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Abstract
User-defined higher-order rewrite rules are becoming a standard in proof assistants based on intuition-
istic type theory. This raises the question of proving that they preserve the properties of beta-reductions
for the corresponding type systems. In a series of papers, we develop techniques based on van Oostrom’s
decreasing diagrams that reduce confluence proofs to the checking of various forms of critical pairs for
higher-order rewrite rules extending beta-reduction on pure lambda-terms. As shown in a previous paper
of the two middle authors, confluence of a terminating set of left-linear rewrite rules is obtained when
their critical pairs are joinable, beta-rewrite steps being disallowed. The present paper concentrates on the
case where arbitrary beta-rewrite steps are allowed for joining critical pairs. The rewrite relation used for
analyzing confluence may rewrite arbitrarily many non-overlapping redexes in a single step. This rela-
tion gives rise to critical pairs that overlap both horizontally, as with parallel rewriting, but also vertically,
forming chains of successive overlaps. Practical examples of use of this technique are analyzed.

Keywords: Church–Rosser property; orthogonal reductions; decreasing diagrams

1. Introduction
The two essential properties of a type theory, consistency and decidability of type checking, follow
from three simpler ones: type preservation, strong normalization, and confluence. In dependent
type theories, however, confluence is often needed to prove type preservation and strong normal-
ization, making all three properties interdependent if termination is used in the confluence proof.
This circularity can be broken in two ways: by proving all properties together within a single
induction (Goguen 1994); or by proving confluence on untyped terms first, and then successively
type preservation, confluence on typed terms, and strong normalization. We develop the latter
way here, focusing on untyped confluence.

In a previous paper, we have investigated the case of a terminating set of left-linear rules
for which critical pairs can be shown joinable by using rules from R. In the same paper, we
explained that allowing us the use of arbitrary β-steps for joining critical pairs would require
a more complex notion of critical pair, and that parallel critical pairs cannot suffice in general.
The goal of this paper is therefore to address the case of possibly non-terminating left-linear
rules, or of terminating left-linear rules whose critical pairs cannot be joined without using
β-steps.
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Because beta reductions do not terminate for pure lambda terms, and rewrite rules may have
critical pairs, the only available tool for proving confluence in this case is based on van Oostrom’s
decreasing diagrams (van Oostrom 1994). Van Oostrom’s theorem is abstract: its application to
non-terminating term rewriting relations conceals many difficulties, as is stressed in (Appel et al.
2010). An essential aspect of our methodology is to exhibit the rewrite relation for which con-
fluence results from an analysis of its critical pairs. Here, this relation is orthogonal higher-order
rewriting which pairs up nicely with beta reductions, whose confluence proof by Tait and Martin
Löf was actually based on a dedicated notion of orthogonal reductions that they called paral-
lel. A general notion of orthogonal rewriting was introduced in (Terese 2003), called multi-step
rewriting. Multi-step rewriting aims at overcoming the limitations of left-linear, critical pair free
rewriting systems introduced in (Huet and Lévy 1991), also called orthogonal systems. The main
idea is to package several rewriting steps together, using possibly different left-linear rules pro-
vided they do not overlap, therefore achieving orthogonality inside a givenmulti-step by definition
of rewriting. Orthogonal rewriting, as defined here, is a variation of the same idea in which the
use of a single rule is allowed in a given multi-step. It turns out that the analysis of confluence
becomes then much easier, and that fewer critical pairs need to be considered. The analysis of
orthogonal rewriting and the corresponding Nested Critical Pair Theorem are essential techni-
cal contributions of this paper. This lemma shows that critical pairs of orthogonal rewriting may
need overlapping left-hand sides of rules horizontally (at parallel positions), as well as vertically
(at an increasing sequence of ancestor positions). As a consequence, nested critical pairs may be
infinitely many.

Ourmain theoretical result is then that higher-order rewriting in combination with beta reduc-
tion is confluent on untyped terms if all its nested higher-order critical pairs admit decreasing
rewrite diagrams. It is, however, possible to stick to non-nested higher-order critical pairs for rules
belonging to a terminating subset, as in (Ferey and Jouannaud 2019). The technique is illustrated
with practical examples showing the strength and limits of the result.

Our computational model based on untyped higher-order reductions is recalled in Section 2,
which contains a brief statement of our main result. Higher-order orthogonal reductions are
defined in Section 3, which culminates with the nested critical peak theorem. Confluence is studied
in Section 4: after recalling the notion of decreasing diagrams, algebraic properties of reductions
are developed before giving the confluence theorem holding in our computational model.

2. Computational Model
We aim at rewriting terms of an untyped lambda calculus λF generated by three pairwise disjoint
sets, a signature F of function symbols, a set X of variables, and a set Z ofmeta-variables.

2.1 Terms
λF is a mix of the annotated lambda-calculus and Klop’s combinatory reduction systems (Klop
1980) which extends the calculus introduced in (Ferey and Jouannaud 2019) by having annotated
abstractions to faithfully abstract dependently typed calculi whose confluence properties are our
real target.

Terms are those of an untyped lambda calculus equipped with a binary abstraction λx:u.v,
whose first argument u is an arbitrary term called annotation, and enriched with F -headed terms
of the form f (u) with f ∈F and meta-terms of the form Z[v] with Z ∈Z . Only variables can be
abstracted over. Elements of the vocabulary have arities, denoted by vertical bars as in |a|. Variables
have arity zero. The grammar of terms is the following:

u, v := x | (u v) | λx:u.v | f (u) | Z[v] where x ∈X , f ∈F , |u| = |f |, Z ∈Z , and |v| ≤ |Z|
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As is usual, we do not duplicate parentheses, writing f (x y) for f ((x y)). This is the only case where
an application does not carry its own parentheses along.

λF is introduced with a unary abstraction in (Ferey and Jouannaud 2019). Our abstraction
operator ′′λx : .′′ has arity 2, the first argument being the annotation and the second the body. As is
always the case in typed lambda calculi, the scope of the abstraction is reduced to its second argu-
ment: renaming the variable x by a fresh variable y in λx : u.v amounts to rename the bounded
occurrences of x by y in the body only. Our syntax is slightly richer than that of the λ-calculus
in order to enable abstracting step by step derivations in dependently typed lambda calculi by
derivations in λF (we know of no confluence preserving encoding of dependently typed deriva-
tions into the untyped lambda calculus with a unary abstraction). Annotations come into play
when analyzing ancestor peaks in Sections 4.5.2 and 4.5.3. The calculus without annotation being
itself an abstraction of λF , all results presented here adapt straightforwardly to that calculus by
forgetting annotations (in which case, λx. becomes a unary operator, whose first argument is now
its body). We use this facility unannounced in examples originating from non-dependent typed
lambda calculi.

Unlike function symbols and Klop’s meta-variables, meta-variables here have an arity which
is not fixed, but bounded. This handy feature used in DEDUKTI (Dowek 2016) provides a simple
syntax for expressions of the form ( . . . (X a1) . . . an). For example, if |Z| = 1, the two terms f (Z)
and f (λx : nat.Z[x]) –standing for f (λx : nat.(Z x))– coexist (and are different in the absence of
extensionality –DEDUKTI is not extensional). The example described in Section 2.12 shows that
this allows us more concise rules by using different arities for different occurrences of the same
meta-variable in a rule, hence avoiding useless η-expansions.

We use the small letters f , g, . . . for function symbols and x, y, . . . for variables and reserve
capital letters X, Y , . . . for meta-variables. When convenient, a small letter like x may denote any
variable in X ∪Z . We use the notation |_| to denote various quantities besides arities, such as the
length of a list, the size of an expression or the cardinality of a set. Given a list u, u[m..n] denotes
the finite sublist um, . . . un, and u[m..n]\{i1, . . . , ip} the sublist of u[m..n] whose elements uij for
j∈[1..p] have been filtered out. u may be omitted, in which case it is the list of natural numbers.
We use the notation {a1, . . . , an} for enumerated sets or multisets and identify {a} with a.

Arities extend naturally to all terms, writing ar(t) for the arity of an arbitrary term t, by
induction on their structure: ar(λx : s.t)= 1+ ar(t), ar(X[t])= |X| − |t| and ar((u v))= ar(x)=
ar(f (u))= 0.

2.2 Positions
Positions in terms are words over the natural numbers, using · for concatenation, � for the empty
word, ≤P for the prefix order (above), ≥P (below) for its inverse, <P and >P for their respec-
tive strict parts, and p#q for¬(>P∨≤P ) (parallel). These orders are extended to sets of positions
as follows: P≥P Q (P >P Q, P≤P Q, P <P Q, respectively), where Q is a set of parallel posi-
tions, iff ∀p ∈ P ∃q ∈Q such that p≥P q (p>P q, p≤P q, p<P q, respectively). We denote by
Pmin the subset of minimal positions of a set of positions P, and by P|Q, where Q is a subset of
parallel positions of P, the set {o : ∃q ∈Q such that q · o ∈ P}.

Meta-variables having an arity, positions in the meta-term Z[t] are no different from positions
in the term f (t). As usual, pn denotes the concatenation of p with itself (n− 1)-times.

Given a term M, we use V ar(M) and MV ar(M) for its sets of free variables and of meta-
variables, respectively,M(p) for its symbol at position p,M|p for its subterm at position p,M[N]p
for the term obtained by replacing M|p by N in M, and Pos(M), V Pos(M), MPos(M) for the
following respective sets of positions of M: all positions, the positions of free variables, and of
meta-variables. A term M is pure if no variable of M is bound twice or occurs both bound and
free, ground if V ar(M)=∅, closed ifMV ar(M)=∅, and linear if |MPos(M)|=|MV ar(M)|.

For example f (X[a, b])(1)= X while f (X[a, b])|1 = X[a, b] and f (X[a, b])|1·1 = a.
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2.3 Substitutions
Substitutions are arity-preserving, capture-avoiding homomorphisms written as σ={x1 �→
M1, . . . , xn �→Mn}, or σ={x �→M}, where ar(Mi)≥ |xi|. Note that xi denotes here an element of
X ∪Z . Dom(σ )= {x1, . . . , xn} ⊆X ∪Z is the domain of σ while Ran(σ )=⋃i=n

i=1 V ar(Mi)
is its image. A substitution σ can be restricted to or deprived from (meta-)variables in some set
V , written σ|V and σ\V , respectively. As in λ-calculus, substituting in terms requires renam-
ing bound variables to avoid capturing free ones. Then, xiσ = ti and yσ = y if y �∈Dom(σ );
f (t)σ = f (tσ ); (u v)σ = (uσ vσ ); and (λx : t.u)σ = λx : tσ .uσ if x �∈Dom(σ )∪Ran(σ ) (oth-
erwise, as announced, x must be renamed in the term λx : t.u). Assuming now Z �→ λx :
t.s ∈ σ , where s is not an abstraction and |x| = |t| = n, the additional rule for meta-variables,
inspired from Klop’s definition of substitutions in the case of fixed arities (Klop 1980), is as
follows:

– Case 1: |u| =m≤ n, then Z[u]σ = λx[m+1..n] : t[m+1..n].s{x[1..m] �→ uσ },
hence delaying the replacement of those arguments of Z that are missing.

– Case 2: m> n: since ar(s)≥ |Z| − |x| ≥ |u| − |x|> 0, s= Y[s] and u= v w with |v| = n and
|Y| − |s| ≥ |w|. Then Z[u]σ = Y[s{x �→ vσ },wσ ].

Substitutions are extended to sequences of terms and to substitutions in the natural way. We
use postfix notation for the application of σ to a term t, writing tσ , or to a vector of terms t, writing
tσ , or to a substitution τ , writing τσ , and call tσ (resp., tσ , τσ ) the instance of t (resp., t, τ ) by
σ . The notation Pos(σ ) will have the obvious meaning of a sequence of Dom(σ )-indexed sets of
positions.

Let for example s be the term f (X[(x y), y]), where the meta-variable X has two arguments,
(x y) and y, and σ be the substitution {X �→ λx′y′z′.g(x′, y′, z′), y �→ a}, assuming X has arity 3.
Then, we get sσ = f (λz′.g((x y)σ , yσ , z′σ ))= f (λz′.g((x a), a, z′)). Let us now compare sσ with the
instance by σ of the term u= f ((X (x y)) y), in which X is applied successively to (x y) and y. Then
uσ = f ((λx′y′z′.g(x′, y′, z′) (x a)) a). We can see that uσ reduces to sσ in two β-steps (anticipating
the next section): substitutions of meta-variables hide those reductions. This actually has positive
impacts on confluence in practice, as we shall discover.

2.4 Splitting terms
Definition 1. Given a term u, a set P= {pi}i=ni=1 of parallel positions in u such that ∀i ∀q<P pi :
u(q) �∈Z is called set of splitting positions of u.

The term obtained by splitting u along P is uP = u[Z1[x1]]p1 . . . [Zn[xn]]pn (cutting out below P)
and its associated substitution is uP = {Zi �→ λxi.u|pi}i=ni=1 (cutting out above P), where, ∀i ∈ [1, n],
xi is the list of all variables of u|pi bound in u on the path from pi to its root, and Zi is a fresh
meta-variable of arity |xi|.

The definition of substitution for meta-variables ensures that uPuP=u, which justifies writing
u=u[u|P]P as a familiar shorthand.

Splitting allows us to rewrite independently above and below the set of positions P, the
abstractions introduced by uP protecting in the subterms u|P the occurrences of variables bound
above P.

2.5 Reductions
Given a binary relation −→ on terms, called rewriting, we use:←− for its inverse;←→ for its
closure by symmetry; −→−→ for its closure by reflexivity and transitivity; and ←→←→ for its closure
by reflexivity, symmetry and transitivity (also called convertibility). Rewriting terms extends to
substitutions as expected.
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A term s is in normal form if there is no t such that s−→t. If it is not, we define a (not necessarily
unique) normal form for s as a term t in normal form such that s−→−→ t.

A rewriting relation is terminating if all its reduction sequences t0 −→ t1 −→ . . .−→ tn are
finite. Termination garantees the existence of normal forms for every term.

A peak (resp., local peak) is a triple of terms s.t. s←−←− u−→−→ t (resp., s←− u−→ t). Two
terms s, t are joinable if s−→−→ u ←−←− t for some u. Confluence is the property that every two
convertible terms are joinable. Confluence garantees the unicity of normal forms for every term.

Arrow signs used for rewriting may be decorated, below by a name, and above by positions at
which rewriting takes place, as in s

p−→
i
t (rewriting s at position p with rule i) or by a property that

these positions satisfy, as in u
≥Pp−→−→
R

v (rewrites from u to v with rules in R take place below p).
Two different kinds of reductions coexist in λF , functional and higher-order reductions. Both

are meant to operate on closed terms. However, rewriting open terms will sometimes be needed,
in which case rewriting is intended to rewrite all their closed instances at once.

2.6 Functional reductions
Functional reduction is the relation on terms generated by the rule (λx:u.v w)−→

βα

v{x �→w}. The
usually omitted α-index stresses that renaming bound variables, called α-conversion, is built-in.
The argument u, which plays no effective rôle here, will often be omitted as well.

As is customary (Miller 1991), the particular case for which w is a variable is denoted
by β0. Note that instantiating a β0-step may yield a full β-step. For example, s= (λx : u.(λy :
v.g(y) x) a) 1·1−→

β0
(λx : u.g(x) a) �−→

β
g(a) while s �−→

β
(λy : v.g(y) a) �−→

β
g(a). This is our main motiva-

tion for using Klop’s notion of substitution for meta-variables, among whose numerous benefits
is the elimination of β0-steps that are now hidden under the carpet.

We will also use a particular case of extensionality, for meta-variables only:
λz:a.X[v, z]=Mη X[v] if |X|> |v|, z fresh

The rôle of Mη is to identify two meta-terms having a different number of subterms, as is
made possible by our notion of meta-variable with maximum arity. Clearly, Mη is not a sound
rule of the annotated λ-calculus, since it equates λz:a.X[v, z] with λz:bX[v.z] for arbitrary
annotations a and b. Identification of such meta-terms will be important later to join criti-
cal pairs; this will be our only use of Mη. In this context, the (sound) property needed is the
following:

Lemma 2. Let s, t be terms such that s|p = λz : a.X[v, z] and t= s[X[v]]p, σ a closed substitution of
the form X �→ λxz : a.v (omitting annotations for x). Then, uσ=vσ .

Proof. We get: λz : u.X[v, z]σ = λz : u.v{x �→ vσ } = X[v]σ , showing that the annotation does not
play a rôle on appropriate closed instances.

One particular case where σ must be of the above form, hence allowing to use Lemma 2, is when
there is a single annotation possible, which encodes the calculus without annotations. This is the
case of the example described in Section 2.12 whose critical pairs are computed in Section 4.3.

Otherwise, it must be proved that σ must be of the above form, hence possibly requiring some
typing argument.

https://doi.org/10.1017/S0960129522000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000044


Mathematical Structures in Computer Science 903

2.7 Patterns
Higher-order reductions result from rules whose left-hand sides are higher-order patterns in
Miller’s or Nipkow’s sense (Mayr and Nipkow 1998), although they need not be typed here:

Definition 3 (Pattern). A pre-redex of arity n in a term L is an unapplied meta-term Z[x] whose
arguments x are n pairwise distinct variables. A pre-pattern is a β-normal term all of whose meta-
variables occur in pre-redexes. A pattern is a ground pre-pattern which is neither a pre-redex nor an
abstraction, that is, is not headed by a meta-variable or λ.

We assume, as does Nipkow, that patterns are β-normal, which allows us to eliminate critical
pairs of users’ rules with the β-rule. Note also that patterns are ground: free variables are not
needed, one can use meta-variables of arity zero instead. Pre-patterns pop up naturally in pattern
matching and unification, since patterns must be deconstructed.

Erasing types from a Nipkow’s pattern yields a pattern in our sense, since his pre-redexes being
of base type, they cannot be applied. This restriction is important for matching and unification of
patterns (Ferey and Jouannaud 2019).

Observe that pre-redexes in pre-patterns occur at parallel positions, whose set plays a key rôle:

Definition 4 (Fringe). The fringe FL of a pre-pattern L is the set of parallel positions of its pre-
redexes. We denote by FPos(L)={p∈Pos(L) : p�≥PFL} the set of functional positions of L. For
convenience, we define Fβ = {1·1, 1·2, 2}.

Example 1. The term L= f (λx : a.λy : b.λz : c.g(X[x, y, z], X[x, y])) is a pattern. Its pre-redexes
are the subterms X[x, y, z] and X[x, y]. Its fringe is the set FL = {1·23·1, 1·23·2}. The term f (g(λx :
a.λy : b.λz : c.g(X[x, y, z])) (a X)) is also a pattern, and its fringe is the set {13·23·1, 1·2·2}. Terms
f (λx.x a), f (λx.X[x, x]), f (X[a]), f (X[Y]), and f (X Y) are no patterns.

Note that the set of functional positions coincides with its first-order version, and that patterns
have a nonempty set of functional positions. Since patterns are ground terms, for all pre-redexes
Z[x]= L|p at position p ∈ FL in the pattern L, the variables x are all locally bound above p in L.

2.8 Higher-order matching and unification of patterns
Given a term u and a pattern L, the search for a substitution σ such that Lσ = u, called amatch of
L= u, is a matching problem. Since L is ground, the domain of σ is a set of meta-variables, and
therefore, matching reduces to the textual replacement of the meta-variables in Dom(L) by their
value followed by some β0-steps: matching a term against a pattern is called higher-order pattern
matching. An algorithm is given in (Ferey and Jouannaud 2019) for the syntax adopted here.

Given now two patterns – or pre-patterns – L,G, the search for a substitution σ such that
Lσ =Gσ , called a solution of L=G, is a unification problem. Again, the terms obtained by tex-
tual replacement of the meta-variables in Dom(L) and Dom(G) by their value cannot be exactly
equal since β0 steps need to be performed: unification of patterns is called higher-order unification.
An algorithm is given in (Ferey and Jouannaud 2019) which computes a most general higher-
order unifier, that is a substitution θ of which any solution σ is an instance: σ = θτ for some τ

(up to variable renaming). Again, Lσ ,Gσ , Lθτ , and Gθτ are all equal (up to variable renaming),
β0-equality steps being hidden.

By incorporating β0-steps to the substitution calculus, we got rid of them. They will not show
up anywhere, hence eliminating a technical burden of a previous definition of untyped higher-
order rewriting (Assaf et al. 2018). Matching and unification of simply typed patterns is due to
Miller (Miller 1991), see also (Nipkow 1991).
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2.9 Higher-order reductions
Definition 5 (Rule). A (higher-order) rule is a triple i:L→R, where i is its (possibly omitted) name,
the left-hand side L is a pattern, and the right-hand side R is a ground term such that MV ar(R)⊆
MV ar(L). The rule is left-linear if L is linear.

So, rules are pairs of (specific) ground terms, and their left-hand sides must be headed by
a function symbol or an application, but cannot be β-reducible. Both terms may have meta-
variables, but do not admit free variables. This allows us to clearly separate the object language
(which has no meta-variables), from the meta-language (which has meta-variables). Rules, critical
pairs, and splittings belong to the meta-language.

Definition 6 (Higher-order untyped rewriting). Given a term u, a position p∈Pos(u), and a rule
i:L→R, u rewrites with i at p, written u

p−→
i
v or u

p−→
L→R

v, iff u|p=Lγ for some substitution γ , and

v=u[Rγ ]p. We write u
p−→
R

v for ∃i ∈R, u
p−→
i
v.

Let’s now make our splitting notations fully explicit. Whenever u
p−→
i
v, we have by definition:

• up = u[X[x]]p and up = {X �→ λx.u|p} with x the variables bound above p in u and X a fresh
meta-variable of arity |x|.

• u= upup = up{X �→ λx.u|p} = up{X �→ λx.Lγ }
• v= up{X �→ λx.Rγ }, hence vp = up, vp = {X �→ λx.Rγ } and v|p = Rγ .

Example 2 (Nipkow 1991). Let L=der(λx.times(A, F[x]))→ times(A, der(λy.F[y]))=R and
σ = {A �→ 2, F �→ λx.x} be the identity substitution for F. Then, Lσ = der(λx.times(2, x)) and
Rσ = times(2, der(λy.y)), hence der(λx.times(2, x))−→times(2, der(λy.y)).

Note the simplicity of this definition of higher-order rewriting, which is exactly the same as
the definition of rewriting for first-order terms. In sharp contrast with Nipkow, we observe that
we do not need matching explicitly modulo β0, since the corresponding β0-steps are now hid-
den in Klop’s definition of substitution for meta-variables. Besides, we do not assume that u, or
v, is β-normal -or even β0-normal-, entirely or up to position p. Two reasons prevent it: first,
β-normal forms may not exist; and second, the techniques we use rely on monotonicity and
stability properties, which would not be satisfied were normalization steps used in the definition.

Example 3 (Lambda calculus). The trivial encoding, as a higher-order rule in our language,
of the beta-rule is (λx :W.U[x] V)→U[V] does not work: the left-hand side is not a pattern,
since it is not β-normal. The seemingly better encoding (U V)→U[V], whose left-hand side is
β-normal, does not work either, since the pre-redex U is applied, which is also forbidden. We
must therefore, as is usual, encode application as a binary operator @. The beta-rule then becomes
@(U,V)→U[V], using the facility thatU has an arity at most 1 (and not equal to 1). We can now
notice that this rule does not overlap itself except trivially, hence has no critical pairs by itself.

This example shows the possibility to encode the beta rule in order to study its properties
as a higher-order rule by extending the language with the symbol @. Using instead the encod-
ing β : (λx :W.U[x] V)→U[V], its left-hand side is only missing the property that patterns are
beta-normal. But few properties of higher-order rewriting require that left-hand sides of higher-
order rules are beta-normal. To avoid unnecessary repetitions, we use this remark in the sequel by
explicitly mentioning which are properties of R ∪ β and which are properties of R alone.

https://doi.org/10.1017/S0960129522000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000044


Mathematical Structures in Computer Science 905

2.10 Basic properties of higher-order rewriting
All coming properties are true of rules in R ∪ β .

Lemma 7 (Splitting). Let s
q−→

L→R
t and K ⊆Pos(s) such that q ∈K. Then, sK−→

L→R
σ and t= sKσ .

Lemma 8 (Monotonicity). Let s
p−→t and u a term such that q∈Pos(u). Then, u[s]q

q·p−→ u[t]q.

By u[s]q, we of course mean u[X[x]]q{X �→ λx.s}, omitting the annotations of the bound vari-
ables that are here useless since they disappear by instantiation, where x is the set of variables in s
which are bound in u.

Lemma 9 (Stability). Let s
p−→t and σ a substitution. Then sσ

p−→tσ .

Lemma 10 (Preservation). Let u
p−→

i:L→R
v and K ⊆Pos(u) such that ∀k ∈K : k≥Pp·FL. Then

uK
p−→
i

w for some w, and v=wuK.

2.11 Rewrite theories and their confluence
Rewrite theories are used in various type systems, in particular in DEDUKTI, to define the
conversion rule of the calculus, which is, as is customary, untyped.

Definition 11. A λF -rewrite theory is a pair (F ,R)made of a user’s signature F and a set R of
higher-order rewrite rules on that signature, defining the rewrite relation−→

λF
of λF as −→

R∪βα

.

A λF -rewrite theory (F ,R) is left-linear if all rules in R are left-linear.

The problem we consider is whether a left-linear λF -rewrite theory is confluent
on closed terms and how to show its confluence by inspecting critical pairs of some sort.

We give two successive answers to this question. The first one is a recall, the second one is new
and will be developed in the subsequent sections:

A left-linear rewrite theory defines a confluent rewrite relation−→
λF

in the following cases.

(1) R is terminating, and its higher-order critical pairs are joinable with R-steps (Ferey and
Jouannaud 2019);

(2) nested higher-order critical pairs ofR are joinable by decreasing diagrams using−→
λF

-steps.

In both cases,=α∪Mη equational steps may be needed at the bottom of the joinability diagrams.
Nested critical pairs are obtained by overlapping left-hand sides of rules horizontally (as in

parallel critical pairs), as well as vertically, see Definition 31 and Lemma 32. Our particular use
here of van Oostrom’s decreasing diagrams is introduced in Section 4.1.

The readermust realize that, although dependently typed rulesmay be terminating – a standard
requirement in type theory – their untyped version may be non-terminating. Further, the first
confluence criterion forbids β-steps for joining critical pairs, a real obstacle in practice. Finally,
we will see that we can take advantage of terminating subsets of R, hence subsuming (Ferey and
Jouannaud 2019).
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We may wonder why there is no answer based on parallel critical pairs. There is indeed a non-
interesting one (Férey 2021): first, the right-hand side of a rewrite rule may not contain a subterm
of the form X[t] such that some meta-variable Y occurs in t, a test that the encoding of the
β rule @(X Y)→ X[Y] fails; second, the critical pairs must satisfy the so-called “Variable con-
dition” which imposes a strong constraint on how a critical pair can be joined; third, it is often
the case that nested higher-order critical pairs reduce to parallel critical pairs (or even critical
pairs), in which case the “Variable condition” need not be checked, since our result applies then
as well.

2.12 The theory of global states
An important example of higher-order system that will illustrate our results is Plotkin and Power’s
theory of global states for a single location (Plotkin and Power 2003). It is described by two types
(given for the user’s understanding; they are of no use here),Val for values andA for states, a unary
operation lk for looking up a state, a binary operation ud for updating a state, and five higher-order
rules which satisfy our format:

lk : (Val→A)→A ud : Val,A→A

lk(λv.t) looks up the state, binds its value to v, and continues with t while ud(v, t) updates the state
to v, and continues with t. In the rules below, we useU,V ,W (resp. X)( resp. Y) for meta-variables
of arity 0 (resp. 1) (resp. 2).

ll : lk(λw.lk(Y[w]))→ lk(λv.Y[v, v]) ud(U, ud(V ,W))→ ud(V ,W) : uu
ul : ud(V , lk(X))→ ud(V , X[V]) lk(λv.ud(v,X[v])→ lk(X) : lu

l : lk(λv.U) → U

Our presentation is a simplification of Hamana’s (Hamana 2017), making use of the property
that meta-variables may have a bounded arity. This rewrite theory is proved confluent when
terms are typed with weak polymorphism by Hamana, and in a sorted framework in (Ferey
and Jouannaud 2019), for which arguments of type Val are instantiated by constants so as to
guarantee termination. This example illustrates the gain in using nested critical pairs when
the rewrite theory is non-terminating: our result applies for any instantiation of arguments of
type Val.

2.13 Encoding and decoding
Another example of higher-order system, which illustrates the kind of applications targeted
in DEDUKTI, is obtained by shallow encoding (and decoding) terms of some given functional
language, we choose here a lambda calculus reduced to its application operator @. Since the
encoding is shallow, the binder of the encoded calculus is just that of the encoding calculus,
here λF .

It is described by two types (given for the user’s understanding; they are of no use here), Term
for λ-terms and Code for encoded λ-terms. Codes are built using two constructors, @ and �. Two
unary operations ⇓ and ⇑ allow us use to encode a term and decode a code, respectively.

� : (Term→ Code)→ Code @ : Code→ Code→ Code
⇓ : Term→ Code ⇑ : Code→ Term
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The following six higher-order rules satisfy our format:

de : ⇑(⇓(T)) → T
el : ⇓(λx.T[x]) → �(λx.⇓(T[x]) ⇑(�(λx.T[x])) → λx.⇑(T[x]) : dl
ae : @(⇓(T),U) → ⇓(T ⇑(U)) ⇑(T) U → ⇑(@(T,⇓(U))) : ad

al : @(�(λx.T[x]),U) → T[⇑U]

Again, we will show that this rewrite theory is confluent by inspecting its nested critical
pairs, some of which will be joinable by using beta rewrite steps, therefore illustrating the other
advantage of the present method.

3. Orthogonal Rewriting
Since beta-reductions do not terminate on untyped terms, van Oostrom’s technique relying on
the existence of a decreasing diagram for each local peak will be our main tool for analyzing
confluence of λF . Its use requires labeling all rewrite steps (van Oostrom 1994), we shall see
later how.

Using van Oostrom’s technique is made difficult by the presence of rewrite rules whose right-
hand sides are non-linear, because non-linearities make it impossible to have decreasing diagrams
for the so-called ancestor peaks. The solution relies on the use of a new relation whose confluence
implies that of λF , so that redexes duplicated by non-linear right-hand sides can be reduced in a
single rewrite step. Then, because β-reductions can stack up redexes that were previously at par-
allel positions, we need to define a notion of simultaneous reduction of several non-overlapping
redexes in a term. For instance, given the rewrite rule f (g(f (x)))→ x, we can rewrite simulta-
neously the blue- and red-headed redexes in the term m(f (g(f (c))), f (g(f (d)))) and get m(c, d).
We can also rewrite simultaneously, in the term f (g(f (f (g(f (c)))))) the blue- and red-headed
redexes and get c. But, because the rule has a critical pair, the term f (g(f (g(f (c))))) contains two
overlapping redexes at positions � and 1 · 1, which cannot be both reduced at the same time.

When two redexes do not overlap, their positions are called orthogonal: the examples above
show us that two redexes are othogonal in a term u iff u can be split at a position p, yielding the
term up and the substitution up, with one redex in up and the other one in up. Splitting u along a
set of parallel positions P ensures that the redexes in uP and those in uP do not interact. Since the
rules are left-linear, these redexes can then be reduced simultaneously.

The idea of orthogonal rewriting appears in the literature under at least two different other
names, parallel reductions and multi-step rewriting. Parallel reductions were introduced by Tait
and Martin-Löf to show confluence of the pure λ-calculus. Van Oostrom’s multi-step rewriting
generalizes this construction for both concrete and abstract rewriting relations. These general-
izations are extensively studied in (Terese 2003), where they are used for analyzing orthogonal
rewrite relations, as well as, more generally, orthogonal rewrite steps of non-orthogonal rewrite
relations, whether operating on first-order terms, higher-order terms or term-graphs. Note that
the notion of othogonality of steps is trivial in left-linear critical pair free rewrite systems, like
the λ-calculus: the absence of critical pairs implies that any two steps are orthogonal. We refer
to (Terese 2003) for a comprehensive survey of the literature on this subject.

Our coming definition of orthogonal rewriting ensures orthogonality of steps by splitting
terms, and records its construction in a label that generalizes the notion of position of a single
rewrite step. This makes sense because we define orthogonal rewriting of a given rewrite rule, not
of a given rewrite system as with multi-step rewriting – we would then need to record pairs made
of a rule name and the positions at which that rule applies. A major advantage of our definition
is that it eases the critical pair analysis. A potential disadvantage is that some rewrite theories
might be proved confluent by using critical multi-pairs (whatever they are) but not with nested
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critical pairs, the kind of critical pairs associated with orthogonal rewriting that we are going to
define soon.

3.1 Product of positions
We introduce here an operation on positions that belongs to the folklore of term rewriting
although it is never used explicitly to our knowledge. It will play a key rôle for defining orthogonal
rewriting.

Definition 12. Let u be a term, K a set of splitting positions in u, P a set of positions in uK such
that ∀p ∈ P ∀k ∈K : p �≥P k, and Q= {Qk}k∈K, such that for each k ∈K, Qk is a set of positions in
u|k. We define the product of P,Q via K, denoted P⊗K Q, to be the set of positions P ∪ {k · q : k ∈
K and q ∈Qk}.

Lemma 13. P⊗K Q is a set of positions in u.

To ensure Lemma 13, Qk, for k ∈K, is a set of positions in u|k, not in uk as could have been
expected: the abstractions in uk that disappear by instantiation must be eliminated for the product
to return a set of positions in u. But it will be convenient in the following to consider Qk as a set
of positions in uk as well. The reader will pardon this abuse that aims at simplifying the notations.

In the sequel, we are often given a term s and a closed substitution σ . Then, the set of positions
of meta-variables in s is a splitting set for the term u= sσ . Given P andQ satisfying the conditions
of Definition 12, we then often write P⊗s Q instead of P⊗K Q.

Example 4. Let s= f (λx : Z.h(X[x]), g(b, Y)), σ = {X �→ λy.g(a, y), Y �→ h(a)}, hence sσ = f (λx :
Z.h(g(a, x)), g(b, h(a))). TakeK = {1 · 2 · 1, 22}, P= {�, 2},QX = {�, 1}, andQY = {1}. Then, P⊗K
Q= {�, 2} ∪ {1 · 2 · 1 · {�, 1}, 22 · 1} = {�, 2, 1 · 2 · 1, 1 · 2 · 12, 221}. The symbols at positions of
P,Q, and P⊗K Q appear in blue in s, σ , and sσ , respectively.

The product can be used to define sets of positions implicitly, using the following property:

Lemma 14. Given a term u, let K be a set of splitting positions in u and O⊆Pos(u). Then, there
exist unique sets of positions P,Q such that P={p∈P : p �≥P K} and O=P⊗K Q.

3.2 Orthogonal positions
Rules in this section belong to R ∪ β .

Rewriting takes place at a given position p in a term. Parallel rewriting takes place at a set P of
parallel positions. Orthogonal rewriting will take place at a setO of orthogonal positions in a term
u, some of which being possibly on a same path from the root of u. Not any set of positions is
orthogonal, of course, and indeed orthogonality of a set of positionsOmust depend upon the rule
which is used to rewrite u: there must be enough room so that the left-hand sides at two different
positions do not overlap.

Definition 15. Given a set of positions P and a rule i : L→ R, we say that the position q satisfies
the room condition for rule i if ∀p ∈ P: q= p∨ q �∈ p ·FPos(L), a property denoted by RC(q, P, i).
We will also use RC(Q, P, i) for ∀q ∈Q : RC(q, P, i).

Note that the case q ∈ P is possible and will indeed often occur in the sequel in case P=Q.
Note also that the room condition RC(q, P, i) is equivalent to the more verbose condition ∀p ∈ P :
q#p or p≥P q or q≥P p · FL. We shall use whichever one is more convenient.
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Definition 16. A set O⊆Pos(s) is a set of orthogonal positions for term s wrt rule i : L→ R iff
(1) redex condition: ∀p ∈ P, there exists a substitution σ such that s|p = Lσ ;
(2) room condition: RC(O,O, i).

The following simple property will often be used unannounced:

Lemma 17. Suppose O is a set of orthogonal positions for s wrt rule i : L→ R. Then, either O is a
set of parallel positions, or there exists a splitting set K of s such that O= P⊗K Q and P,Q are sets
of orthogonal positions wrt i for sK and sK, respectively.

Proof. Any set of parallel positions is a set of orthogonal positions, since it trivially satisfies con-
ditions (1) and (2) of Definition 16. Assume now that O is not a set of parallel positions, hence
is nonempty. Let K = {q} be a singleton set containing a maximal position q of O. By Lemma 14,
O= P⊗K Q, where P⊆Pos(sK) andQ= {�} is a set of orthogonal positions for sK . Since q satis-
fies RC(q,O, i) by assumption, property (1) of a set of orthogonal positions holds for P and sK by
Lemma 10, and property (2) holds because P⊂O and O is orthogonal by assumption.

Note that we use here our convention that Q denotes a set of positions in both s|K and sK , even
if it is not formally true. In the sequel, we refrain from mentioning this abuse when using it.

Lemma 17 will often be used with a subset of parallel positions of O for splitting set K, which
satisfies the room condition automatically.

3.3 Definition of orthogonal rewriting
Rules in this section belong to R ∪ β .

Definition 18. Parallel rewriting a term s to a term t with rule i at a set of parallel positions
P= {pj}n≥0j=1 ⊆Pos(s), written s P=⇒

i
t, is simultaneous higher-order rewriting at all positions in P,

that is: s|pj−→i tj and t=s[t1]p1 . . . [tn]pn .

Definition 19. Orthogonal rewriting a term s to a term t with rule i at a set of orthogonal posi-

tions O⊆Pos(s), written s
O⊗=⇒
i

t, is the smallest relation equal to O=⇒
i

when O is a set of parallel
positions, and closed under product along some given set K⊆Pos(s) of splitting positions satisfying
RC(K,O, i) which is defined as follows:

(i) O= P⊗K Q, where P⊆Pos(sK) and Q= {QZ ⊆Pos(sK(Z))}Z∈Dom(sK );

(ii) sK
P⊗=⇒
i

v, sK
Q⊗=⇒
i

τ , and t= vτ .
(extending orthogonal rewriting from terms to substitutions in the natural way.)

Lemma 17 ensures that the recursive calls make sense, while Lemma 13 ensures that P⊗K Q,
also written P⊗sK Q, is a subset of Pos(s) as expected (using here our convention for Q).

The meta-variables introduced by splitting s along K are eliminated from vτ by instantiation,
hence V ar(t)⊆ V ar(s) andMV ar(t)⊆MV ar(s). In particular, if s is closed, then t is closed too.
This is a key condition to ensure that orthogonal rewriting does not depend upon the choice of a
particular splitting set K, as we shall soon verify.

The abstractions introduced in sK by splitting play a crucial rôle here by allowing us to restore
the link between a variable x abstracted in s at a position above K, hence in sK , and its instances in
s|K , ensuring that s= sKsK .
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Notice that minimal positions in O originate either from P or from Q, instead of only from P.
This choice aims at generality and will ease the study of critical pairs in Section 4.5.

Orthogonal rewriting reduces to the identity if O is an empty set of positions, to rewriting if
O is a singleton set of positions, and to parallel rewriting if O is a set of parallel positions. In
the general case, our definition coincides with Tait’s in case i= β , and both are indeed expressed
in a very similar way. In our definition, the splitting set comes first. Instead, Tait assumes that
s= uθ , and rewrites independently in u and θ as we do, the splitting set remaining implicit.
Making the splitting set explicit becomes an advantage when it comes to generalizing the Critical
Pair Lemma.

Example 5. Let R={f (x)→x}, s=λx.f (g(f (x))), t= λx.g(x) and O={1, 1 · 1 · 1}. By splitting

s along the singleton set {1·1 ·1}, we get s1·1·1=λx.f (g(Z[x]))
1⊗=⇒ λx.g(Z[x]), s1·1·1 = {Z �→

λx.f (x)} 1⊗=⇒{Z �→ λx.x}, hence s O⊗=⇒ λx.g(Z[x]){Z �→λx.x}=λx.g(x)=t.

3.4 Monotonicity and stability properties
These properties are of course inherited from higher-order reductions. They hold for R ∪ β .

Lemma 20 (Head montonicity). Let s
P⊗=⇒
i

t with � ∈ Pmin. Then, u[s]p
p·P⊗=⇒
i

u[t]p.

Proof. By Definition 19, u[s]p = u[X[x]]p{X �→ λx.s}
∅⊗pP=p·P⊗======⇒

i
u[t]p.

Lemma 21 (Subterm). Let u
P⊗=⇒
i

v and p ∈ Pmin. Then, u|p
P|p⊗=⇒
i

v|p.

Proof. Note that P|p is a set of orthogonal positions when p ∈ P, hence the statement makes sense.
The proof is by induction on the definition of orthogonal higher-order rewriting. If � ∈ P, then
p= � and the result holds. If u P=⇒

i
v, then the result follows from the definition parallel rewriting.

Otherwise, let u
O⊗KQ⊗=⇒

i
v, hence s=uK

O⊗=⇒
i

t, σ=uK Q⊗=⇒
i

τ , u=sσ and v=tτ . There are two cases:

(1) p=o · q with o∈K, u|o=X[x] and q∈Qmin. By induction hypothesis, σ (X)|q
Q′⊗=⇒
i

τ (X)|q.
Since σ (X)|q = u|o·q = u|p, we are done.

(2) p ∈Omin. By induction hypothesis, s|p
P′⊗=⇒
i

t|p. By Definition 19, u|p = s|pσ
P′⊗s|pQ⊗=⇒

i
t|pτ =

v|p and we are done.

In both cases, verifying the form of the resulting set of positions is a routine calculation.

The subterm Lemma extends of course to Pmin itself.

Lemma 22. Orthogonal rewriting is monotonic: s
P⊗=⇒
i

t implies u[s]p
p·P⊗=⇒
i

u[t]p.
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Proof. First, p · P is a set of orthogonal positions since this is true of P. By splitting the term
u[s]p along the set p · Pmin, we get u[s]p = u[sPmin]p s

(Pmin). By Lemma 21 (actually, its extension),

s|Pmin

P|Pmin⊗=⇒
i

t|Pmin . We can then conclude with Lemma 20.

Monotonicity generalizes straightforwardly to rewriting substitutions:

Lemma 23 (Monotonicity). Orthogonal rewriting is monotonic: σ
Q⊗=⇒
i

τ implies uσ
∅⊗uQ⊗=⇒

i
uτ .

Lemma 24 (Stability). Let s
P⊗=⇒
i

t and σ a substitution. Then sσ
P⊗=⇒
i

tσ .

Proof. If P is a set of parallel positions, the property follows directly from Lemma 9. Otherwise,

P=O⊗K Q, sK
O⊗=⇒
i

u, sK
Q⊗=⇒
i

θ , and t= uθ . Since K is a set of parallel positions in

Pos(s), splitting sσ yields sσK = sKσ and sσK = sKσ . By induction hypothesis, sKσ
O⊗=⇒
i

uσ

and sKσ
Q⊗=⇒
i

θσ . Since splitting uses fresh meta-variables, Dom(θ)∩Dom(σ )=∅. Hence,
(uσ )θσ = uθσ = tσ . Definition of orthogonal rewriting yields the result.

Lemma 25 (Linearization). Let u
O⊗=⇒
i

v. Then u−→−→
i

v.

Proof. By induction on the definition of orthogonal rewriting. If u O=⇒
i
v, the result is clear.

Otherwise,O= P⊗K Q, u= sσ with s= uK and σ = uK , s
P⊗=⇒
i

t, σ
Q⊗=⇒
i

τ , and v= tτ . By stabil-

ity, u= sσ
P⊗=⇒
i

tσ , and by monotonicity, tσ
∅⊗tQ⊗=⇒

i
tτ = v. We conclude by two inductions.

This proof shows that redexes can be linearized using a top-down strategy: a redex at some posi-
tion p is always reduced before another redex at a position p · q. We could of course base the proof

on the other reduction u= sσ
∅⊗KQ⊗=⇒

i
sτ P=⇒

i
tτ = v, which would yield a bottom up strategy. Using

any other strategy would be possible but require commutation properties that we do not intend
to develop here. Next section will provide another way to construct an arbitrary linearization
strategy.

3.5 Splitting
All properties in this important section hold for R∪ β .

Definition 19 is very flexible in the way splitting the input term is possible, minimal rewriting
positions taking place above, and/or below, and/or in parallel with the set of splitting positions.
This design choice has an important consequence: our product construction is both horizontal
and vertical in the way a set of orthogonal positions can be extended with another by making their
product.

We show here that any orthogonal rewrite step s
P⊗=⇒
i

t can actually be defined via a canonical
splitting, for which the minimal rewriting positions are all (strictly) above the splitting set, all of
whose elements are rewrite positions themselves:

https://doi.org/10.1017/S0960129522000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000044


912 G. Dowek et al.

Figure 1. Proof of Lemma 27 with P′ �=∅.

Definition 26. Let P⊆Pos(s) be a set of orthogonal positions in s for some rule i, and K a subset
of P such that P=O⊗K Q. The set K of splitting positions is said to be canonical if O= Pmin and
K = (P \O)min.

Assuming O= Pmin is not enough for uniqueness of the canonical splitting set. On the other
hand, assuming P= (P \ Pmin)min would imply O= Pmin, hence give an equivalent definition.

Lemma 27 (Canonical splitting). Let P be a set of orthogonal positions such that u
P⊗=⇒
i

u′, and K

its canonical splitting such that P= Pmin ⊗K P′. Then, u
Pmin⊗KP′⊗=⇒

i
u′.

Proof. By induction on |u|. The result holds if P is a set of parallel positions, hence P= Pmin,
taking K =∅ and P′ =∅.

Otherwise, P=O⊗K′ Q. Let s= uK′ , σ = uK′ , s
O⊗=⇒
i

s′, and σ
Q⊗=⇒
i

σ ′ for some s′, σ ′, and

u
O⊗sQ⊗=⇒

i
s′σ ′. CasesO=∅ orQ=∅ are left to the reader. Otherwise, the case is depicted in Figure 1.

Let t= s(O\Omin)min , τ1 = s(O\Omin)min , and O=Omin⊗t O′. By induction hypothesis, s
Omin⊗tO′⊗=⇒

i
s′.

Qmay contain positions that are minimal in P. LetQ=Q1�Q2�Q3, whereQ1>P (O\Omin)min,
Q2 >P Omin ∧Q2#(O\Omin)min, and Q3#Omin. Note that Pmin=Omin∪(Q3)min. Since meta-
variables must occur linearly in s, we split σ as its restrictions σ1, σ2, and σ3 to the meta-variables
of s which occur above (Q1)min, (Q2)min, and (Q3)min, respectively. Using now successively

Lemma 21 for σ2 and the induction hypothesis for σ3, we get σ2
∅⊗θ2Q

′
2⊗=⇒

i
θ ′2γ ′2 = σ ′2, with

σ2 = θ2γ2 (note that θ ′2 = θ2), and σ3
(Q3)min⊗θ3Q

′
3⊗=⇒

i
θ ′3γ ′3=σ ′3, with σ3 = θ3γ3. We finally construct

v and γ , hence defining v′ and γ ′. Let v= t(θ2 ∪ θ3), v′ = t′(θ ′2 ∪ θ ′3), γ = τ1σ1 ∪ γ2 ∪ γ3 and
γ ′ = τ ′1σ ′1 ∪ γ ′2 ∪ γ ′3. Let now P′=O′ ⊗τ1 Q1∪Q′2∪Q′3. Using associativity and stability, we get

u
Pmin⊗vP′⊗=⇒

i
v′γ ′=u′.
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An important direct consequence of canonical splitting is that the outcome of an orthogonal
rewrite step is entirely determined by its input term and set of orthogonal positions:

Lemma 28 (Functionality). Let P⊗K Q= P′ ⊗K′ Q′, u
P⊗KQ⊗=⇒

i
v and u

P′⊗K′Q′⊗=⇒
i

v′. Then v= v′.

The product notation has shown itself to be very convenient: we will use it systematically, in

particular when P is empty, writing then sσ
∅⊗sQ⊗=⇒

i
sτ , or when Q is empty, writing sσ

P⊗s∅⊗=⇒
i

tσ . It
will serve as a type-checking device to control complex rewriting calculations.

3.6 Critical peaks
Since patterns are β-normal and left-linear, a β-redex cannot overlap a R-redex at a position
above its fringe. No wonder here, this is the only purpose of the assumption that patterns are
β-normal. Further, β-redexes cannot overlap themselves either, except trivially.

We are therefore interested in overlaps between the rules of R only, throughout the four com-
ing sub-sections which deal successively with the definition of critical peaks, their calculation,
their main property, and an example.

Our formulation of the definition of orthogonal rewriting has one main purpose: ease the def-
inition of critical pairs and the proof of the associated critical peak property. Generating the
minimal nested critical peaks that characterize the confluence of orthogonal rewriting requires
computing the overlaps of two orthogonal rewriting steps issuing from a term. Such peaks are
defined by two different rules, each left-hand side overlapping alternatively on the other at a set
of parallel positions, but not between themselves so that there are two different orthogonal steps
issuing from the same term. These overlaps form both horizontal chains when one left-hand side
overlaps the other at several parallel positions, and vertical chains when there is an alternation of
overlaps between the two left-hand sides.

As usual, overlapping a left-hand side of rule G at a subterm of another L|o frees the variables
of L|o that are bound in L above o. Then, the meta-variables of G need to depend upon those
variables, which may require increasing their arity. This is done with an operation called lift-
ing (Ferey and Jouannaud 2019), introduced first in this context by Nipkow in a slightly different
form (Nipkow 1991).

Definition 29 (Lifting). Given a term L and a list x of pairwise different variables such that
V ar(L)∩ x=∅, we call lifting of L with respect to x, denoted by L↑x, the term Lσ x

L , where
σ x
L = {Y �→ Y ′[x] : Y ∈MV ar(L), Y ′ fresh, |Y ′| = |Y| + |x|}.

Lifting increases by x the list of arguments of all meta-variables occurring in L, hence
their arity by |x|, requiring changing their names to fresh ones. Note that lifting preserves
pre-patterns.

Example 6. Lifting the left-hand side L= ud(V , lk(X)) of rule (ul) with respect to the variable x
gives the term L↑x= ud(V ′[x], lk(X′[x])), using substitution σ x

L = {V �→V ′[x], X �→ X′[x]}.

An important property of lifting is the following:

Lemma 30. Assume that u
p−→

L→R
v. Then u= u[L↑x θ]p for some θ such that Ran(θ)∩ x=∅, where

x is the vector of variables bound above p in u.
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Proof. By definition of rewriting, u|p = Lσ . Let L↑x= Lτ xL . We define the substitution θ such that
X′ �→ λx.v ∈ θ iff X �→ v ∈ σ , where X′ is the renaming of X. Since τ xLθ = σ , L↑x θ = Lσ .

Definition 31 (Nested overlaps). Given two rules k:L→ R and l:G→D in R, a substitution σ

and a pure term u such that u=α Lσ , two sets P={p0 = �}�{pi}i∈I and Q={qj}j∈J of positions in
FPos(u), two sets {Vi}i∈I and {Wj}j∈J such that Vi and Wj are the lists of (pairwise different)
variables bound in u from positions pi and qj, respectively, to the root, and two sets {Li}i∈I and
{Gj}j∈J of renamings of L,G, respectively, that share no meta-variables between themselves nor with
L= L0, then 〈u, k, P, l,Q, σ 〉 is a nested overlap of G onto L at positions P,Q iff:

(i) σ satisfies the equality
∧

i∈I u|pi = Li↑Vi σ ∧∧
j∈J u|qj =Gj↑Wj σ ;

(ii) ∀j ∃i (qj ∈ pi ·FPos(L))) and ∀j′ �= j (qj′ �∈ qj ·FPos(G));
(iii) ∀i �= 0 ∃j (pi ∈ qj ·FPos(G)) and ∀i �= i′ (pi′ �∈ pi ·FPos(L)).

The nested overlap is critical if σ is a most general higher-order unifier.
The particular case of critical nested overlap for which P= {�} and Q is empty is said to be trivial.

The set of non-trivial critical nested overlaps of rule l onto rule k is denoted by C no(k, l).
The particular case of non-trivial critical nested overlap for which P= {�} and Q is a singleton

set is called a critical overlap. Its set is denoted by C o(k, l).
The particular case of non-trivial critical nested overlap for which P= {�} and Q is a nonempty

set of parallel positions is called a critical parallel overlap. Its set is denoted by C po(k, l).
The particular case of nested overlap for which P\� is a nonempty set of pairwise parallel positions

and Q is a singleton is called a critical 1-nested overlap. Its set is denoted by C 1no(k, l).

Condition (i) does not make visible the fact that matching is not syntactic, but modulo β0

instead, since β0-steps are buried inside the definition of substitution for pre-redexes. It says that
σ , hence Lσ , is entirely defined by condition (i), and that the subterms of u at other positions
in P are k-redexes, while those at positions in Q are l-redexes. It follows that σ could be omitted
from the tuple 〈u, k, P, l,Q, σ 〉. Condition (ii) says that l-redexes overlap an above k-redex but
no other l-redex. Condition (iii) for k-redexes but the topmost one is similar. It follows that P,Q
are both sets of orthogonal positions for rules k and l, respectively, a property that is of course
expected.

When P and Q are singleton sets, hence P= {�}, u is a usual higher-order overlap between the
two rules. In general, the positions pi and qj keep increasing because of conditions (ii, iii), and the
sets Vi andWj of bound variables keep increasing as well, requiring new fresh meta-variables for
each copy of Li and Gj. This may occur in practice as shown at Example 7.

Trivial critical peaks are not local peaks, since the rewrite takes place on a single side. They are
used to establish the base case of the induction showing that critical peaks can be computed.

One may wonder why we call these critical peaks nested rather than orthogonal. First, orthog-
onality refers explicitly to the absence of critical pairs, so an orthogonal critical pair would be kind
of self-contradicting. Another reason is that there is a single rule left-hand side sitting at the top
of a seed. Therefore, all redexes occurring in a seed are nested inside that left-hand side’s instance,
whether they extend the seed construction vertically or horizontally.

Non-trivial nested critical overlaps give rise to critical local peaks:

Lemma 32. Given 〈u, k, P, l,Q, σ 〉 ∈ C no(k : L→ R, l :G→D), then v
P⇐=⊗
k

u= Lσ
Q⊗=⇒
l

w. The

triple (v, u,w) is called a nested critical peak of rule l onto rule k at positions P,Q while the pair
(v,w) is the corresponding nested critical pair.

Proof. By (i) u|pi = Li↑Vi σ , where Li↑Vi is an instance of L by the definition of lifting. Since sub-
stitutions compose, u|pi is a k-redex. Similarly, u|qi is a l-redex. Therefore, P and Q are sets of

https://doi.org/10.1017/S0960129522000044 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000044


Mathematical Structures in Computer Science 915

orthogonal positions for rule (k) by (iii) and for rule (l) by (ii), respectively. The result follows
then from the definition of orthogonal rewriting.

The proof shows that lifting substitutions must be applied to the right-hand sides of rules.
Note also that this whole section appears as a genuine generalization of the usual critical pair

theory or parallel critical pair theory, apart from the calculation of critical pairs which comes next.

3.7 Calculation of nested overlaps
The previous definition of a nested overlap does not allow us to compute σ , hence the critical
nested overlaps, since the positions pk and ql are positions in Lσ , σ being yet unknown. An
algorithm computing these overlaps must therefore proceed by successive unifications, possibly
alternating between the two left-hand sides. Computing these overlaps requires then some book-
keeping, both in terms of substitutions and overlapping positions, in order to avoid self-overlaps
of L and G. This is achieved by the next definition:

Definition 33 (Seeds). Given two rules k:L→ R, l:G→D from R, the set pS k
l of (k,l)-pre-seeds is

the smallest set of tuples (s, σ , P,Q), where P and Q are lists of positions in FPos(sσ ) of L-redexes
and G-redexes, respectively, such that

(i) pS k
l contains the trivial pre-seed 〈L,∅, {�}, { }〉 ;

(ii) pS k
l is closed under nested overlapping: given 〈s, σ , P,Q〉 ∈ pS k

l , two lists of parallel posi-
tions {pi ∈FPos(sσ ) : pi ≥P P · FL}i∈I and {qj ∈FPos(sσ ) : qj ≥P Q · FG if Q �=∅}j∈J which
are not both empty and whose elements are pairwise incomparable, renamings {Li}i∈I of L and
{Gj}j∈J of G such that ∀i, j, V ar(Li), V ar(Gj), and V ar(sσ ) are pairwise disjoint sets, and τ

a most general unifier of the equation
∧

i∈I (sσ )|pi = Li↑Vi ∧∧
j∈J (sσ )|qj =Gj↑Wj, where Vi

and Wj denote the variables bound in sσ above pi and qj, respectively, the non-trivial pre-seed
〈sσ , τ , P ∪ {pi}i∈I ,Q∪ {qj}j∈J〉 belongs to pS k

l .
We call seed a triple 〈uτ , P,Q〉where 〈u, τ , P,Q〉 is a pre-seed. The term uτ is the nested overlap,

P contains the positions in uτ of the k-redexes and Q those of the l-redexes. A seed is trivial if Q=∅.
The set of seeds is denoted by S k

l .

In the recursive definition of pre-seeds, the overlapping substitution σ obtained tells us where
to overlap next, while the maximal positions in P and Q of these overlaps tell us where to not
overlap L and G, respectively. In particular, the initial overlap is impossible with L, unless k=l, but
is possible with G. Subsequent overlaps may involve both L and G.

Since L,G are left-linear, higher-order unification of a lifted copy of G with some subterm of L
(or vice-versa) does not instantiate these terms beyond their boundaries. It follows that each redex
instance of L (resp., G) must overlap some left-hand side G (resp., L) obtained at the previous
run. This remark is a property of the definition when the rules are left-linear; building it in the
definition is useless.

Alternating overlaps with L and with G would eliminate some redundancies to the price of
storing the run parity in the tuple. In practice, however, that would of course be the natural strategy
for computing them.

Example 7 (Rules lu and ul of the theory of global states). These two rules, like their well-chosen
names, overlap themselves ad libitum because the head function symbol of each left-hand side is
heading a strict subterm of the other which will be part of the substitution when unifying the rules.

The computation is represented in Figure 2. The color red is used for the left-hand side of
(ul), and therefore of its subterms, while blue is used for the left-hand side of (lu). We con-
sider the case where ul stands at the top. We adopt a renaming schema based on the value
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of a counter used to index the meta-variables and bound variables of each rule in turn. The
starting value of the counter, used to index the meta-variables of the left-hand side of rule stand-
ing at the top, is zero. The initial rule (ul) is therefore ud(V0, lk(Y0))→ ud(V0, Y0[V0]). Each
time a new equation is used, the counter is increased by one. So, the first use of rule (lu) is
lk(λv1.ud(v1, X1[v1]))→ lk(X1). Overlapping positions appear then on the tree in violet, with a
bullet in the exponent of the function symbol. The first overlap takes place at position 2. Note that
both rules are represented in the figure; that’s why the first occurrence of lk has one blue succes-
sor with a blue link, and one red successor with a red link. The equation generated is therefore
lk(Y0)= lk(λv1.ud(v1, X1[v1])). It is displayed on the figure to the right of the first overlapping
position. The substitution obtained from this equation is figured as an equality between a pre-
redex and its value under the substitution. For Y0, we get λv1.ud(v1, X1[v1])= Y0. This value will
of course change when new overlaps will take place successively, until the whole tree of Figure 2
is obtained. We have again fully represented the two rules and the equation generated from the
second overlap at position 2·1·1.

Let us now move to the seeds calculation. The initial pre-seed in pS ul
lu is

〈ud(V0, lk(Y0)),∅, {�}, {}〉. The only possible overlap with ul requires Q1={2}, a position
above the fringe of ud(V0, lk(Y0)), and requires no lifting since there is no abstraction above
position 2 in ud(V0, lk(Y0)). The equation obtained is displayed on the figure. Unification yields
Y0 = λv1.ud(v1, X1[v1]), hence (ud(V0, lk(λv1.X1[v1])), {Y0 �→ λv1.ud(v1, X1[v1])}, {�}, {2})
is added to pS ul

lu , and the computation proceeds with ud(V0, lk(λv1.ud(v1, X1[v1]),
whith a unique possible overlapping position 2 · 1 · 1, which generates the equation
ud(v1, X1[v1])= ud(V2[v1], lk(Y2[v1])), whose solutions appear on the figure.

Following the picture, the reader can now easily continue the computation.
We finally get four infinite families of seeds, depending uponwhich left-hand side of rule stands

at the top, and which one stands at the bottom. On the figure, (ul) stands at the top and (lu) at
the bottom. Here are the four infinite families, where v denotes the list (v2n+1, v2n−1, . . . , v1),
successively, (ul)· · · (lu), (ul)· · · (ul), (lu)· · · (lu) and finally (lu)· · · (ul):
〈ud(V0, lk(λv1.ud(v1, lk(λv3.ud . . . lk(λv2n+1.ud(v2n+1, X2n+1[v]))...)))),

{(2·1·1)p}p=np=0, {2 · (1·1·2)p}p=np=0〉
〈ud(V0, lk(λv1.ud(v1, lk(λv3.ud . . . lk(λv2n+1.ud(v2n+1, lk(Y2n+2[v])))...)))),

{(2·1·1)p}p=np=0, {2 · (1·1·2)p}p=n+1p=0 〉
〈lk(λv1.ud(v1, lk(λv3.ud . . . lk(λv2n+1.ud(v2n+1, X2n+1[v]))...))),

{(1·1 ·2)p}p=np=0, {1·1 · (2·1·1)p}p=n−1p=0 〉
〈lk(λv1.ud(v1, lk(λv3.ud . . . lk(λv2n+1.ud(v2n+1, lk(Y2n+2[v]))...)))),

{(1·1 ·2)p}p=np=0, {1·1 · (2·1·1)p}p=np=0〉
The seed represented in the figure belongs to the second set. In all these nested overlaps, the set
of sets of overlapping positions of (ul), or of (lu), is actually a set of singleton sets of overlap-
ping positions. We have therefore identified both sets without ambiguity with sets of positions.
Note also that our counter for indexing the variables and meta-variables is initialized by 0 for the
first two seeds, and to 1 for the last two. This explains that we could use the same vector v of
bound variables for all four seeds and that the last two nested overlappings are subterms of the
first two.

We now show that the sets of seeds and of critical nested overlappings are one-to-one (up to
variable renaming of bound variables). This statement includes trivial critical nested overlappings
and trivial seeds in order to facilitate its proof.
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Figure 2. Computation of a nested overlap.
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Theorem 34. Let R be a higher-order rewriting system such that k, l ∈ R. Then, 〈s, k, P, l,Q, σ 〉 ∈
C no(l, k) iff 〈s, P,Q〉 ∈S k

l .

Of course, membership should be understood modulo the renaming of bound variables and
meta-variables.

Proof. Note first that trivial critical nested overlappings and trivial seeds correspond.

• S k
l ⊆C no(l, k). It suffices to show that C no(l, k) is “closed under nested overlapping”. By

definition of pre-seeds, let 〈s, σ , P,Q〉 ∈ pS k
l , {pi}i and {qj}j be sets of positions, {Li}i and{Gj}j be renamings of L,G, and τ a substitution satisfying the condition (ii) of Definition 33.

Using the induction hypothesis and the above conditions (ii), it is easy to verify that
〈sσ , k, P, l,Q, σ 〉 ∈C no(l, k).

• C no(l, k)⊆S k
l , the converse statement. Let 〈s, σ , k, P, l,Q〉 ∈ pC no(l, k), and consider

the sets P′,Q′ of positions in P,Q which are maximal in P ∪Q. Let P \ P′ = {pi}i and
Q \Q′ = {qj}j. By condition (i) and the fact that σ is minimal, σ = θτ and s= tτ , where
θ is the most general unifier of the equation t=Lθ ∧∧

i u|pi = Li↑Vi θ ∧∧
j u|qj =Gj↑Wi

θ . By conditions (ii, iii), 〈t, θ , k, P \ P′, l,Q \Q′〉 ∈ pC no(l, k) is a critical nested overlap-
ping. By induction hypothesis, 〈t, θ , P,Q〉 ∈S k

l . By condition (i) and closure under nested
overlappings 〈t, τ , P,Q〉 ∈ pS k

l , hence 〈tτ = s, P,Q〉 ∈S k
l and we are done.

We could of course define the critical pairs themselves recursively in the same way we have
defined the nested overlaps in Definition 33. It is, however, equivalent to rewrite the overlaps
with the appropriate lifting of the right-hand sides of rules, which means that each rule needs to
be lifted with lifting substitutions, implying that each rule needs infinitely many lifted copies in
general.

3.8 Critical peak property
We conclude our study of orthogonal rewriting with the nested critical peak (or critical pair)
property:

Theorem 35 (Nested Critical Peak). Let s
{�}∪P⇐=⊗
k:L→R

r
Q⊗=⇒

l:G→D
t with Q∩FPos(L) �=∅. Then,

∃u, v,w, u′, v′,w′, θ , σ , τ , γ ,O,O′, P′,Q′ st:
(i) r=uθ , s=vσ , t=wτ , u=u′γ , v=v′γ ,w=w′γ ,
(ii) v′

O⇐=⊗
k

u′
O′⊗=⇒
l

w′ is a nested critical peak,

(iii) θ is a substitution st σ
P′⇐=⊗
k

θ
Q′⊗=⇒
l

τ ,

(iv) P=O⊗u P′ and Q=O′ ⊗u Q′.

This statement is pictured in Figure 3. The substitution θ is obtained by splitting r as uθ so that
u contains a critical overlap. The substitution γ expresses the property that u is an instance of the
most general critical peak (v′, u′,w′), hence u=u′γ . These substitutions play different rôles, the
substitution θ is rewritten while the substitution γ is not, that is why they are kept separate.
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Figure 3. Nested critical peak property.

Proof. By assumption on Q, the two orthogonal rewrites from r overlap. Let O={Oi}i∈I and
O′={O′j}j∈J be the maximal subsets of P and Q, respectively, that satisfy conditions (ii, iii) of
Definition 31. Let now N = ((P∪Q)\(O∪O′))min, u= rN and θ = rN , hence r= uθ .

We first show that there exists a substitution δ such that the tuple 〈u, k, {�} ∪O, l,O′, δ〉 is a
nested overlap, hence satisfies condition (i) of the same definition. Since {�} ∪ P and Q are sets of
orthogonal positions, so are their respective subsets {�} ∪O and O′. By definition of orthogonal
rewriting and maximality of O,O′, the positions n∈N do not belong to any set of the form p ·
{o<P FL ∪ FG} for some p and o, unless p= n, or q · {o<P FL ∪ FG} for some q and o, unless q=
n. Hence, {�} ∪O and O′ are sets of orthogonal positions in u, and therefore, by linearity of L and
G, the terms in {u|p : p ∈ {�} ∪O} are k-redexes while the terms {u|q ∈O′} are l-redexes, hence are
instances of L andG, respectively. LetO= {oi}i∈I andO′ = {o′j}j∈J , {Li}i∈I and {Gj}j∈J be renamings
of L andG, respectively, that share nometa-variable between themselves nor with L. Then, u= Lσ ,
u|pi = Liσi and u|j =Gjτj. By Lemma 30, u|pi = Li↑Vi δi, where Vi is the vector of variables bound
above pi in u, hence in r, and u|qj =Gj↑Wj δj, where Wi is the vector of variables bound above qj
in u′, hence in r. Note that lifting is used here to ensure that the free variables coincide in u, Lδ
(there are no free variables), Li↑Vi δi (whose set of free variables is Vi) and Gj↑Vj δj (whose set of
free variables isWj). Since the respective domains of these substitutions are pairwise disjoint, their
union δ satisfies condition (i).

We can now exhibit the critical nested overlap. Let ξ be the most general substitution satisfying
(i), hence δ = ξγ for some γ , u′ = Lξ and u= u′γ . Then 〈u′, k, {�}∪O, l,O′, ξ〉 is a critical nested
overlap. By Lemma 32, s′

{�}∪O⇐=⊗
k

u′
O′⊗=⇒
l

t′ for some s′, t′. Hence, v= s′γ
{�}∪O⇐=⊗

k
u= u′γ

O′⊗=⇒
l

tγ ′ =
w by stability.

Consider now the left-over rewrites applying to the substitution θ . By Lemma 14, P=O⊗NP′
and Q=O′⊗NQ′. Since P and Q are sets of orthogonal positions for r, P′ and Q′, their respective

subsets below N, are sets of orthogonal positions for θ . Hence, σ
P′⇐=⊗
i

θ
Q′⊗=⇒
j

τ by Lemma 32.

We have got two local orthogonal peaks, one from u and one from θ , that can be merged by
definition of orthogonal rewriting. Since P= ({�} ∪O)⊗u P′ and Q=O′ ⊗u Q′, we get the peak

vσ
P⇐=⊗
k

uθ
Q⊗=⇒
l

wτ . Since r= uγ , we finally conclude that s= vσ and t=wτ by Lemma 28.

Of course, this result has particular cases: one-nested critical overlaps give rise to one-nested
critical peaks (or critical pairs), parallel critical overlaps give rise to parallel critical peaks (or
critical pairs), and critical overlaps give rise to critical peaks (or critical pairs). The latter case
is sometimes dubbed plain to distinguish it from the others.
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3.9 Nested critical pairs of the theory of global states
Using our example of global states, we illustrate the computation of two nested critical peaks and
of one of the infinite families of nested critical peaks.

lk(λw.

{
lk(X1[w])
lk(λv.ud(v,X2[w, v]))

}
)

ll↙ σ = {X1 �→ λwv.ud(v, X2[w, v])} ↘lu
lk(λv.X1[v, v])σ lk(λw.lk(λv.X2[w, v]))σ

|| ||
lk(λv.ud(v, X2[v, v])) lk(λw.lk(λv.X2[w, v]))

ud(V ,

{
ud(W, X1)
ud(W, lk(λw.X2[W]))

}
)

uu↙ σ = {X1 �→ lk(λw.X2[W])} ↘ul
(ud(W, X1)σ ) ud(V ,ud(W, X2[W]))σ

|| ||
(ud(W, lk(λw.X2[w])) ud(V , ud(W, X2[W]))

And now, the first infinite family of seeds described in Example 7:

ud(V0, lk(λv1.ud(v1, lk(..., lk(λv2n+1.ud(v2n+1, X2n+1[v]))...))))
(2·1·1)∗⇐=⊗

ul

2·(1·1·2)∗⊗=⇒
lu

ud(V0, ud(V0, . . . , ud(V0, X2n+1[V0]) . . . )) ud(V0, lk(λv1.lk( . . . lk(λv2n+1.X2n+1[v]) . . . )))

4. Confluence in λF

Our goal here is to state and prove our main result, namely, the Church–Rosser property for
a rewrite theory in λF , under the assumption that its nested critical peaks have decreasing
diagrams.

Since beta-reductions do not terminate on untyped terms, and higher-order reductions may
be non-terminating as well, we shall use van Oostrom’s technique relying on the existence of a
decreasing rewrite diagram for each local peak (van Oostrom 1994), decreasingness being defined
wrt a partial quasi-order� labeling the rewrite steps whose strict part�must be well-founded.

The structure of this section is as follows: first, we describe the rewrite relation we use for prov-
ing confluence, and the corresponding labeling schema; second, we recall the notion of decreasing
diagram and state the confluence theorem; third, we apply the result to the theory of global states;
fourth, we apply it to the theory of encoding and decoding; lastly, comes the proof of the result.

4.1 Labeled rewrites in λF

We now consider the Church–Rosser property of the rewrite relation used in λF on untyped
terms. As usual, it is essential to choose carefully the relation to work with. For the method to be
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sound, it must contain rewriting and define the same convertibility relation as the one generated
by the set of rules. Higher-order rewriting will suffice for those rules that define a terminating
rewrite relation. For those that do not, non-linearities make it difficult to get decreasing diagrams
for ancestor peaks since there can only be one facing step on each side of the conversion. The
way out is to impose left-linearity and use some form of parallel rewriting to handle non-right-
linearities. But parallel higher-order rewrites taking place below a beta-step may now become
both duplicated and nested, making orthogonal higher-order rewriting necessary to get decreasing
diagrams. Functional steps will be considered as particular steps requiring the use of orthogonal
rewriting.

We now assume a subset S ⊆R of small rules defining a terminating relation on untyped
terms. All other rules are big rules. β-rewrite steps will be smallest among the big steps, so that
they can be neglected when needed, while small steps will be smaller than big steps. The definition
of S will therefore result from a compromise between two constraints: termination which allows
a rule to be small, and the possible need of β-rewrites to join its critical pairs, which may force it to
be big. Note that functional steps cannot be smaller than small steps: if they were, ancestor peaks
having a small step below a functional step could not be made decreasing.

The rewrite steps to be considered in an arbitrary conversion, for which all local peaks must be
replaced by decreasing diagrams, are therefore of one of the three following forms:

=α , −→
S

and ⊗=⇒
β∪(R\S )

For uniformity, we use the notation u
p−→
α

v for an =α-step taking place in the subterm u|p.
Furthermore, we sometimes allow ourselves to abbreviate a sequence

p1−→ . . .
pn−→ by P=⇒ when

P= {pi}i is a set of parallel positions.
Main assumptions:

• R is a set of rules whose left-hand sides are linear patterns;
• S is a subset of rules of R, whose rewrite relation is terminating;
• � is a quasi order on rule names whose strict part is well-founded and equivalence is≡;
• ∀i ∈R\S ∀j, k ∈S : i� β � j≡ k� α.

We now label a step s
p−→
i
t or s

P⊗=⇒
i

t by a pair of the following form:

I = 〈i, _〉, where _ is a dummy, if i �∈S ; I = 〈i, s〉, if i ∈S

Labels are compared lexicographically: our quasi order on labels is therefore (�,−→−→
S

)lex.
Since the main order is the one on rule names, we will take the liberty to use � as our quasi-

order on labels and on rule names at the same time. The reader will easily disambiguate when
needed. The strict part of this order is well-founded by construction.

Because of its definition, the label of a rewrite step would not need to appear in our rewriting
notation, unless in specific occasions where it will replace the rule name. In order to disambiguate
between these two situations, we will use small letters for rule names, say i, and the corresponding
capital letter I for a label whose first argument is the rule name i and the second some term s.

Key properties of the order on labels are monotonicity and stability, for which it will be conve-
nient to define the following notation: given a context u[_]p, a substitution σ and a label I = 〈i, a〉,
u[I]pσ is the label 〈i, u[a]pσ 〉, where u[a]pσ = _ if a= _ and the term u[s]pσ if a is the term s. The
notation extends of course to the case where there are multiple holes in u, as in u[I]Pσ , all labels
in I using rule i. This will be used later with P being the positions of the meta-variables of u.
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Lemma 36. Let K = 〈k, a〉 and L= 〈l, b〉 be the labels of two rewrite steps such that K � L, u[_]o a
context, and σ a substitution. Then, K ′ = u[K]oσ � u[L]oσ = L′.

Proof. If k� l, this is trivial. Otherwise, k≡ l ∈S , a= u and b= v for some terms u, v such that
u−→−→

S
v. Hence, w[u]oσ −→−→

S
w[v]oσ by monotonicity and stability of higher-order rewriting,

and the result follows.

4.2 The confluence theorem
van Oostrom’s decreasing diagrams can have a very general form. We shall, however, stick to a
more convenient one for the confluence proof:

Definition 37 (DRDs). Given a pair of labels (I, J), a decreasing reduction (DR) from u to v wrt

(I, J) is a reduction of the form u−→−→
K

s
P⊗=⇒
J

t−→−→
L

v, where labels in K labeling the side steps are

strictly smaller than I and labels in L labeling themiddle steps are strictly smaller than either I or J.
A decreasing reduction whose facing step from s to t is empty (P=∅) is called simple.

We often leave the labels implicit, writing then u−→−→
�I

P⊗=⇒
J
−→−→
�I,J

v or u−→−→
�I,J

v if P=∅.

Given a local peak v
P⇐=⊗
I

u
Q⊗=⇒
J

w, a decreasing rewrite diagram (DRD) is a pair of decreasing

reductions from v to v′ wrt (I, J) and from w to w′ wrt (J, I), such that v′ =Mη w′.

Note that any joinability diagram −→−→
S
=Mη←−←−

S
using small rules is indeed a decreasing

rewrite diagram whose decreasing reductions are simple since small rules are terminating. There
are other situations where decreasing reductions become simple. If i ∈R \S and j ∈S , then any
decreasing reduction with respect to (I, J) reduces to a simple decreasing reduction of the form

u−→−→
�I,J

, since
P⊗=⇒
J

expands to −→−→
j

by Lemma 25, hence all steps in the sequence are strictly

smaller than I. Two other cases are the following: i= β and j ∈S ; and i ∈R \S and j= β .
Our formulation of decreasing reductions includes α-steps in both sequences K and L, that

is why they do not need to appear explicitly at the bottom. On the other hand, η-expansions
(or reductions) for meta-variables need to appear only at the bottom since they are absorbed by
matching in decreasing reductions. These expansions can be ignored since they vanish by taking
instantiations (Lemma 2). We will only find them in decreasing diagrams for critical pairs.

There is a single orthogonal step in a decreasing reduction, the other steps being plain higher-
order rewrite steps. The reason is that any orthogonal step whose label is strictly less than I or
J in a decreasing reduction wrt (I, J) can be expanded into a rewrite derivation by Lemma 25,
decreasingness being then preserved. On the other hand, it is in general not possible to expand
the orthogonal j-step without violating the decreasing diagram condition: there may be at most
one (facing) step labeled by J. Collecting many j-steps into a single orthogonal j-step is the very
reason for introducing orthogonal rewriting.

DRDs have better properties than arbitrary decreasing diagrams that ease the confluence proof
in many (nonessential) ways. In practice, searching for DRDs is easier than searching for arbitrary
decreasing diagrams; this is another reason for considering them.

We can now state the main result of the paper:

Theorem 38. A left-linear rewrite theory (F ,R) such that R contains a subset of terminating
confluent rules S is confluent on closed terms if all the following conditions hold:
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• the non-trivial nested critical peaks of R\S have rewrite diagrams decreasing wrt rule
labeling;

• the non-trivial plain critical pairs of S are joinable;
• the parallel critical overlaps ofR \S ontoS not at the root have rewrite diagrams decreasing
wrt rule labeling composed lexicographically with small rules rewriting;

• the plain critical peaks and one-nested critical peaks of S onto R \S have rewrite diagrams
decreasing wrt rule labeling composed lexicographically with small rules rewriting.

Of course, some nested critical peaks of R \S may be one-nested critical peaks, or parallel
critical peaks, or even plain critical peaks.

Before developing the proof that spans over Section 4.5, we illustrate its use with two examples,
the first having infinitely many nested critical peaks, and the second requiring β-steps to join some
plain critical peaks.

4.3 Confluence of the theory of global states
We illustrate now the confluence theorem with our example of global states. After recalling the
rules, come the critical pairs computations presented inside individual boxes, the nested critical
pairs that happen to be usual critical pairs first, then those that generate infinite families. For the
case of usual critical pairs, in the uppermiddle of each box appear two rules whose superposition is
inside braces. The upper rule is displayed in red, the lower one in blue with the proviso that lifted
variables appear in red inside a blue rule. Next comes the unifier, then the colored right-hand
sides, then the reduced right-hand sides, and finally the decreasing diagram part itself. Colored
rule names label the arrows issuing from the critical overlap. The decreasing reductions are in
black, including the rule names, except for the facing steps which are in red or blue (remember
that simple reductions cannot contain a facing step). The presentation is a bit different, but still
very similar, for the infinite families.

Let us first recall the rules:

ll : lk(λw.lk(Y[w]))→ lk(λv.Y[v, v]) ud(U, ud(V ,W))→ ud(V ,W) : uu
ul : ud(V , lk(X))→ ud(V , X[V]) lk(λv.ud(v, X[v])→ lk(X) : lu

l : lk(λv.U) → U

As shown in (Ferey and Jouannaud 2019), these rules do not terminate, which is why their
confluence was proved there for a subset of the whole set of terms, namely by assuming that the
first argument of ud belongs to a set of constant symbols (meant to correspond to the semantic
values). We do not make such an assumption here, but use instead the easy to prove property that
the subset S = {uu, ll} of linear rules defines a terminating rewrite relation, hence can be used as
our set of small rules. Showing its confluence is done below by showing that its critical pairs are
joinable (Knuth and Bendix 1970), which we do now. The overlap of the first rule upon itself is just
a usual first-order overlap. The second, however, requires lifting since the overlapping position is
below an abstraction.

ud(V ,

{
ud(W,U)
ud(W, ud(V ′,U ′))

}
)

uu↙ σ = {U �→ ud(V ′,U ′)} ↘uu
ud(W,U)σ ud(V , ud(V ′,U ′))σ
|| ||
ud(W, ud(V ′,U ′)) uu−→ ud(V ′,U ′) uu←− ud(V , ud(V ′,U ′))

which is a decreasing rewrite diagram
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lk(λw.

{
lk(Y[w])
lk(λv.lk(Y ′[w,v]))

}
)

ll↙ σ = {Y �→ λwv.lk(Y ′[w, v])} ↘ll
lk(λv.Y[v, v])σ lk(λw.lk(λv.Y ′[w, v, v]))σ
|| ||
lk(λv.lk(Y ′[v, v])) ll−→ lk(λv.Y ′[v, v, v]) ll←− lk(λw.lk(λv.Y ′[w, v, v]))

which is a decreasing rewrite diagram

We now proceed with the computation, and checking of the critical pairs originating from
overlapping a big rule at an internal position of one of the small rules.

lk(λw.

{
lk(X1[w])
lk(λv.ud(v,X2[w, v]))

}
)

ll↙ σ = {X1 �→ λwv.ud(v, X2[w, v])} ↘lu
lk(λv.X1[v, v])σ lk(λw.lk(λv.X2[w, v]))σ
|| ||
lk(λv.ud(v, X2[v, v]))

lu−→ lk(λv.X2[v, v])
ll←− lk(λw.lk(λv.X2[w, v]))

which is a decreasing rewrite diagram with a single facing step for rule lu

lk(λw.

{
lk(X1[w])
lk(λv.X2[w])

}
)

ll↙ σ = {X1 �→ λwv.X2[w]} ↘l
lk(λw.X1[w,w])σ lk(λw.X2[w])σ

|| ||
lk(λw.X2[w]) = lk(λw.X2[w])

which is a trivial decreasing rewrite diagram

We continue with the checking of 1-nested critical pairs originating from an overlapping of a small
rule at a position of one of the big rules. All of them happen indeed to be critical pairs. Note that
the next critical pair obtained by overlapping (l) with (ll) requires the use of the Drop unification
rule (Ferey and Jouannaud 2019), which generates a fresh meta-variable Z of arity one, in order to
eliminate the dependency of X1 upon its second argument w:

{
lk(λw.lk(X1[w]))
lk(λw.X2)

}

ll↙ σ = {X2 �→ lk(Z), X1 �→ λwv.Z[w]} ↘l
lk(λv.X1[v, v])σ X2σ

|| ||
lk(λv.Z[v]) =Mη lk(Z)

which is a trivial decreasing rewrite diagram
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ud(V ,

{
ud(W, X1)
ud(W, lk(λw.X2[W]))

}
)

uu↙ σ = {X1 �→ lk(λw.X2[W])} ↘ul
ud(W, X1)σ ud(V ,ud(W, X2[W]))σ
|| ||

ud(W, lk(λw.X2[w]))
ul−→ ud(W, X2[W]) uu←− ud(V , ud(W, X2[W]))

which is a decreasing rewrite diagram with a single facing step for rule ul

ud(V ,

{
lk(λv.X1[v])
lk(λv.X)

}
)

ul↙ σ = {X1 �→ λz.X} ↘l
ud(V , X1[V])σ ud(V ,X)σ

|| ||
ud(V , X) = ud(V , X)
which is a trivial decreasing rewrite diagram

We are left with the nested critical pairs between big rules. As we have seen, there are four
infinite families of critical overlaps between ul and lu that we have computed already at Example 7.
Since each family contains infinitely many critical pairs, we have to show that they all enjoy a
decreasing rewrite diagram.

ud(V0, lk(λv1.ud(v1, lk(..., lk(λv2n+1.ud(v2n+1, X2n+1[v])...))))
(2·1·1)∗⇐=⊗

ul

2·(1·1·2)∗⊗=⇒
lu

ud(V0, ud(V0, ..., ud(V0, X2n+1[V0])))) ud(V0, lk(λv1.lk( . . . lk(λv2n+1.X2n+1[v]) . . . )))
∗−→−→
uu

ud(V0, X2n+1[V0])
�⇐=⊗
ul

ud(V0, lk(λv2n+1.X2n+1[v2n+1]))
∗←−←−
ll

which is decreasing wrt rule labeling

ud(V0, lk(λv1.ud(v1, lk(λv3.ud . . . lk(λv2n+1.ud(v2n+1, lk(Y2n+2[v])))...))))
(2·1·1)∗⇐=⊗

ul

2·(1·1·2)∗⊗=⇒
lu

ud(V0, ud(V0, ..., ud(V0, Y2n+2[V0])))) ud(V0, lk(λv1.lk( . . . lk(Y2n+2[v]) . . . )))
∗−→−→
uu

ud(V0, Y2n+2[V0])
�⇐=⊗
ul

ud(V0, lk(λv2n+1.Y2n+2[v2n+1]))
∗←−←−
ll

which is decreasing wrt rule labeling
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lk(λv1.ud(v1, lk(λv3.ud . . . lk(λv2n+1.ud(v2n+1, X2n+1[v]))...)))
(1·1·2)∗⇐=⊗

lu

1·1·(2·1·1)∗⊗=⇒
ul

lk(λv1.lk( . . . lk(λv2n+1.X2n+2[v]) . . . )) lk(λv1.ud(v1, ud(v3, ..., ud(v2n+1, X2n+2[v1]))))
∗−→−→
ll

lk(λv2n+1.X2n+2[v2n+1]) =α lk(λv1.X2n+1[v1])
∗←−←−
uu

which is decreasing wrt rule labeling

lk(λv1.ud(v1, lk(λv3.ud . . . lk(λv2n+1.ud(v2n+1, lk(Y2n+2[v]))...)))
(1·1·2)∗⇐=⊗

lu

1·1·(2·1·1)∗⊗=⇒
ul

lk(λv1.lk( . . . lk(λv2n+1.Y2n+2[v]) . . . )) lk(λv1.ud(v1, ud(v3, ..., ud(v2n+1, Y2n+2[v1]))))
∗−→−→
ll

lk(λv2n+1.Y2n+2[v2n+1]) =α lk(λv1.Y2n+2[v1])
∗←−←−
uu

which is decreasing wrt rule labeling

We have therefore shown that the theory of global states preserves the confluence of
β-reductions on all untyped terms, hence improving over (Ferey and Jouannaud 2019), by using
the order on rules’ labels inherited from the decision to have ll and uu as small rules. This example
could actually not be shown confluent with an empty set of small rules, as can be checked by the
reader, because, in that case, there would be additional infinite families whose joinability diagram
would require {uu, ll}� {ul, lu} to be decreasing, while the existing infinite families require just
the contrary.

An important remark here is that the checking of nested critical pairs, whether automatic or by
the user for the infinite families of nested pairs, proceeds by accumulating ordering constraints on
the rules’ names used for labeling the rewrite steps, and checking them for satisfiability, usually by
rewriting the constraint into some disjunctive normal form. As is well-known, such a technique
is modular: when new rules come in, new nested critical pairs are computed and new constraints
added to the previous normal form, then the whole set gets normalized again and satisfiability or
unsatisfiability concluded.

4.4 Confluence of encoding and decoding
We illustrate now the confluence theorem with our example of encoding and decoding terms, and
show that all its nested critical pairs have decreasing diagrams. Just as with the previous example,
we first recall the rules before computing and checking first the nested critical pairs that happen
to be usual critical pairs, and then those that generate infinite families.

Let us first recall the rules:

⇑(⇓(T)) de−→ T

⇓(T) el−→ �(λx.⇓(T[x])) ⇑(�(T)) dl−→ λx.⇑(T[x])
@(⇓(T),U) ae−→ ⇓(T ⇑(U)) (⇑(T) U) ad−→ ⇑(@(T,⇓(U)))

@(�(T),U) al−→ T[⇑(U)]

The subset of rules {de, el, dl, ae, ad} can be seen as a set of first-order rules, λx being a unary
operator and bound occurrences of x in the scope of λx being constants, since no meta-variable
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is applied in the right-hand side of the rules. We show that the rules are strongly normalizing by
using the following (non-erasing) polynomial interpretation over N+:

[|λx.t|] = [|t|]+ 1 [|�(t)|] = [|t|]
[|(u v)|]= [|@(u, v)|] = [|u|]2([|v|]+ 1) [|x|] = 1

[|⇓(t)|]= [|⇑(t)|] = 2[|t|]+ 1

We now prove that this interpretation decreases strictly each rule. The check is trivial for de, el
and dl. For ae, we need to verify that

(2X+ 1)2(Y + 1)= 4X2Y + 4XY + 4X+ Y + 1> 2(X2(2Y + 1+ 1))+ 1= 4X2Y + 4XY + 1
which holds true. Naturally, neither al nor β decrease this interpretation since either of these rules
is non-terminating on its own.

Choosing all these five rules as small rules would actually not work: two critical peaks require
using β-rewrites in their joining diagrams, which prevents us from keeping el and ad among the
small rules. The set of small rules is therefore reduced to {de, ae, dl}. The remaining rules are then
ordered as follows: {el, ad}� al� β . There are then no nested critical pair, no one-nested critical
pair, and four critical pairs that we consider in turn:

⇑(
{
⇓(T)
⇓(T′)

}
)

de↙ σ = {T �→ T′ } ↘el
Tσ ⇑(�(λx.⇓(T′[x])))σ
|| ||
T′ Mη←− λx.T′[x] de←− λx.⇑(⇓(T′[x])) dl←− ⇑(�(λx.⇓(T′[x])))

which is a decreasing diagram since el is big and the others small

(

{
⇑(T)
⇑(⇓(T′))

}
U)

ad↙ σ = { T �→ ⇓(T′) } ↘de
⇑(@(T,⇓(U)))σ (T′ U)σ

|| ||
⇑(@(⇓(T′),⇓(U))) ae−→ de−→−→ (T′ U)

which is a decreasing diagram since ad is bigger than all others

@(

{
⇓(T)
⇓(T′)

}
,U)

ae↙ σ = { T �→ T′ } ↘el
⇓(T ⇑(U))σ @(�(λx.⇓(T′[x]),U)σ

|| ||
⇓(T′ ⇑(U)) al←− @(�(λx.⇓(T′[x]),U)

which is a decreasing diagram since el is bigger than all others
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(

{
⇑(T)
⇑(�(λx.T′[x]))

}
U)

ad↙ σ = { T �→�(λx.T′[x]) } ↘dl
⇑(@(T,⇓(U)))σ (λx.⇑(T′[x]) U)σ

|| ||
⇑(@(�(λx.T′[x]),⇓(U))) al−→ de−→−→∗ ⇑(T′[U]) β←− (λx.⇑(T′[x]) U)

which is a decreasing diagram since ad is bigger than all others

Note here that using multi-step instead of orthogonal rewriting would produce one more crit-
ical pair, actually a one-nested critical pair obtained by overlapping (de) onto (ad) and (el) onto
(de). This would correspond to a multi-step using both (ad) and (el) connected by a rewrite step
using (dl). Thanks to our definition of orthogonal rewriting, this extra critical pair does not need
to be considered.

We conclude that the encoding and decoding specification defines a confluent system together
with β .

4.5 The confluence proof
Using the generalization of van Oostrom’s theorem by Jouannaud and Liu (Jouannaud and Liu
2012), we need to show the existence of decreasing diagrams for all local peaks in turn.We develop
first some properties of decreasing reductions.

4.5.1 Properties of decreasing reductions

Lemma 39 (Stability and monotonicity). Let I = 〈i, a〉, J = 〈j, b〉 be labels, s−→−→
K

P⊗=⇒
i
−→−→

L
t

a decreasing derivation with respect to (I, J), u[]p a context and σ a substitution. Then
u[sσ ]p −→−→

K′
⊗=⇒

i
−→−→
L′

u[tσ ]p is a decreasing derivation with respect to 〈u[I]pσ , u[J]pσ 〉.

Proof. By Lemma 36.

We will actually need a more general form of monotonicity for orthogonal reductions, for
which the linear context u has multiple holes defined as the positions of the meta-variables in
Dom(σ ). The proof is by induction on the number of meta-variables in u.

Lemma 40 (Multi-monotonicity). Given a linear term u whose meta-variable X occurs at a set P
of parallel positions, a substitution σ of domain MV ar(u), and labels I = 〈i, a〉 and J = 〈j, b〉 such
that σ (X)−→−→

I�Ia
⊗=⇒

i
−→−→
J�Ia,Ib

τ (X) a decreasing reductions wrt 〈Ia, Jb〉, then, uσ −→−→
I′
⊗=⇒

i
−→−→

J′
uτ

is a decreasing reduction wrt 〈u[I]Pσ , u[J]Pσ 〉.

Proof. By Lemma 39 applied repeatedly to Xσ for s instantiated by the identity substitution.

We now consider gluing together two decreasing reductions.
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Lemma 41 (Gluing). Let j ∈ (R ∪ β)\, and u−→−→
�I

u′
P⊗=⇒
j

v′ −→−→
�I,J

v and

σ −→−→
�I

σ ′
Q⊗=⇒
j

τ ′ −→−→
�I,J

τ be two decreasing derivations originating from a term u and a

substitution σ , respectively.

Then, uσ −→−→
�I

u′σ ′
P⊗u′Q⊗=⇒

J
v′τ ′ −→−→

�I,J
vτ is a decreasing derivation from uσ to vτ wrt (I, J).

Proof. Follows from stability properties of reductions as above, from their monotonicity proper-
ties, and from the definition of orthogonal reductions.

4.5.2 Decreasing diagrams for free
Before starting to build decreasing diagrams for all local peaks, we need to generalize some stan-
dard commutation properties of plain rewriting to the case of higher-order orthogonal reductions.
These algebraic properties of reductions can be seen as decreasing diagrams for free. They will of
course play an important rôle in the confluence proof.

Plain first-order rewriting enjoys two properties implying that disjoint and ancestor local
rewriting peaks are always joinable by decreasing reductions, called disjoint peak (DP) property
and linear ancestor peak (LAP) property for left-linear rewrite rules (Huet 1980). (DP) is true of
all monotonic relations, and (LAP) holds for our definition of higher-order rewriting as we have
seen. It is important to realize that our definition of higher-order rewriting has been designed with
this objective in mind: neither (DP) nor (LAP) are true of Nipkow’s definition. As expected, these
properties extend to orthogonal higher-order rewrites:

Lemma 42 (DP). Let Q#P be sets of orthogonal positions wrt rule i. Then, orthogonal i-rewrite steps
at P and Q commute.

Note that P (resp., Q) are singleton sets when rewriting takes place at a single position.

Lemma 43 (Commutation). Let j ∈R ∪ β. Then,
p←−
α

Q⊗=⇒
j
⊆ Q⊗=⇒

j
←−←−

α
.

This straightforward property is required in the case where a rewrite relation is modulo a
theory, here modulo=α (Jouannaud and Liu 2012).

Lemma 44 (LAPo). Let i : L→ R, j :G→D ∈R ∪ β, u a term such that u
p−→
i
v and σ a substitu-

tion such that σ (X)
QX⊗=⇒
j

τ (X) for each meta-variable X in Dom(σ ). Let Q= {QX}X∈Dom(σ ). Then,

vσ
p←−
i
uσ

∅⊗uQ⊗=⇒
j

uτ and vσ
∅⊗vQ⊗=⇒

j
vτ

p←−
i
uτ .

In the case where j ∈S , the orthogonal step from σ (X) to τ (X) is indeed a plain rewrite step
since small rules use plain rewriting instead of orthogonal rewriting, but seen here as an orthogo-
nal step at the singleton setQX , while the orthogonal steps in the conclusion become parallel steps.
This allows us to avoid writing specific lemmas for the case of small rules.

Proof. By stability Lemma 9 for the step from uτ to vτ and by definition of orthogonal rewriting
for the step from vσ to vτ .
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4.5.3 Decreasing diagrams for arbitrary higher-order local peaks
This is the difficult case of local peaks, whose proof is based on using Theorem 35. It also requires
lifting decreasing reductions from critical peaks to overlapping peaks, as well as gluing together
decreasing derivations obtained for a term and its substitution. We do not distinguish here ances-
tor peaks from overlapping peaks, a typology that is not necessary for the case of orthogonal
rewriting. Nor do we distinguish the kind of rule that is used, functional, small, or big.

Lemma 45. Higher-order local orthogonal peaks have decreasing diagrams provided higher-order
nested critical peaks have decreasing rewrite diagrams.

Of course nested critical peaks between small rules are just usual critical peaks, while those
between small and big rules are either usual critical peaks or 1-nested critical peaks if the big rule
applies above (non-strictly) the small rule.

Proof. Let v
P⇐=⊗
I

u
Q⊗=⇒
J

w be an orthogonal higher-order local peak with i, j ∈R ∪ β . The proof

proceeds by induction on the size of u.
Assume first that � �∈ P ∪Q. Then, we can cut u along K = (P ∪Q)min, apply induction to uK

yielding some decreasing diagram, and compose back that diagramwith uK by Lemma 40, yielding
a decreasing diagram as expected.

Assume now that � ∈ P ∪Q and wlog � ∈ P. Let O∪O′ be the maximal subset of P∪Q s.t.
(i,O, j,O′) defines a nested critical overlap at the root. There are two cases depending upon the
size of O∪O′: the first, non-overlapping case, shown in Figure 4, and the second, overlapping
case, shown in Figure 5.

(1) O∪O′ = �. We then split u along K = (P \ {�} ∪Q)min. Let therefore r= uK , γ = uK ,
and rγ=u. By Lemma 14, P=�⊗KP′ and Q=∅⊗KQ′. By Lemma 28 applied twice,

v=sσ {�}⊗rP′⇐=⊗
i

u
∅⊗rQ′⊗=⇒

j
rτ=w.

We now decompose the step from u to v: by Definition 19, r �−→
i
s and γ

P′⊗=⇒
i

σ . By

stability Lemma 24, u= rγ �−→
i
sγ

P\{�}⊗=⇒
i

sσ = v. Likewise, u= rγ
∅⊗KQ′⊗=⇒

j
rτ . By (LAPo)

Lemma 44, sγ
Q′′⊗=⇒
j

sτ �←−
i
rτ , a decreasing derivation. We are done if P′=∅, otherwise

we get smaller peaks σ
P′⇐=⊗
i

γ
Q′⊗=⇒
j

τ . By induction hypothesis, σ −→−→
<I
⊗=⇒

j
−→−→
<I,J

θ and

τ −→−→
<J
⊗=⇒−→−→

<I,J
θ for some θ . By monotonicity Lemma 40, we get a decreasing deriva-

tion from sσ to sθ . By gluing Lemma 41, we get a decreasing derivation from rτ to sθ . We
have therefore got a DRD for the peak v= sσ ⇐=⊗

i
u⊗=⇒

j
rτ =w.

(2) |O∪O′|> 1, hence � ∈O. We then split u according to Theorem 35, hence there exist
u′, v′,w′, r, s, t, θ , γ , σ , τ ,O,O′, P′,Q′ such that (i) u=u′θ , v=v′σ ,w=w′τ , u′=rγ , v′=sγ ,
w′=tγ ; (ii) s O⇐=⊗

i
r

O′⊗=⇒
j

t is a nested critical peak; (iii) σ
P′⇐=⊗
i

θ
Q′⊗=⇒
j

τ ; (iv) P=O⊗u′P′,

Q=O′⊗u′Q′.
By assumption, there is a DRD for the nested critical pair 〈s, t〉, hence there exists some term
m such that s−→−→

<i
⊗=⇒−→−→

<i,j
m and t−→−→

<j
⊗=⇒−→−→

<i,j
m. It follows by stability Lemma 39

that sγ −→−→
<i
⊗=⇒

i
−→−→
<i,j

mγ and tγ −→−→
<j
⊗=⇒

j
−→−→
<i,j

mγ .
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Figure 4. Non-overlapping case.

Figure 5. Overlapping case.

By induction hypothesis, the peak σ
P′⇐=⊗
i

θ
Q′⊗=⇒
j

τ has a DRD, hence σ −→−→
<i
⊗=⇒

j
−→−→
<i,j

δ

and τ −→−→
<j
⊗=⇒

i
−→−→
<i,j

δ.

We can now glue these DRDs together and obtain a DRD for the original local peak by
gluing Lemma 41.

This terminates the proof of ourmain result. Note that we have not singled out either β or small
rules in the proof. The distinction is made without saying: the case |O∪O′|> 1 is impossible if
i= β ; and if i ∈S , critical pairs only are possible if j ∈S and parallel critical pairs if j ∈R; if
i ∈R and j ∈S , 1-nested critical pairs are also possible.

5. Conclusion
VanOostrom’s decreasing diagrams technique characterizes confluence of rewriting on an abstract
set. It is well-known that its application to term rewriting is difficult, although many techniques
were elaborated during the last years that successfully solved many open problems (Felgenhauer
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2013; Felgenhauer et al. 2015; Felgenhauer and van Oostrom 2013; Jouannaud and Liu 2012;
Liu and Jouannaud 2014; Liu et al. 2015; Zankl et al. 2015). For example, Felgenhauer proved
that the existence of decreasing diagrams for parallel critical pairs ensures the confluence of
non-terminating left-linear first-order rewriting systems (Felgenhauer and van Oostrom 2013).

Our main result, Theorem 38, shows that van Oostrom’s method applies to a quite complex
new situation, higher-order rewriting of untyped terms with left-linear rules having non-trivial
higher-order critical pairs. Compared to Felgenhauer’s, there are two new difficulties: rewrites
are higher-order, and the presence of untyped β-reductions. Compared to (Ferey and Jouannaud
2019), we do not need the assumption that the set of higher-order rewrite rules defines a termi-
nating relation, but can use the termination property of any subset of the rules, which has been
proved very useful in examples. It is actually worth noting that if S =R, then nested critical
pairs disappear as well as one-nested critical pairs. The result then reduces to the main theorem
of (Ferey and Jouannaud 2019), which appears to be subsumed by our new result. We have there-
fore got a new, powerful and flexible tool to prove the confluence on untyped terms of λ-calculi
augmented by left-linear higher-order rewrite rules.

A main technical tool used here is the theory of orthogonal rewriting, which appears as being
intimately related to van Oostrom’s multi-step rewriting (Terese 2003). One difference is that
an orthogonal step uses different instances of a single rule at all orthogonal rewriting positions,
whereas a multi-step may use instances of different rules. A main novel aspect of our defini-
tion is the associated notion of a nested critical pair and the corresponding critical pair property
which allows us to check confluence of non-terminating higher-order definitions whose criti-
cal pairs are not development closed, as they are in (van Oostrom 1997). Nested critical pairs
could of course be defined for multi-step rewriting by adapting our definitions, but this would
result in an exponential blow up of their number, a strong argument in favor of orthogonal
rewriting.

Higher-order rewriting definitions have been studied extensively in the past years because they
allow us encoding program constructs in type theories such as Agda, DEDUKTI and Coq, which
now all allow us for user-defined higher-order rules. They are also used in tools that target check-
ing their confluence (Hamana 2017), or their termination (Kop 2020). The examples we have
carried out here, Plotkin–Power’s theory of global states and an encoding of lambda calculus used
in DEDUKTI, illustrate the strength of orthogonal rewriting, which requires using nested critical
pairs, as well as the use of small terminating rules, which only require plain critical pairs. Many
other encoding examples appear in (Férey 2021).

Our definition of higher-order rewriting for untyped λ-terms is taken from (Ferey and
Jouannaud 2019). As is usual, rules have patterns for their left-hand sides, and pattern-matching
and unification are higher-order, that is, in the context of patterns, modulo β0. What is crucial in
this setting is the use of Klop’s notion of substitution for meta-variables with arities, which makes
higher-order rewriting actually look like being first-order. The practical impact of this trick on
technical developments is very impressive.

One may wonder whether it would be important to develop an abstract theory of orthogo-
nal rewriting. This is indeed questionable. Orthogonal rewriting is needed in the presence of
β-reduction and of higher-order rules for three concurrent reasons that do not occur together
otherwise: first, β-reduction does not terminate on untyped terms; second, higher-order rules
generate β-redexes, which requires having maximal labels for the higher-order steps; third,
β-rewrites duplicate and stack their subexpressions, which requires using orthogonal higher-
order rewriting steps in order to pack together many steps into one in order tomeet the decreasing
diagram condition for local peaks made of a β-redex sitting above a higher-order redex. The only
other cases we can think of where these circumstances would be met are obtained by relaxing the
constraints on the rewrite system added to untyped β-reduction, for example, by allowing us for
non-left-linear rules.
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