
Glasgow Math. J. 49 (2007) 105–120. C© 2007 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089507003461. Printed in the United Kingdom

LINEAR ASYMPTOTIC BEHAVIOUR OF SECOND ORDER
ORDINARY DIFFERENTIAL EQUATIONS

MATS EHRNSTRÖM
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Abstract. We study the semilinear differential equation u′′ + F(t, u, u′) = 0 on a
half-line. Under different growth conditions on the function F , equations with globally
defined solutions asymptotic to lines are characterized. Both fixed initial data and fixed
asymptote are considered.
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1. Introduction. Let I ≡ [t0,∞), t0 ≥ 0, be a positive half-axis. We consider the
semilinear second order differential equation

u′′(t) + F
(
t, u(t), u′(t)

) = 0, t ∈ I, (1.1)

where F : I × � × � → � is continuous in all three variables, and we are seeking
solutions u that are twice continuously differentiable on I. In particular, we are looking
for conditions that guarantee solutions u(t) of linear asymptotic form, for which there
exist constants c, m ∈ � such that

|u(t) − ct − m| + |u′(t) − c| → 0 as t → ∞. (1.2)

Ever since [1], much work has been devoted to the investigation of non-oscillatory
solutions, i.e. solutions that eventually remain positive (or negative). Especially, one
has been interested in the investigation of solutions u(t) in the classes

{u satisfies (1.2)} ⊂ {u(t) = ct + m + o(1)} ⊂ {u(t) = ct + o(t)},
as t → ∞. The case c = 0 has been studied separately. The papers [10, 11, 17] all
focus on different classes of solutions, determined by whether limt→∞ u(t)/t is positive,
negative, vanishing or non-existent. Recent papers dealing with solutions u(t) = ct +
o(t) are e.g. [4, 13, 19]. In comparison, not as much work has aimed at investigating
solutions u(t) = ct + m + o(1). Lately, however, there has been an increasing interest
in this, witnessed by [12, 14, 15, 16]. Even though the focus of this paper are solutions
satisfying (1.2), the results were inspired by work on solutions u(t) = m + o(1) in [6],
which in turn had predecessors in [5, 18]. (For a different approach, see also [8].) We
remark that all solutions dealt with in this paper will be globally defined on I.

Typically, the conditions given in the literature for any of the solutions mentioned
above include growth estimates on the function F(t, u, u′), especially concerning the
time variable. In this paper, most results are based upon a Lipschitz-like criterion
presented as Condition 3.1, which in fact guarantees that all solutions of (1.1) are
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globally defined in time (see [3]). However, Theorem 4.2 and Corollary 4.3 loosen this
condition to include equations with solutions that blow-up in finite time. Even though
this possibility has been considered, e.g. already in [11], our results are concerned with
a smaller class than u(t) = ct + o(t), namely (1.2). Furthermore, Theorem 5.6 is stated
directly in terms of the function F(t, u, u′).

Section 2 contains preparations for the proofs to come, defining and investigating
some metric spaces. In Section 3 we state necessary and sufficient conditions for all
solutions to be of form u(t) = ct + o(t). Sections 4 and 5 then investigate conditions
under which solutions with fixed initial data satisfy (1.2) for some c, m ∈ �, respectively
when, for given c, m ∈ �, there is a solution fulfilling (1.2). Comparisons are made to
previous results. All main proofs are based on either the Banach, or the Schauder, fixed
point theorem. The Bielecki scaling technique [2] and proper choices of metric spaces
(cf. Section 2) are essential.

2. Preliminaries. In this section we will introduce some metric spaces that will
be used in the following sections.

By C1(I) we mean the linear space of continuously differentiable real-valued
functions u: I → �. Similarly, C1

b(I) denotes the subspace of C1(I) of bounded functions
with bounded derivative, complete in the metric induced by the extended supremum
norm

‖u‖1 ≡ sup
t∈I

|u(t)| + sup
t∈I

|u′(t)|. (2.1)

Throughout the paper, we shall use different norms ‖ · ‖ to represent the corresponding
metrics d(u, v) = ‖u − v‖. It is important to note that some function spaces are complete
as metric spaces in the metric induced by the norm, even though the members of the
space may not be norm bounded! What matters is that their difference is bounded in
the corresponding norm. E.g. in the metric given by (2.1), for any c, m ∈ � the set
C1

c,m(I) ⊂ C1(I) of functions satisfying (1.2) is closed in C1(I). This makes C1
c,m(I) into

a complete metric space (even though it is neither linear nor normed in the sense of
‖ · ‖1).

We shall consider also the subspace of C1(I) consisting of functions with linear
growth, i.e.

X ≡
{

u ∈ C1(I): sup
t∈I

∣∣∣∣ u(t)
t + 1

∣∣∣∣ + sup
t∈I

|u′(t)| < ∞
}

, (2.2)

endowed with the norm

‖u‖X ≡ sup
t∈I

∣∣∣∣ u(t)
t + 1

∣∣∣∣ + sup
t∈I

|u′(t)|. (2.3)

The norm induces a corresponding metric on X given by d(u, v) = ‖u − v‖X . It can
easily be seen that X is complete with respect to the metric given by ‖ · ‖X . For brevity,
we shall write X , referring to the metric space (X , ‖ · ‖X ). The equivalent norm –
inducing an equivalent metric –

‖u‖max
X ≡ max

{
sup
t∈I

∣∣∣∣ u(t)
t + 1

∣∣∣∣ , sup
t∈I

|u′(t)|
}
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helps us introduce the class of metric subspaces Xc ⊂ X , c ≥ 0, defined by

Xc ≡ {u ∈ X : ‖u‖max
X ≤ c}. (2.4)

It is immediate that Xc is closed in X . As a consequence, (Xc, ‖ · ‖X ) is a complete
metric space.

REMARK 2.1. Note that for any function ϕ: I → [m, M], 0 < m < M < ∞, the
corresponding norms and induced metrics given by

‖u‖ϕ

1 ≡ sup
t∈I

∣∣∣∣ u(t)
ϕ(t)

∣∣∣∣ + sup
t∈I

∣∣∣∣u′(t)
ϕ(t)

∣∣∣∣ , (2.5)

and

‖u‖ϕ

X ≡ sup
t∈I

∣∣∣∣ u(t)
(t + 1)ϕ(t)

∣∣∣∣ + sup
t∈I

∣∣∣∣u′(t)
ϕ(t)

∣∣∣∣ , (2.6)

make (C1
c,m(I), ‖ · ‖1) and (C1

c,m(I), ‖ · ‖ϕ

1 ), respectively (X , ‖ · ‖X ) and (X , ‖ · ‖ϕ

X ),
equivalent as metric spaces.

3. Linear asymptotic solutions o(t). In this section we study necessary and
sufficient conditions for the existence of solutions u(t) to (1.1), which satisfy
|u′(t) − c| → 0 and

u(t) = ct + o(t), t → ∞.

Throughout the section we shall assume that the following holds true:

CONDITION 3.1. Suppose that there exists a continuous function k: I → [0,∞),
such that for any u, u′, v, v′ ∈ �, t ∈ I,

|F(t, u, u′) − F(t, v, v′)| ≤ k(t)(|u − v| + |u′ − v′|), (3.1)

and that ∫
I
sk(s) ds < ∞. (3.2)

In dealing with a more general type of equation than (1.1), [11, 17] clarify much of
the situation for solutions u(t) = ct + o(t). However, in contrast to these and most
other investigations, our approach in this section demands nothing from the function
F in terms of monotonocity or its sign. Before giving some lemmas and the necessary
proofs, we present the main results of this section.

THEOREM 3.2. Under Condition 3.1, suppose that for some c ∈ �,
∫

I
|F(s, cs, c)| ds < ∞. (3.3)

Then any solution u(t) to (1.1) satisfies

lim
t→∞

u(t)
t

= lim
t→∞ u′(t) ∈ �.
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Conversely, if there is such a solution, then any c ∈ � satisfies

sup
t∈I

∣∣∣∣
∫ t

t0

F(s, cs, c) ds
∣∣∣∣ < ∞.

COROLLARY 3.3. Under Condition 3.1, if F(t, 0, 0) is of constant sign for large t,
then either all or none of the solutions to (1.1) satisfy limt→∞

u(t)
t = limt→∞ u′(t) ∈ �

according to whether
∫

I |F(s, 0, 0)| ds is finite or infinite, respectively.

REMARK 3.4. It is found [11] that the condition
∫

I F(t,−cs,−c) ds < ∞, for some
c > 0, is equivalent to limt→∞ u′(t) = const. < 0, for some solution u. In [11] it is
assumed that F is positive and non-decreasing in the last two variables, whereas
Condition 3.1 is not supposed. Though the results are similar, [11] and the present
investigation cover different cases, and our result guarantees that all solutions are of
the desired form. In [14] there are conditions guaranteeing that all solutions are of this
form. There is, however, no characterization as above.

For an easy overview, the proofs will be carried out with the help of two separate
lemmas, clarifying the main ideas. Once this is done, what essentially remains is an
application of the Banach fixed point theorem.

LEMMA 3.5. Under Condition 3.1,

sup
t∈I

∣∣∣∣
∫ t

t0

F(s, u(s), u′(s)) ds
∣∣∣∣ (3.4)

is finite for some u ∈ X exactly if it is finite for all u ∈ X . The same is true for∫
I |F(s, u(s), u′(s))| ds.

Proof. Let u, v ∈ X . Then

|u(s) − v(s)| + |u′(s) − v′(s)| ≤ (1 + s)‖u − v‖X .

Using this, and the fact that sk(s) is integrable by hypothesis, we conclude that there is
a constant Ck, depending only on k(t), such that

∣∣∣∣
∫ t

t0

F(s, u(s), u′(s)) ds
∣∣∣∣

≤
∫

I
|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds +

∣∣∣∣
∫ t

t0

F
(
s, v(s), v′(s)

)
ds

∣∣∣∣
≤

∫
I
k(s)(|u(s) − v(s)| + |u′(s) − v′(s)|) ds +

∣∣∣∣
∫ t

t0

F
(
s, v(s), v′(s)

)
ds

∣∣∣∣
≤ Ck‖u − v‖X +

∣∣∣∣
∫ t

t0

F(s, v(s), v′(s)) ds
∣∣∣∣ .

The calculation for
∫

I |F(s, u(s), u′(s))| ds is similar. �
REMARK 3.6. Lemma 3.5 enables us to consider any function in X to determine

the finiteness of
∫

I |F(s, u(s), u′(s))| ds and (3.4). For consistency with previous work,
we choose to consider the lines through the origin {u ∈ X : u(s) = cs, c ∈ �}.

https://doi.org/10.1017/S0017089507003461 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003461


2nd ORDER O.D.E’S 109

LEMMA 3.7. Under Condition 3.1, suppose that, for some c ∈ �,
∫

I
|F(s, cs, c)| ds < ∞. (3.5)

Then, for any initial data u0, u′
0 ∈ �, the map T :X → X defined by

Tu(t) ≡ u′
0(t − t0) + u0 +

∫ t

t0

(s − t)F
(
s, u(s), u′(s)

)
ds

is a contraction with respect to the distance ‖ · ‖ϕ

X for a suitable ϕ.

Proof. Put

ϕ(t) ≡ exp
(

3
∫ t

t0

(s + 1)k(s) ds
)

, t ∈ I, (3.6)

and let ‖ · ‖ϕ

X be an equivalent norm on X as in Remark 2.1. Note that, in view of
Condition 3.1, ϕ ≥ 1, is bounded, and has a non-negative derivative. For any t1, t2 ∈ I,
we have ∣∣∣∣Tu(t1) − Tv(t1)

(t1 + 1)ϕ(t1)

∣∣∣∣ +
∣∣∣∣ (Tu)′(t2) − (Tv)′(t2)

ϕ(t2)

∣∣∣∣
≤ 1

(t1 + 1)ϕ(t1)

∫ t1

t0

(t1 − s)|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

+ 1
ϕ(t2)

∫ t2

t0

|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

≤ 1
(t1 + 1)ϕ(t1)

∫ t1

t0

(t1 − s)k(s)ϕ(s)
|u(s) − v(s)| + |u′(s) − v′(s)|

ϕ(s)
ds

+ 1
ϕ(t2)

∫ t2

t0

k(s)ϕ(s)
|u(s) − v(s)| + |u′(s) − v′(s)|

ϕ(s)
ds

= 1
ϕ(t1)

∫ t1

t0

ϕ′(s)
3

(t1 − s)
(t1 + 1)

|u(s) − v(s)| + |u′(s) − v′(s)|
(s + 1)ϕ(s)

ds

+ 1
ϕ(t2)

∫ t2

t0

ϕ′(s)
3

|u(s) − v(s)| + |u′(s) − v′(s)|
(s + 1)ϕ(s)

ds

≤ ‖u − v‖ϕ

X
3

(∫ t1

t0

ϕ′(s)
ϕ(t1)

ds +
∫ t2

t0

ϕ′(s)
ϕ(t2)

ds
)

= ‖u − v‖ϕ

X
3

(
ϕ(t1) − ϕ(t0)

ϕ(t1)
+ ϕ(t2) − ϕ(t0)

ϕ(t2)

)
≤ 2‖u − v‖ϕ

X
3

.

For v(t) = ct, (3.5) yields that Tv ∈ X . Then ‖Tu‖ϕ

X ≤ ‖Tu − Tv‖ϕ

X + ‖Tv‖ϕ

X
< ‖u − v‖ϕ

X + ‖Tv‖ϕ

X < ∞, for any u ∈ X , so that T is a well-defined contractive
map X → X in the metric given by ‖ · ‖ϕ

X . �
Proof of Theorem 3.2. The function v(t) ≡ ct ∈ X , so the assumptions of

Lemma 3.7 are fulfilled. The Banach fixed point theorem yields a fixed point
u = Tu ∈ X . Differentiating shows that such a fixed point is a solution to (1.1), and
u′(t) = u′

0 − ∫ t
t0

F(s, u(s), u′(s)) ds. By (3.3) and Lemma 3.5 the integral is absolutely
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convergent, and hence u′(t) has a limit, say c, as t → ∞. Also,

u(t)
t

− u′(t) = 1
t

(
u0 − u′

0t0 +
∫ t

t0

sF(s, u(s), u′(s)) ds
)

,

so that u(t)/t → c as t → ∞, in view of Lebesgue’s dominated convergence theorem.
Conversely, let u be a solution of (1.1) with bounded derivative. Since any solution

is a fixed point with respect to T , for some initial data u0, u′
0, we have that

∣∣∣∣
∫ t

t0

F(s, u(s), u′(s)) ds
∣∣∣∣ = |u′(t) − u′

0| < ∞.

Lemma 3.5 then implies that this inequality holds for any v ∈ X , and in particular for
v(t) ≡ ct. �

Proof of Corollary 3.3. This follows from Theorem 3.2 and Lemma 3.5. �

4. Asymptotically linear solutions with fixed initial data. We shall now study
solutions of (1.1) that fully satisfy (1.2). Solutions asymptotic to lines have earlier been
investigated, e.g. in [9, 12, 14, 15, 16]. The papers [9, 12, 16] deal with the case when
F = F(t, u) does not depend on u′. The paper [14] is, among other things, concerned
with solutions u(t) = ct + m + o(1), which in general is a slightly larger class than
(1.2). Their assumptions are different, and in relevant cases we compare our results to
theirs. The very recent contribution [15] is a general treatise on solutions asymptotic to
polynomials, but again the assumptions are different from ours. Whereas in Section 5
the focus will be on the asymptote ct + m, instead we will now fix the initial data and
ask if the corresponding solution is of form (1.2). Theorem 4.2 will give conditions
guaranteeing that this is the case, and Corollary 4.3 gives criteria for such a solution
to be positive and non-decreasing. An analogue of the suffiency part of Corollary 3.3,
Corollary 4.5 then presents a condition for all solutions to be asymptotic to straight
lines.

In this section, a monotonicity property will be imposed on F(t, ·, ·). On the other
hand there are still no sign conditions on F and Condition 3.1 will be weakened to the
following generalized version:

CONDITION 4.1. Let

C = {(t, u, u′) ∈ I × � × �: |u| ≤ c(t + 1), |u′| ≤ c}. (4.1)

Suppose that there exists a continuous function k: I → [0,∞), such that for any
(t, u, u′), (t, v, v′) ∈ C,

|F(t, u, u′) − F(t, v, v′)| ≤ k(t)(|u − v| + |u′ − v′|),

with
∫

I sk(s) ds < ∞, and that for any (t, u, u′) ∈ C, we have

|F(t, u, u′)| ≤ |F(t, c(t + 1), c)|.

Whereas Condition 3.1 guarantees that all solutions to (1.1) are globally defined in
time, Condition 4.1 also accommodates equations with solutions that blow-up in finite
time.
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THEOREM 4.2. If Condition 4.1 holds for some c ≥ 0, and
∫

I
|sF(s, c(s + 1), c)| ds ≤ c − |u0|,

∫
I
|F(s, c(s + 1), c)| ds ≤ c − |u′

0|, (4.2)

then there exists a solution u to (1.1) with u(t0) = u0, u′(t0) = u′
0, and u is asymptotic to

a straight line, i.e. (1.2) holds for some constants.

COROLLARY 4.3. If Condition 4.1 holds for some c ≥ 0, and
∫

I
|sF(s, c(s + 1), c)| ds ≤ c,

∫
I
|F(s, c(s + 1), c)| ds ≤ c/2, (4.3)

then there exists a positive non-decreasing solution u to (1.1) with u(t0) = 0, u′(t0) = c/2,
and u is asymptotic to a straight line, i.e. (1.2) holds for some constants.

REMARK 4.4. We have found no analogue of Corollary 4.3, but one can recognize
part of (4.3) from other results. E.g. in [4], dealing with the special case F = F(t, u),∫

I g(s, cs) ds < c/2 is the sufficient condition for the existence of a positive solution with
u(0) = 0 and u(t)/t = c/2 + o(t) as t → ∞, provided |F(t, u)| ≤ g(t, |u|) where g(t, ·) is
non-decreasing. Note that the solution presented in Corollary 4.3 satisfies the much
stronger property (1.2), hence the stronger condition (4.3).

COROLLARY 4.5. Let I ⊆ [1,∞), c0 ≥ 0, and suppose that Condition 4.1 holds for
all c ≥ c0. If there exists α ∈ (0, 1) such that

∫
I
|sF(s, c(s + 1), c)| ds ≤ αc, whenever c ≥ c0, (4.4)

then all solutions to (1.1) are asymptotic to straight lines, i.e. for every solution the relation
(1.2) holds for some constants.

REMARK 4.6. [14] too delivers criteria for every initial data (t0, u0, u′
0) ∈ [1,∞) ×

� × � to correspond to a solution asymptotic to a line, in the slightly weaker
sense u(t) = ct + m + o(1) as t → ∞. They require that |F(t, u, u′)| ≤ k(t)[p1(|u|/t) +
p2(|u′|)], where p1, p2 are positive, non-decreasing, and k satisfies

∫
I sk(s) ds < ∞. Also,∫

I(p1(s) + p2(s))−1 ds = ∞ must hold.

REMARK 4.7. The requirement I ⊆ [1,∞) should not be considered a restriction.
It is imposed only to simplify the condition (4.4). Any solution to (1.1) can be extended
to the left at least as long as Condition 3.1 holds.

Proof of Theorem 4.2. We will consider the complete metric space Xc defined by
(2.4), where c is given by assumption. For any u ∈ Xc, we have that |F(t, u(t), u′(t))| ≤
|F(t, c(t + 1), c)|. Consequently

∫
I
|sF(s, u(s), u′(s))| ds ≤ c − |u0|,

∫
I
|F(s, u(s), u′(s))| ds ≤ c − |u′

0|. (4.5)

The map T :Xc → X presented in Lemma 3.7 is well-defined, and we will show that
it is actually a contraction Xc → Xc. In view of (4.5), and by the triangle inequality,
|Tu(t)| ≤ (t + 1)c and |(Tu)′(t)| ≤ c. Hence T maps Xc into Xc. As for what concerns
the contraction, the proof of Lemma 3.7 holds in every detail since Condition 4.1
guarantees that (3.1–3.2) hold for any functions in Xc. The Banach fixed point
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theorem implies the existence of a unique fixed point u = Tu ∈ Xc, and consequently
a corresponding solution to (1.1). By the absolute convergence given by (4.5) it follows
that

lim
t→∞

∣∣∣∣u(t) −
(

u0 − u′
0t0 +

∫
I
sF(s, u(s), u′(s)) ds

)
−

(
u′

0 −
∫

I
F(s, u(s), u′(s)) ds

)
t
∣∣∣∣

= lim
t→∞

∣∣∣∣u′(t) − u′
0 +

∫
I
F(s, u(s), u′(s)) ds

∣∣∣∣ = 0,

so that (1.2) holds. �
Proof of Corollary 4.3 This is Theorem 4.2 with u0 = 0, u′

0 = c/2. Then the
derivative u′

0 − ∫ t
t0

F(s, u(s), u′(s)) ds ≥ 0, since

∣∣∣∣
∫ t

t0

F(s, u(s), u′(s)) ds
∣∣∣∣ ≤

∫
I
|F(s, c(s + 1), c)| ds ≤ u′

0.

�
Proof of Corollary 4.5

∫
I
|F(s, c(s + 1), c)| ds ≤

∫
I
|sF(s, c(s + 1), c)| ds ≤ αc.

It follows that for any pair (u0, u′
0) ∈ � × � we can find c so large that the assumptions

of Theorem 4.2 are fulfilled. By classical uniqueness theorems for ordinary differential
equations we get all solutions to (1.1) on I by letting (u0, u′

0) range over � × �. �

5. Asymptotically linear solutions with fixed asymptote. Turning our focus
towards solutions asymptotic to a given line, we present in this section two different
approaches. Theorem 5.2 gives sufficient, respectively necessary, conditions for the
existence of a unique solution asymptotic to ct + m in a slightly stricter sense than
(1.2). In the light of F(t, 0, 0) ≥ 0 (or ≤ 0) for t large, Corollary 5.4 characterizes these
solutions. While these results both make use of Condition 3.1 and the Banach fixed
point theorem, Theorem 5.6 is an application of the Schauder fixed point theorem.
Condition 3.1 is not required, but instead there is a monotonicity assumption on
F(t, ·, ·).

REMARK 5.1. While here we examine linear asymptotic behaviour, the recent
investigation [7] is devoted to finding conditions guaranteeing the existence of solutions
that approach an arbitrary given function. Due to the generality of the question posed,
that paper deals with first order equations.

THEOREM 5.2. Under Condition 3.1, let c, m ∈ �, and suppose that
∫

I
|sF(s, cs, c)| ds < ∞.

Then there exists a unique solution u ∈ C1
c,m(I) to (1.1) so that (1.2) holds and |tu′(t) −

ct| → 0 as t → ∞. Conversely, if there is such a solution, then

sup
t∈I

∣∣∣∣
∫ t

t0

sF(s, cs, c) ds
∣∣∣∣ + sup

t∈I

∣∣∣∣
∫ t

t0

F(s, cs, c) ds
∣∣∣∣ < ∞.
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REMARK 5.3. Even if |sF(s, cs, c)| is integrable for all c ∈ �, we cannot conclude
from Theorem 5.2 that all solutions are of form (1.2).

COROLLARY 5.4. Under Condition 3.1, let c, m ∈ � and suppose that F(s, cs, c) is of
constant sign for large s. Then the existence of a unique solution u ∈ C1

c,m(I) to (1.1) so
that (1.2) holds and limt→∞ |tu′(t) − ct| = 0 is equivalent to

∫
I
|sF(s, cs, c)| ds < ∞.

REMARK 5.5. The investigation [14] gives sufficient conditions for the existence of
solutions u(t) = ct + m + o(t) for all c, m ∈ �. These conditions are identical to the
ones referred to in Remark 4.6. Also in [15] sufficient conditions are given, based upon
a generalization of the conditions in [14]. Our result is different because it characterizes
the equations that have solutions satisfying (1.2) and limt→∞ |tu′ − ct| = 0, for certain
c, m ∈ �.

THEOREM 5.6. Let I ⊆ [1,∞), c, m ∈ �, and define a(t) ≡ |c|(t + 1) + |m|. Suppose
that for (t, u, u′) ∈ I × � × � such that |u| ≤ a(t), |u′| ≤ 2|c| we have

|F(t, u, u′)| ≤ |F(t, a(t), 2|c|)|. (5.1)

If F(t, a(t), 2|c|) is bounded, and
∫

I
|sF(s, a(s), 2|c|)| ds ≤ |c|, (5.2)

then there exists a solution u(t) to (1.1) on I, asymptotic to ct + m so that (1.2) holds.

As in Section 3, two lemmas will help us present the proofs of Theorem 5.2 and
Corollary 5.4. The proof of Theorem 5.6 is delayed until the end of the section.

LEMMA 5.7. Under Condition 3.1,

sup
t∈I

∣∣∣∣
∫ t

t0

sF(s, u(s), u′(s)) ds
∣∣∣∣ (5.3)

is finite for u(t) ≡ ct exactly if it is finite for all u ∈ {C1
c,m(I)}m∈�. The same holds true

for
∫

I |sF(s, u(s), u′(s))| ds.

Proof. For any ε > 0 and u ∈ C1
c,m(I), we can find tε ≥ t0 such that |u(t) − ct| +

|u′(t) − c| < |m| + ε whenever t ≥ tε. As a consequence, Condition 3.1 implies that for
any u ∈ C1

c,m(I),
∣∣∣∣
∫ t

t0

sF(s, u(s), u′(s)) ds
∣∣∣∣ ≤

∫
I
sk(s)(|u(s) − cs| + |u′(s) − c|) ds +

∣∣∣∣
∫ t

t0

sF(s, cs, c) ds
∣∣∣∣

≤
∫ tε

t0

sk(s)(|u(s) − cs| + |u′(s) − c|) ds +
∫ ∞

tε
sk(s)(|m| + ε) ds +

∣∣∣∣
∫ t

t0

sF(s, cs, c) ds
∣∣∣∣ .

(5.4)

We could just as well reverse the roles of v(t) = ct and u(t). Hence all of {C1
c,m(I)}m∈�

is equivalent to v(t) = ct in the sense of finiteness of (5.3). The proof of the second
statement is identical. �
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LEMMA 5.8. Under condition 3.1, let c, m ∈ �, and suppose that
∫

I
|sF(s, cs, c)| ds < ∞. (5.5)

Then the map S: C1
c,m(I) → C1

c,m(I), defined by

Su(t) ≡ ct + m −
∫ ∞

t
(s − t)F(s, u(s), u′(s)) ds, t ∈ I, (5.6)

is a contraction with respect to the distance ‖ · ‖ϕ

1 for a suitable ϕ.

Proof. Define the auxilliary function

ϕ(t) ≡ exp
(

3
∫ ∞

t
(s + 1 − t0)k(s) ds

)
, t ∈ I,

and consider the complete metric space C1
c,m(I) with the metric induced by ‖ · ‖ϕ

1
(cf. Remark 2.1). By Condition 3.1, ϕ(t) is bounded, ϕ′(t) ≤ 0 and limt→∞ ϕ(t) = 1.
First note that (5.5) and Lemma 5.7 imply that |Su(t) − ct − m| → 0 and |(Su)′(t) −
c| → 0 as t → ∞, so that Su ∈ C1

c,m(I) whenever u ∈ C1
c,m(I). Now, take any t1, t2 ∈ I.

Then ∣∣∣∣Su(t1) − Sv(t1)
ϕ(t1)

∣∣∣∣ +
∣∣∣∣ (Su)′(t2) − (Sv)′(t2)

ϕ(t2)

∣∣∣∣
≤ 1

ϕ(t1)

∫ ∞

t1

(s − t1)|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

+ 1
ϕ(t2)

∫ ∞

t2

|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

≤ 1
ϕ(t1)

∫ ∞

t1

(s − t1)k(s)ϕ(s)
|u(s) − v(s)| + |u′(s) − v′(s)|

ϕ(s)
ds

+ 1
ϕ(t2)

∫ ∞

t2

k(s)ϕ(s)
|u(s) − v(s)| + ∣∣u′(s) − v′(s)

∣∣
ϕ(s)

ds

= 1
ϕ(t1)

∫ ∞

t1

−ϕ′(s)
3

(s − t1)
(s + 1 − t0)

|u(s) − v(s)| + |u′(s) − v′(s)|
ϕ(s)

ds

+ 1
ϕ(t2)

∫ ∞

t2

−ϕ′(s)
3(s + 1 − t0)

|u(s) − v(s)| + |u′(s) − v′(s)|
ϕ(s)

ds

≤ ‖u − v‖ϕ

1

3

(∫ ∞

t1

−ϕ′(s)
ϕ(t1)

ds +
∫ ∞

t2

−ϕ′(s)
ϕ(t2)

ds
)

= ‖u − v‖ϕ

1

3

(
ϕ(t1) − 1

ϕ(t1)
+ ϕ(t2) − 1

ϕ(t2)

)
≤ 2‖u − v‖ϕ

1

3
.

Hence S is a contraction with respect to ‖ · ‖ϕ

1 . �
Proof of Theorem 5.2. Lemma 5.8 and the Banach fixed point theorem imply the

existence of a unique function u ∈ C1
c,m(I) that satisfies Su = u. Then u satisfies (1.1)

so that it is the unique solution on I satisfying (1.2). It is easily seen from (5.6) that
|tu′(t) − ct| → 0 as t → ∞.
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Conversely, every solution to (1.1) on I satisfies

u(t) = u′
0t + u0 +

∫ t

t0

(s − t)F(s, u(s), u′(s)) ds, t ∈ I,

for some u0, u′
0. We have

u′(t) = u′
0 −

∫ t

t0

F(s, u(s), u′(s)) ds,

so that by the asymptotic behaviour of u′(t),

lim
t→∞

∫ t

t0

F(s, u(s), u′(s)) ds = u′
0 − c.

Combining this with the asymptotic behaviour of u(t), taking into account that
limt→∞ |tu′(t) − ct| = 0, we see that

lim
t→∞

∫ t

t0

sF(s, u(s), u′(s)) ds = m − u0.

Lemma 5.7 almost completes the proof. One need just use (5.4), reversing the roles of
u and cs, and taking the lim supt→∞, with and without the s in front of F . �

Proof of Corollary 5.4. Since F(s, cs, c) does not change sign on a half-axis, the
finiteness of supt∈I | ∫ t

t0
sF(s, cs, c) ds| implies finiteness of

∫
I |sF(s, cs, c)| ds, yielding∫

I |F(s, cs, c)| ds < ∞. �
Proof of Theorem 5.6 The norm

‖u‖max
1 ≡ max

{
sup
t∈I

|u(t)|, sup
t∈I

|u′(t)|
}

induces a metric equivalent to that of the ordinary extended supremum norm ‖ · ‖1.
We shall consider the strip of functions

C ≡ {u ∈ C1(I): ‖u − ct − m‖max
1 ≤ |c|}.

Note that C is a closed, bounded, convex, and nonempty subset of the Banach space
(C1(I), ‖ · ‖X ). We will make use of the map S defined in Lemma 5.8, which we will
show is a continuous map C → C with a pre-compact image. Let u ∈ C. Then |u(t)| ≤
|c|(t + 1) + |m|, and |u′(t)| ≤ 2|c|, so that, by assumption,

|Su(t) − ct − m| ≤
∫ ∞

t
|(s − t)F(s, u(s), u′(s))| ds ≤

∫ ∞

t
|sF(s, u(s), u′(s))| ds

≤
∫

I
|sF(s, |c|(s + 1) + |m|, 2|c|)| ds ≤ |c|, (5.7)

and

|(Su)′(t) − c| ≤
∫ ∞

t
|F(s, u(s), u′(s))| ds

≤
∫

I
|F(s, |c|(s + 1) + |m|, 2|c|)| ds ≤ |c|, (5.8)

implying that Su ∈ C.
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We need to show that S is a continuous map C → C in the metric induced by ‖ · ‖X .
Let ε > 0. By hypothesis, there exists tε > 1 + t0, such that

∫ ∞

tε
|sF(s, u(s), u′(s))| ds < ε/8,

for all u ∈ C. On the cube

K ≡ [t0, tε] × [−|c|(1 + tε) − |m|, |c|(1 + tε) + |m|] × [−2|c|, 2|c|],

the function F is uniformly continuous, so presuming that (s, u, u′), (s, v, v′) ∈ K , there
exists a δ > 0 with

|F(s, u, u′) − F(s, v, v′)| <
ε

4(tε − t0)2
, for |u − v| + |u′ − v′| < δ.

For functions u, v ∈ C this will be the case on [t0, tε] if

‖u − v‖X <
δ

1 + tε
= ηε.

So whenever this inequality holds, we have that

|Su(t) − Sv(t)| ≤
∫ ∞

t
(s − t)|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

≤
∫ tε

t
(s − t)|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

+
∫ ∞

tε
s(|F(s, u(s), u′(s))| + |F(s, v(s), v′(s))|) ds < ε/2,

and

|(Su)′(t) − (Sv)′(t)| ≤
∫ ∞

t
|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

≤
∫ tε

t
|F(s, u(s), u′(s)) − F(s, v(s), v′(s))| ds

+
∫ ∞

tε
(|F(s, u(s), u′(s))| + |F(s, v(s), v′(s))|) ds < ε/2.

Hence ‖Su − Sv‖X < ε whenever ‖u − v‖X < ηε.
To prove that SC is relatively compact, take any sequence {un}n ⊂ C, n ∈ �, and

put wn(t) ≡ Sun(t) − ct − m. Then |wn(t)| ≤ |c|, so {wn}n is uniformly bounded on I.
Furthermore, for any t2 ≥ t1 ≥ t0,

|wn(t1) − wn(t2)| =
∣∣∣∣
∫ ∞

t1

(s − t1)F(s, un(s), u′
n(s)) ds −

∫ ∞

t2

(s − t2)F(s, un(s), u′
n(s)) ds

∣∣∣∣
≤

∫ t2

t1

|(s − t1)F(s, un(s), u′
n(s))| ds + (t2 − t1)

∫ ∞

t2

|F(s, un(s), u′
n(s))| ds

≤ (t2 − t1)
∫

I
|F(s, |c|(s + 1) + |m|, 2|c|)| ds ≤ |c|(t2 − t1),
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implying uniform equicontinuity of {wn}n. In effect, the Arzela-Ascoli Theorem yields
the existence of a continuous function w(t) and a subsequence {wnk}nk ⊂ {wn}n, such
that wnk → w uniformly on I as nk → ∞.

This can be seen in the following way. On every compact interval IN ≡ [t0, N],
t0 ≤ N ∈ �, we can apply the Arzela-Ascoli Theorem to conclude that there is a
subsequence {wnN }nN converging uniformly to a continuous function w on IN . Then
this subsequence in its turn contains a subsequence that converges uniformly to a
continuous function on IN for some larger N, and it follows that this limit function is
just an extension of w, so we will call it w. Repeating the argument for an increasing
sequence of N’s shows that w is globally defined on [t0,∞), and there is a diagonal
subsequence {wNN } converging uniformly to w on every compact interval. By (5.7),
any wn in the original sequence tends to 0 as t → ∞, and this convergence is uniform
for all wn. This means that for any ε > 0 there exists a tε such that

|wNN (t)| < ε/3, whenever t ≥ tε.

By the triangle inequality,

|w(t)| ≤ |w(t) − wNN (t)| + |wNN (t)| < 2ε/3, whenever t ≥ tε,

since for any fixed t ≥ tε there is an N with |w(t) − wNN (t)| < ε/3. We then fix an
interval Iε containing tε and subsequently an N0 such that

sup
t∈Iε

|wNN − w| < ε, whenever N ≥ N0.

Taking all this into account, we see that

sup
t∈I

|w(t) − wNN (t)| < ε, whenever N ≥ N0,

and it follows that the subsequence {wnk} above could be taken to equal {wNN }.
It is now immediate from the definition of wn that Sunk converges uniformly to

u(t) = w(t) + ct + m on I, and for simplicity we denote the subsequence {Sunk}nk again
by {Sun}n.

Now define w′
n(t) ≡ (Sun)′(t) − c. Since Sun ∈ C, we have that |w′

n(t)| ≤ |c|, for all
n ∈ �. The fact that {w′

n}n is uniformly equicontinuous follows from

|w′
n(t1) − w′

n(t2)| ≤
∫ t2

t1

|F(s, un(s), u′
n(s))| ds

≤
∫ t2

t1

|F(s, |c|(s + 1) + |m|, 2|c|)| ds ≤ (t2 − t1)B,

since F(t, |c|(t + 1) + |m|, 2|c|) is bounded by assumption. Again, by the Arzela-Ascoli
Theorem, there is a subsequence {w′

nk
}nk and a continuous function w′ such that

w′
nk

→ w′ uniformly on I as nk → ∞. The details of this argument are the same as in
the above argument concerning wn. The main ingredients are (5.8), used for large t,
and the Arzela-Ascoli theorem, used on compact intervals. In effect, (Sunk )′ converges
uniformly to ũ(t) ≡ w′(t) + c on I. As before, we write {Sun}n for the new subsequence.
By the Fundamental theorem of analysis,

Sun(t) = Sun(t0) +
∫ t

t0

(Sun)′(s) ds,
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and in view of the uniform convergence of both Sun and (Sun)′, taking limits yields

u(t) = u(t0) +
∫ t

t0

ũ(s) ds.

We conclude that u′ = ũ and we have found a subsequence {Sun}n with a limit in C1(I)
in the sense of uniform convergence. But then Sun converges to this limit also in the
sense of ‖ · ‖X . We have thus proved that the image SC is relatively compact.

The requirements of the Schauder fixed point theorem are fulfilled (cf [20]), and
we have a fixed point, say u = Su ∈ C. It remains only to check that (1.2) holds. This is
guaranteed by (5.1) and the absolute convergence of the integral in (5.2). �

6. Examples. We give here some applications of the results. Example 6.1 shows
that special cases of our investigations easily yield different classic results, and
Example 6.2 shows that conclusions can be drawn for the special class (1.2) even
in the case of nonlinearities with fast growth rate.

EXAMPLE 6.1. According to Corollary 3.3, every solution of the linear equation

u′′(t) + a(t)u′(t) + b(t)u(t) = 0, t ∈ I

satisfies u(t)/t → const. as t → ∞ if
∫

I s(|a(s)| + |b(s)|) ds < ∞. Supposing this,
Corollary 5.4 says that either there exists a solution of the form (1.2) with

lim
t→∞ |tu′(t) − ct| = 0 for all c, m ∈ �,

or there exists no such solution, according to whether
∫

I
|sa(s) + s2b(s)| ds

is finite or not. Corollary 4.5 furthermore implies that, if a(t), b(t) ≥ 0, and
∫

I
|sa(s) + s(s + 1)b(s)| ds < 1,

then any solution satisfies (1.2) for some constants.

EXAMPLE 6.2. For c ≥ 2, consider the nonlinear equation

u′′(t) + exp(−2ct)(u′(t) + exp(u)), t ∈ [1,∞) ≡ I.

By Corollary 4.3 there exists a positive non-decreasing solution with u(1) = 0 and
u′(1) = c/2, asymptotic to a line so that (1.2) holds. By Theorem 5.6, whenever m ≤
log c, there exists a solution asymptotic to ct + m in the sense of (1.2).

Proof. By the Mean value theorem, the choice k(t) = exp(c − ct) satisfies
Condition 4.1 for c. We have that∫

I
|sF(s, c(s + 1), c)| ds =

∫
I
s (exp(c − cs) + c exp(−2cs)) ds

≤ 2 exp(c)
∫

I
s exp(−cs) ds ≤ 2(c + 1)

c2
≤ c,
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and ∫
I
|F(s, c(s + 1), c)| ds ≤ 2/c ≤ c/2,

so that the assumptions of Corollary 4.3 are fulfilled.
To apply Theorem 5.6, we need to verify that

∫
I
s exp(−2cs)(2c + exp(cs + c + m)) ds ≤ c.

In view of m ≤ log c, and using that 2 exp(−c) ≤ 1/3, the left-hand side is

2c
∫

I
s exp(−2cs) ds + exp(c + m)

∫
I
s exp(−cs) ds

≤ (2c + exp(c + m))
∫

I
s exp(−cs) ds

= (2c + exp(c + m))
c + 1

c2
exp(−c)

≤ (2 exp(−c) + 1)
c + 1

c
≤ 4(c + 1)

3c
≤ c,

since c ≥ 2. Moreover, exp(−2cs)(2c + exp(cs + c + m)) is clearly bounded. �
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5. S. G. Dubé, and A. B. Mingarelli, Note on a non-oscillation theorem or Atkinson,
Electron. J. Differential Equations 22 (2004), 1–6.

6. M. Ehrnström, Positive solutions for second-order nonlinear differential equations,
Nonlinear Anal. 64 (2006), 1608–1620.

7. M. Ehrnström, Prescribed asymptotic behaviour of solutions to semilinear ordinary
differential equations, Appl. Math. Lett., to appear.

8. M. Ehrnström and O. G. Mustafa, On positive solutions of a class of nonlinear elliptic
equations, Nonlinear Anal., to appear.

9. T. Hallam, Asymptotic integration of second order differential equation with integrable
coefficients, SIAM J. Appl. Math. 19 (1970), 430–439.

10. T. Kusano and M. Naito, Unbounded nonoscillatory solutions of nonlinear ordinary
differential equations of arbitrary order, Hiroshima Math. J. 18 (1988), 361–372.

11. T. Kusano, M. Naito and H. Usami, Asymptotic behavior of solutions of a class of
second order nonlinear differential equations, Hiroshima Math. J. 16 (1986), 149–159.

12. O. Lipovan, On the asymptotic behaviour of the solutions to a class of second order
nonlinear differential equations, Glasgow Math. J. 45 (2003), 179–187.

https://doi.org/10.1017/S0017089507003461 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003461


120 MATS EHRNSTRÖM
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