incomplete
(Wright et al., 2018), there presently exists no reproducible, compelling evidence for other techno-
logical entities. Everything we observe about the cosmos appears consistent with this unsettling pro-
spect. A counter argument is that we may be the subject of some grand conspiracy, namely the ‘zoo
hypothesis’ (Ball, 1973), which is potentially compatible with F≈ 1. However, maintaining a

Figure 3. Left: Occupation fraction of potential ‘seats’ as a function of the birth-to-death rate ratio
(λB/λD), accounting for finite carrying capacity. In the context of communicative ETIs, an occupation
fraction of F∼ 1 is apparently incompatible with both Earth’s history and our (limited) observations to
date. Values of λB/λD≪ 1 imply a lonely cosmos, and thus SETI optimists must reside somewhere along
the middle of the S-shaped curve. Right: As we expand the bounds on λB/λD, the case for SETI opti-
mism appears increasingly contrived and becomes a case of fine-tuning.
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monolithic culture at galactic scales given the finite speed of causality makes such a scenario highly
contrived (Forgan, 2017).

Moreover, F≈ 1 is simply incompatible with Earth’s history. Most of Earth’s history lacks even
multicellular life, let alone a technological civilization5 (also see Kipping, 2020). We thus argue that
F≈ 1 can be reasonably dismissed as a viable hypothesis, which correspondingly excludes λBD≫ 1
by equation (4) – although we revisit this point later. We highlight that excluding F≈ 1 is compatible
with placing a ‘Great Filter’ at any position, such as the ‘Rare Earth’ hypothesis (Ward and Brownlee,
2000) or some evolutionary ‘Hard Step’ (Carter, 2008).

If one concedes that F å 1, which we will take as granted in what follows, then what are the remain-
ing scenarios? One lies somewhere along the steeply ascending S-curve, corresponding to λBD ≈ 1.
This is what we consider to be the SETI optimist’s scenario (given that F≈ 1 is not allowed). Here,
F takes on modest but respectable values, sufficiently large that one might expect success with a
SETI survey. For example, modern SETI surveys scan NT∼ 103–104 targets (e.g. Enriquez et al.,
2017; Maire et al., 2019; Price et al., 2020; Ma et al., 2023; Margot et al., 2023), so for such a survey
to be successful one requires F to exceed the reciprocal of this (i.e. F⩾10−4), but realistically greatly so
(i.e. F≫ 10−4) since not every occupied seat will produce the exact technosignature we are searching
for, in the precise moments we look, and at the power level we are sensitive to. This arguably places the
SETI optimist is a rather narrow corridor of requiring N−1

T ≪ lBD & 1.
The requirement for such fine-tuning forms the basis of our concern. It might be argued that as we

increase NT, the contrivance decreases and thus the fine-tuning problem dissolves. In a relative sense,
we agree that the contrivance certainly diminishes as NT grows, but in an absolute sense the contriv-
ance may still be extreme nonetheless. The basic problem is that λBD has no clear lower limit, and could
be plausibly be outrageously small. For example, the probability of spontaneously forming proteins
from amino acids has been estimated be ∼10−77 (Axe, 2004), to say nothing of the many subsequent
steps needed to produce living creatures – let alone technology development.

Onemight try to argue that our veryexistence demandsF ≥ 1/Nw, whereNw is the numberof stars in the
observable Universe. But truly this limit is not justifiable, since the Universe appears to be much larger than
the Hubble volume (Planck et al., 2020), and thus most Hubble volumes could be devoid of sentience –we
necessarily live in the one where it occurred via the weak anthropic principle (Carter, 1974).

Haldane’s return

Probabilistic steady state

The SSD equation relates the occupation fraction, F, as a function of a single input parameter, λBD.
However, it does not speak to the probability distribution of F. For that, we need to adopt some a-priori
distribution for λBD and then evaluate the implied distribution in F-space.

As a scale parameter, let’s take the common approach of adopting a log-uniform prior on λBD,
equivalent to a uniform prior on gBD = log lBD. We bound γBD between γBD,min and γBD,max, such that

Pr(gBD) dgBD = 1

gBD,max − gBD,min
dgBD. (5)

Since F = λBD/(λBD + 1) (equation (4)), then by re-arrangement we have

lBD = F

1− F
, (6)

and thus

gBD = log
F

1− F

( )
. (7)

5Although over timescales of Myr, lost civilizations are plausible; see Wright (2018) and Schmidt and Frank (2019).
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We can calculate the probability distribution of F by noting that

Pr(F) dF = Pr(gBD) dgBD,

= 1

gBD,max − gBD,min

dgBD
dF

dF,
(8)

where we have used equation (5) on line two. The derivative on the right-hand side is easily calculated
from equation (7), giving

dgBD
dF

= d

dF
log

F

1− F

( )
,

= 1

F(1− F)
.

(9)

Substituting this result into equation (8), we finally obtain

Pr(F) dF = 1

log lBD,max − loglBD,min

1

F(1− F)
dF, (10)

which is essentially the Haldane prior. A subtle difference between Haldane’s prior is that the original
version lacks the normalization terms present here, and is defined over the interval F of [0, 1], whereas
here the bounds are Fmin and Fmax, which can be found by equation (4) to yield

Pr(F) dF = 1

log
(
Fmax/(1− Fmax)

)− log
(
Fmin/(1− Fmin)

) 1

F(1− F)
dF. (11)

Note that integrating the above from Fmin to Fmax equals unity. In other words our version of the
Haldane prior is proper, resolving the common criticism of the original Haldane prior.

Haldane = SSD

This derivation resolves the underlying connection between the Drake equation and the Haldane
perspective. Starting from the Haldane perspective, which seems intuitionally appropriate for the
case of astrobiology as argued earlier, we would conclude that the cosmos is either very lonely or
very crowded, whereas as intermediate values appear contrived. Since a crowded cosmos appears
incompatible with observations, SETI optimists find themselves in the fine-tuning valley (see
Fig. 1). This matches the conclusion found using the SSD equation – given the enormous potential
range of the birth-to-death rate ratio, λBD, the cosmos is likely nearly empty or fully occupied, with
intermediate states requiring fine-tuning. We have shown why these two appear to show the same
thing, they are in fact equivalent under the assumption that λB/λD is a-priori log-uniformly distributed –
the generic uninformative prior of a scale parameter. In the Appendix, we show that one can also
engineer a Jaynes prior to manifest, instead of the Haldane, by adopting a uniform prior in
−2 sin−1 (1+ lBD)

−1/2 (instead of loglBD ). However, we argue there is no clear justification for
favouring this over a log-uniform prior.

Conditions for a steady state

To arrive at this result, we have assumed that the current population of extant ETIs exists in a steady
state. We here investigate under what conditions this assumption is appropriate. If we initialize at some
time t = 0, the number of occupied seats will clearly not be in such a state and will require some time to
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grow and reach equilibrium. The relationship between the evolution of the occupied states is given by

dNO

dt
= − dNA

dt
,

= lBNA − lDNO,

= lBNT − (lB + lD)NO,

(12)

subject to the initial condition NO(0) = 0. Solving this, it can be shown that this growth follows

NO(t) = NTlBD
1+ lBD

( )(
1− exp

(− (lB + lD)t
))

. (13)

Accordingly, the timescale for settling into the steady state is several τ≡ (λB + λD)
−1. Recall that l−1

D
corresponds to the mean lifetime of occupation, and one might reasonably argue that this must be
much smaller than the age of the Universe, H−1

0 , hence l−1
D ≪ H−1

0 . If l−1
D ≪ l−1

B , then this argument
guarantees that the steady-state condition has been satisfied already.

In reality, λB and λD will also vary over cosmic history due to the changing environment of the
Universe itself, such metallicity enrichment and evolving star formation rates. However, if the charac-
teristic timescale over which this cosmic evolution occurs is much greater than the equilibrium time-
scale (τ), then the number of occupied seats will remain in a steady state, albeit one for which the
equilibrium point slowly drifts.

Salvaging hope

Although our conclusion casts doubt on the chances of a successful SETI programme, we argue that
SETI is an important and vital experiment that deserves dedicated resources. Whilst the odds of success
appear small, such a success would arguably represent the most impactful scientific discovery in human
history (Wright et al., 2023). Further, there are several ways of salvaging hope in our formalism that we
describe in what follows.

Paths to optimism within the SSD framework?

First, we currently have no lower bound on λBD and thus the fact it can be arbitrarily (even outra-
geously) small underpins the entire fine-tuning argument made here. As shown earlier, the SETI opti-
mist requires that N−1

T ≪ lBD & 1, but current knowledge is fully compatible with lBD,minN−1
T (Lacki,

2016) – hence the conclusion that SETI optimists live in a narrow corridor. Accordingly, one path to
salvage hope would be to place a firm lower limit on λBD that is comparable to, or greater than N−1

T i.e.
we require lBD,min * N−1

T . In practice, it’s difficult to imagine how we could ever place a constraint on
this parameter besides a successful SETI detection – even null detections have little power here since
there are innumerable ways in which a ETI could be missed (Kipping and Wright, 2024).

Of course, we are always free to increase NT i.e. perform ever larger SETI surveys. This will increase
the relative odds of success in direct proportion to NT. However, without a lower bound on λBD,min this
doesn’t, in general, lead to optimism in an absolute sense. For example, consider that λBD = 10−30.
In this case, a case perfectly compatible with everything we know about our cosmos, increasing NT

from say a value of 104 typical of modern SETI surveys (e.g. Enriquez et al., 2017; Maire et al.,
2019; Price et al., 2020; Ma et al., 2023; Margot et al., 2023) to every star in the galaxy (1011)
increases the relative probability of success by 10 million. However, despite this increase, the absolute
probability of success is still minuscule, just 10−19. In contrast, the suppose λBD = 10−10 instead, which
again is equally plausibly, then the expectation value becomes 10 technospheres amongst the ensemble.
Of course, these are just examples and a rigorous quantification would require knowledge of shapes
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(e.g. Jeffreys (1946), Lacki (2016), etc.) and bounding limits (e.g. see Spiegel and Turner, 2012) of a
prior on λBD, over which one could then marginalize to compute expectation values. A core argument
of this work is that there is no sensible lower limit to λBD with present information, and thus it extends
down into the abyss of extremely and arbitrarily small values.

The SSD equation only involves these two parameters, λBD and NT, yet neither provides the leverage
to dismiss the fine-tuning argument in a practical sense. Under the assumptions of this work, efforts to
salvage optimism must thus turn to violating either (1) the SSD itself (2) the assumption that F å 1.
We believe these are only the only two pathways to retaining plausible optimism for SETI.

Violating the SSD

Consider (1) first – violating the SSD. As explored earlier, the steady-state condition is not guaranteed
and strictly assumes that the elapsed time within the window of cosmic habitability exceeds several
τ≡ (λB + λD)

−1. If this is false, equilibrium has not yet been achieved and the number of occupied
seats is presumably in ascent. A decline is also possible, but this assumes the conditions of the cosmos
are more hostile to life now than previously, which is difficult to justify. An ascent would be compatible
with some roaming ETI colonizing the galaxy (Bracewell, 1960; Freitas, 1980; Tipler, 1980), thus
themselves engineering λB exponentially upwards over time. However, we note that the settlement
front is expected to fill the Galaxy &Gyr even for ‘slow’ probes (30 km s−1), aided by the motion
of the stars themselves (Carroll-Nellenback et al., 2019). Accordingly, there is arguably another fine-
tuning problem that we find ourselves living during the mid-point of this relatively rapid transition –
too early and there’s no-one to talk to, too late and we shouldn’t be here to think about it. A similar
argument can be made for any process in which λB undergoes rapid growth (e.g. directed panspermia;
Crick and Orgel, 1973). If, instead, slow growth is favoured, then we fall back into the steady-state
condition.

Allowing for F≈ 1

An alternative solution is (2) – violating the assumption that F å 1. Such a position is challenged by
our observations of the local universe and why it was treated as forbidden in much of this work.
However, a possible way around this is to invoke the ‘Grabby Aliens’ hypothesis (Hanson et al.,
2021) and the weak anthropic principle (Carter, 1974). Here, one might imagine that ETIs emerge
rarely, but when they do, they often proceed to colonize their surrounding region in short order. In
such a universe, most regions are filled and thus F≈ 1. The fact that we don’t see F≈ 1 locally is
because humanity must necessarily have emerged in a volume of space where this wave has not
yet reached, via the weak anthropic principle. We note that this solution falls into tension with the
cosmological principle (Keel, 2002). Such a scenario lends itself to inverting the normal view of
SETI – rather than looking locally, we should be looking at regions greatly separated from us. Such
a hypothesis has the advantage that it is, in principle, verifiable via extragalactic SETI (Griffith
et al., 2015; Zackrisson et al., 2015).

There are other ways to allow for F≈ 1, such as invoking a universal technological ceiling. This is
not a ‘Great Filter’, since that speaks to the death rate. Instead, we have here a universal limit to techno-
logical development for all ETIs, and that limit is coincidentally not far off humanity’s current level of
advancement. In this picture, the fact that we see no evidence of technosignatures littering the sky is
because ETIs never develop to a point where their footprint would be noticeable. In our view, this is a
strong, contrived and unfounded assumption to assert. Similarly, co-ordinated ETI behaviour to avoid
contact (the ‘zoo hypothesis’; Ball, 1973) is challenged by the finite speed of light, the sheer scale of
the Galaxy and likely heterogeneity of emergent behaviours (Forgan, 2017). Similar challenges exist
for ‘Dark Forest’ arguments (Yu, 2015), with the added issue as to why Earth was sterilized at
some point in its long 4.5 Gyr history already.
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In summary, the case of F≈ 1 may be in tension with our observations of the local universe when
considering SETI, but it is perfectly consistent with our observations when considering life more gen-
erally, especially if we treat the seats as star systems or Earth-like planets. By the SSD equation, we
would here argue for precisely the Haldane perspective – a cosmos either teeming with life or almost
devoid of it, both of which are compatible with current observations. We therefore emphasize that our
argument for pessimism does not extend to life more broadly.
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Appendix

We have shown in Section ‘Haldane’s return’ that if one takes the SSD equation (equation (4)) and
assumes that λBD follows a log-uniform prior distribution, then F follows the Haldane prior (∝F−1

(1− F )−1). As noted in Section ‘The Haldane perspective’, the sibling to the Haldane prior is the
Jaynes prior (∝F−1/2 (1 − F )−1/2), which exhibits similar qualitative behaviour in F-space but is a
proper prior over the interval [0, 1]. In addition, the Jaynes prior is rigorously the Jeffrey’s prior
for a Bernoulli process (Jeffreys, 1946). Accordingly, one might wonder, how does λBD need to be dis-
tributed to cause F to follow the Jaynes prior, instead of the Haldane?

By reverse engineering the derivation shown in Section ‘Haldane’s return’, we find that one needs to
assume −2 sin−1 (1+ lBD)

−1/2 = z is uniformly distributed to cause this behaviour – since this is the
anti-derivative of F−1/2(1− F )−1/2. To see this, consider first that ζ is uniformly distributed such that

Pr(z) dz = 1

zmax − zmin
dz. (1)
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By continuity of probability, we thus have

Pr(F) dF = 1

zmax − zmin

dz

dF
dF,

= 1

zmax − zmin

1


F

√ 







1− F

√ dF.
(2)

The limits can now be replaced by virtue of our ζ definition to give

Pr(F) dF = 1

2 sin−1 (











1− Fmin

√
)− 2 sin−1 (












1− Fmax

√
)

1


F

√ 







1− F

√ dF, (3)

which integrates to unity over the interval [Fmin, Fmax], as expected.
Having established this produces the desired behaviour, it is instructive to convert this prior into λBD

space natively by noting that

Pr(lBD) dlBD = 1

zmax − zmin

dz

dlBD
dlBD. (4)

It is easy to show that

dz

dlBD
= d

dlBD

(
− 2 sin−1 (1+ lBD)

−1/2
)
,

= 1





lBD

√
(1+ lBD)

,
(5)

Figure 4. Left: Probability distribution of λBD assuming F= λBD/(1 + λBD) (equation 4) follows a
Haldane (black) versus Jaynes (red) prior. The histograms show the result of 106 Monte Carlo samples,
where we assume λBD,min = 0.01 and λBD,max = 0.1. Right: Same as left but in loglBD space.
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and thus

Pr(lBD) dlBD = 1

zmax − zmin

1





lBD

√
(1+ lBD)

dlBD,

= 1

2 sin−1 (1+ lmin)
−1/2 − 2 sin−1 (1+ lmax)

−1/2

1





lBD

√
(1+ lBD)

dlBD.
(6)

Following a similar derivation, one can show that

Pr( loglBD) d log lBD /








elog lBD

√
)

(1+ elog lBD )
d loglBD. (7)

We plot equations (6) and (7) in the left and right panels of Fig. 4, respectively, in red. Alongside, we
plot the same functions but assuming the Haldane prior in F in black, which is to say a log-uniform
prior in λBD. This reveals their similar but distinct behaviour. In particular, the Jaynes prior places
greater weight at large λBD values. Since λBD is a scale parameter with some unknown minimum
and maximum, a log-uniform prior is the most uninformative choice thus justifying our decision to
adopt it in this paper.
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