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Abstract

We construct a functional calculus, g H> g(A), for functions, g, that are the sum of a Stieltjes
function and a nonnegative operator monotone function, and unbounded linear operators, A,
whose resolvent set contains (—oo, 0), with [\\r(r + A)'11| | r > 0} bounded. For such functions
g, we show that — g(A) generates a bounded holomorphic strongly continuous semigroup of angle
6, whenever —A does.

We show that, for any Bernstein function f,—f(A) generates a bounded holomorphic strongly
continuous semigroup of angle 7r/2, whenever — A does.

We also prove some new results about the Bochner-Phillips functional calculus. We discuss
the relationship between fractional powers and our construction.

1991 Mathematics subject classification (Amer. Math. Soc): 47 A 60, 47 B 44, 47 D 05.

1. Introduction

It is natural to ask what properties of an operator, A, are inherited by its re-
solvents, (t + A)"1. More generally, one may consider Stieltjes functions,

Jo
(1.1) g(z) = a+ I dX(t),

Jo z + t
where a > 0 and A. is nondecreasing. The class of Stieltjes functions also
includes fractional powers z i - ^ z " , — l < a r < 0 .
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[2] Generation of generators 247

In this paper, we show that, if the image of A is dense, and —A generates
a bounded holomorphic semigroup of angle 9, then the same is true of g(A),
defined to be the closure of

L
oo

- 1 ,g(A)x = ax + / (t + A) x dk(t), x e image of A,

where g is as in (1.1). (See Section 5.)
More generally, suppose {e~M},>o is a strongly continuous semigroup of op-

erators generated by —A. From the beginning of the theory of such semigroups,
certain functional calculi

have been developed for appropriate classes of functions, / , defined on the
spectrum of A. For such a functional calculus, a fundamental problem is for
what functions, / , the operator —f(A) is again a generator, that is, {e~'f(A)}t>o
is a strongly continuous semigroup of operators.

A functional calculus construction that has received much attention is one
constructed by Bochner and Phillips ([8, 38]), for the Bernstein functions (see
Section 2). This functional calculus has the property that —f(A) generates a
strongly continuous contraction semigroup whenever — A does. A natural and
important question was asked by Kishimoto and Robinson in [28, page 63]: if
—A generates a bounded strongly continuous holomorphic semigroup, is the
same true for — f(A), where / is a Bernstein function?

In this paper, we give two partial answers to this open question, that cover the
cases of most interest. We show that, when —A generates a bounded strongly
continuous holomorphic semigroup of angle 0, then the same is true of —f(A)
when / is a nonnegative operator monotone function (see Section 5). This
class of functions is contained in the class of Bernstein functions and includes
such functions as fractional powers z i->- z"(0 < a < l) ,z i-»- log(l + z),
z i->- */z arctanO/v'z). When A has dense range, the same is true for sums
of Stieltjes functions and nonnegative operator monotone functions (Section 6);
this includes functions not in the Bernstein class.

Our results in this regard are actually sharper than an affirmative answer to
the original question in [28], since we show that the angle of the semigroup is
preserved.

When the angle of the holomorphic semigroup generated by —A equals n/2,
then we show that the answer to the open question above is affirmative, for any
Bernstein function / . More than that, we show that this angle is preserved, that
is, —f(A) generates a bounded holomorphic strongly continuous semigroup of
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248 Christian Berg, Khristo Boyadzhiev and Ralph deLaubenfels [3]

angle n/2 whenever — A does. This result may be applied to A = —A, where
A is the Laplacian, on LP(R"), 1 < p < oo,or Co(M"), or more general elliptic
operators (Section 7).

The desired property here that we are trying to preserve is generating a
bounded holomorphic strongly continuous semigroup. In order that —A gen-
erate a bounded holomorphic strongly continuous semigroup of angle 9, it is
necessary, but not sufficient, that the spectrum of A be contained in Sw/2-e,
where S# = {re'*||</>| < \js, r > 0}. If we define an operator, A, to be of type 9
(see [34, 41, 20, 48]) whenever —A generates a bounded holomorphic strongly
continuous semigroup of angle (n/2 — 9), then our results may be interpreted
as a type mapping theorem (see Corollary 6.3), which is a spectral mapping
theorem and more:

type of f(A) = 9, when / : 5^ - • Se, and A is of type xfr,

for all sums of Stieltjes functions and nonnegative operator monotone functions

/ •
It is interesting that not all holomorphic functions that map the right half-plane

to itself preserve type, even on a Hilbert space; this is a consequence of the results
in [34]. The most that can be said is that, if—A generates a bounded holomorphic
strongly continuous semigroup, then —f(A) generates a C-semigroup (see [14]
for the definition and basic properties), with C = (1 + A)"1 (see [10]), or
(1 + A)~r, Vr > 0 (see [15]), when / is a holomorphic function that maps the
right half-plane to itself.

Thus it is natural to ask what additional conditions on / are necessary to
guarantee that / preserves type. In Section 6, we show that it is sufficient that /
be a sum of a Stieltjes function and a nonnegative operator monotone function.
Alternatively, one could ask what additional conditions on A will guarantee that
—/ (A) is of type 9 < n/2, whenever / is a holomorphic function that preserves
the right half-plane; see [34,41] and [20], for some constructions (//°° functional
calculi) that produce operators, A, that will have this property. The choice here
is between having a larger class of functions or a larger class of operators. In
this paper, we chose the latter; our results are valid for any operator, A, such
that —A generates a bounded, strongly continuous holomorphic semigroup.

This paper also contains some new results about fractional powers and their
relationships with our functional calculus and the Bochner-Phillips functional
calculus, that may be of some independent interest. This includes results about
the behaviour of the functional calculus under compositions.

Sections 2 and 3 contain some preliminary results, about Bernstein functions
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and the Bochner-Phillips functional calculus (Section 2) and bounded holo-
morphic strongly continuous semigroups (Section 3). Section 4 presents some
new results about fractional powers and the Bochner-Phillips functional calcu-
lus. In Section 5, we introduce, for operators of type 9 < 7r(this includes, but
is not limited to, operators, A, such that —A generates a strongly continuous
bounded semigroup), a functional calculus construction for Stieltjes functions
and nonnegative operator monotone functions. In Section 6 we prove that type
is preserved by the construction in Section 5, that is, whenever —A generates a
bounded holmorphic strongly continuous semigroup of angle 9, then the same
is true of —f(A), whenever / is a sum of a Stieltjes function and a nonnegative
operator monotone function. In Section 7, we show that, for any Bernstein func-
tion / , —f(A) generates a bounded holmorphic strongly continuous semigroup
of angle TT/2 whenever —A does.

2. Bernstein functions and the functional calculus of Bochner-Phillips

A completely monotone function is a function / e C°°(0, oo) satisfying

( -1 ) " / < B ) W>O, V x > 0 , n = 0 , 1 , 2 , . . . .

These functions, according to the famous Bernstein Theorem, are characterized
by the representation

/»OO

f(x)= / e~xtda(t),
Jo

where a is a nondecreasing function on [0, oo) ([7, 46, 47]). In order to define
a functional calculus / \->- f(A), when — A generates a bounded strongly
continuous semigroup, such that - / (A) is again a generator, Bochner introduced
a class of functions, / , for which x (->• e~tf(x) is completely monotone Vf > 0
[8]. The following theorem is due to him.

THEOREM 2.1. Suppose f e C([0, oo)) n C°°((0, oo)) is nonnegative. Then
the following are equivalent.

(i) 8° f ' s completely monotone whenever g is completely monotone.
(ii) / ' is completely monotone.

(iii) / has the representation

(2.2) f(x)=ax + b-
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250 Christian Berg, Khristo Boyadzhiev and Ralph deLaubenfels [5]

where a, b > 0 are constants and a is a nondecreasing function on [0, oo) such
that / j 0 0 do{t)It < oo.

(iv) 3 a continuous convolution semigroup of nondecreasing functions
{v'}t>o such that

(2.3)
nOO

w _ I e-xs da>(sj \/x,t>0,
Jo

and /0°° do'{s) < 1. (For details, see [8, 9, 7, 38, 28]).

The functions o and o' may be normalized in such a way as to make them
uniquely determined by / .

Motivated by (i) above, Bochner called these functions "completely monotone
maps". However, they are better known as Bernstein functions. We denote by
BS the class of Bernstein functions. 38 is obviously a convex cone. The
representation (iv) leads to the functional calculus

-tf(A) _ I

JO
e~sAdo'(s),

suggested by Bochner [8] and developed by Phillips [38]. The following theorem
is one of the fundamental results in the theory of semigroups of operators.

THEOREM 2.2. (Bochner-Phillips) Suppose {e~'A},>o is a contraction (posi-
tive) strongly continuous semigroup and f € £$ is represented by (iii) of The-
orem 2.1. Then

poo /irr(t\

(2.3) x H> a Ax + bx+ (x - e~'Ax) — — , x e ®(A)i
is a closable operator, the closure of which is denoted f(A), and —f(A)
generates a contraction (positive) strongly continuous semigroup

/»OO

(2.4) e~'f(A)x= / e~sAxdo'(s),
Jo

for t > 0, x € X. If a ^ 0, then @(f(A)) = <2l(A) and (2.3) itself is closed.

Note that if \\e~'A \\ <M,Vt> 0, then \\e-'f(A) \\ < M /0°° do'(s) <M,Wt>
0. The Bernstein functions naturally extend to the closed right half-plane RHP,
RHP = {z G C | Re(z) > 0}, via the representation (iii) in Theorem 2.1. Also,
they preserve RHP, since Re(\ - e~zt) > 0, when Re(z) > 0.
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A natural and important question was asked by Kishimoto and Robinson, in
[28, p. 63]: If {e~'A},>o is a bounded holomorphic strongly continuous semig-
roup, is the same true for {e~'f(A)}t>0, when / e StP. (Note that the Bern-
stein functions preserve sectors of the form 5 ,̂ = {z € C| |arg(z)| < \fr}, for
IV̂ | < 7r/2. This is a property of all holomorphic functions which preserve RHP
and (0, oo).)

In the present paper we shall prove that the answer to that question is positive
for a large class M of functions in ̂ . The class & is described in Section 4.

There is one classical example of functions in £S, f(z) = z", 0 < a < 1, with
the important property that, ife~'A is a bounded strongly continuous semigroup,
then {e~'A°} is a bounded holomorphic strongly continuous semigroup ([49,50]).
The functions z" are in the class & and we prove that every function in & that
maps RHP into S$, for some xfr < n/2, has this property.

3. Bounded holomorphic semigroups and operators of type 0

DEFINITION 3.1. S+ = [re^\r > 0, |0| < f}.

DEFINITION 3.2. Suppose 0 < \\r < n/2. The strongly continuous semigroup
{e~'A}t>o is a bounded holomorphic semigroup of angle \/r if it extends to a
holomorphic family of bounded operators {e~zA}zeSt that is bounded and strongly
continuous in S^, whenever 0 < </» < V •

General information on bounded holomorphic semigroups, including The-
orem 3.4 below, may be found in [13, 22, 37].

DEFINITION 3.3. If ^ < TT, the operator A is said to be of type (x/r, M) if A is
closed and densely denned, a (A) c 5^ and 3M < oo such that

\\z{z-ATx\\<M, Vz£~S;

(see [27]).
If 6 < n, we will say that A is of type 0 if V^ e (6, n) 3M^ < oo such that

A is of type (x/r, M+). (See [41, 34,48,44])

THEOREM 3.4. Suppose 0 < 9 < n/2. Then A is of type 9 if and only if-A
generates a bounded holomorphic semigroup of angle n/2 — 9.
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THEOREM 3.5. ([16]) Suppose A is an operator of type 9,n € N, and nO <
n/2. Then A" is of type nO.

COROLLARY 3.6. Suppose A is an operator of type 9,n e N, and n9 < n.
Then A" is of type n9.

PROOF. All that needs to be shown is that A2 is of type 29, whenever A is of
type 9 < n/2. Fix rjr > 29. 3Mt such that ||z(z - A)~l\\ < Mf,Vz $. 5^/2.
For any w $ S#, 3*/w such that both y/w and — -Jw are not in 5^/2, thus
\\{w - A2yl\\ < | | ( v ^ - A)-1]] | | ( v ^ + A)"11| < Mj/\w\.

THEOREM 3.7. ([17]) Suppose A is of type 9 < n/2 and lm(A) is dense.
Then A is injective and A~{ is of type 9.

For operators A of type 9 < n, fractional powers Aa, for 0 < a < 1, are
defined in Balakrishnan [4], by taking the closure of the following operator:

1(3.8) Aax = / (A + tylAxd(ta), XG
an Jo

or, if 0 < n/2, also by the Bochner-Phillips calculus [8, 38,49, 50, 30,44, 37];
these constructions are equal. Formula (3.8) also defines fractional powers of A
for complex a whose real part is between 0 and 1. (See also [21, 27, 31, 32, 33,
45]).

The following, from [27], illustrates the sort of spectral intuition one expects;
see also [44, Proposition 2.3.2].

LEMMA 3.9. Suppose A is of type 9 < n and 0 < a < 1. Then Aa is of type
a9.

In particular, if —A generates a strongly continuous bounded semigroup, then
—A" generates a bounded strongly continuous holomorphic semigroup of angle

For a > 1, Aa is defined to be the closure of Aax = Aa~"A"x, for n < a <
n + \,x € D(A"). (See [21].)

By writing Ar — (A»)", for n e N, n > r, Lemma 3.9 and Corollary 3.6
immediately yield the following.

COROLLARY 3.10. Suppose A is of type 9 < n and r9 < n. Then Ar is of
type r9.
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For example, — Ar generates a bounded holomorphic semigroup of angle
n/2, Vr > 0, on Z/(Rm)(l < p < oo), where A is the Laplacian.

4. Some new results on fractional powers
of operators and the Bochner-Phillips functional calculus

Fractional powers have the important multiplicative property

(4.1) (A*)* = Aafi,

when 0 < a < l , 0 < / 3 < l ([45, 33, 50]).

If fr(z) = zr, for r > 0, and the fractional powers are denned by the
Bochner-Phillips functional calculus, then (4.1) may be written as

when 0 < a < l , 0 < y S < l(note that fp and /„ are in SS).
We shall now prove this multiplicative property for all functions in 9S.

THEOREM 4.2. (a) disclosed under composition, that is, fog e ^whenever
f and g are in 38. (See [7].)

(b) If —A generates a bounded strongly continuous semigroup, then

The multiplicative identity (4.1) can easily be extended to /3 > 1 ([4, 33]).
What is of much more interest is to extend (4.1) to the case when a > 1; in
particular, to show that

(4.3) (A")1/n = A, forneN,

because this is a result about uniqueness of the fractional powers (see [33]). It
is well-known that (4.3) is false, in general. Take A = id/dx, on L2(R), then
(A2) J ^ A (see [49, 50, 21, 22]). The explanation here is simple, even for real
numbers: -fa*- = \a\ ^ a, unless a > 0. The operator id/dx has its spectrum
on both sides of the origin. We shall prove that, if A is of type 6 < n, then

(4.4) (Ar)l/r = A, when r9 < it.

(Proposition 4.7). More generally, we will consider the composition of Bernstein
functions with fractional powers.
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THEOREM 4.5. Suppose r > 0, A is an operator of type 6 < n/2 and
r6 < TT/2.

Let fr(z) = zr and suppose that both f and f o fr are in 38. Then

(4.6) f(Ar) = (f o fr)(A).

(Note that Ar is of type rO, by Corollary 3.10.)

PROPOSITION 4.7. ([29, Theorem 10.6]) Suppose A is of type 6 < n,
0 < arO < n, 0 < r9 < n. Then

(AT = Ara.

See also Theorem 5.18 below.
The following proposition and corollary show that, as a map A i->- f(A), the

Bochner-Phillips functional calculus is continuous, in a manner analogous to
the strong operator topology.

PROPOSITION 4.8. Suppose —A and —B generate commuting bounded
strongly continuous semigroups. Then, for any f e S3, f as inTheorem2.l(in),
s > 0,

(4.9) | | / (A)x- / ( f l )x | | < | |Ax-fix| |(a+M2 / da(t))+2M
Jo

when x e 2>{A) n 9(B), where \\e~tA\\ < M, \\e-'B\\ <M,Wt> 0.

COROLLARY 4.10. Suppose {—Ak}'j*L0 is a sequence of operators that gen-
erate commuting strongly continuous semigroups and 3M < oo such that
||*rM*|| < M,Vt > 0, it e N. Suppose x e f]T=o^(Ak) such that
lim^^oo A^x = Aox. Then

Um f(Ak)x = f(A0)x, V/ e SB.

It is of interest that, when s — A generates a bounded strongly continu-
ous semigroup, for some s > 0, the Bochner-Phillips functional calculus may
be written as an unbounded Cauchy integral, as with the well-known Riesz-
Dunford functional calculus (see [19]). We will use this representation to prove
Theorem 4.5, as well as some subsequent theorems.
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[10] Generation of generators 255

THEOREM 4.11. Suppose s — A generates a bounded strongly continuous
semigroup, for some e > 0. Then, for any f € SB,

(4.12) e-'fwx = / e-'fiw)(w - A)~lAkx —^— (k > 2, x e @(Ak)),
Jr, 2niwk

f i i dw ,
(4.13) f(A)x = / f(w)(w - AylAkx —— (k>3,xe ®{Ak)),

Jre 2niwk

where Fe = the boundary of Re = {z\Re(z) > s},for s sufficiently small.

PROOF OF THEOREM 4.2. (a). One finds by induction that
( - ! ) " ( / o g){n+l)(t) > 0, Vf > 0, n = 0, 1, 2 , . . . ,

in the same way as in the proof of (i) of Theorem 2.1 in [9, p. 83].
(b). We will show that

/•OO

= / a'g
Jo

Vw,t > 0, f, g € £$, where oy is as in Theorem 2.1(iii). The calculation
follows, for x > 0.

e-t(fog)(x > = /
Jo

= /"(/

Jo \Jo

= j H e~
m d [T as

g{w) da'f(s)\ ,

OO / /»O0

e-wxdas
g{w)) da'f{s)

by a Fubini type argument (see [3]).
Equation (*') now follows from the uniqueness of the representation in The-

orem 2.1 (hi).
Now suppose — A generates a bounded strongly continuous semigroup. For

t > 0, we make a similar calculation, using (*').

e-tf(g(A))
/•OO

= / e~sg{A) da'f{s)
Jo

= / / e WAdas(w) da'(s)
Jo \Jo s I J
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(•OO / /-OO

[11]

= /

Jo

= f
Jo

e~wA da'fog{w)

so that f(g(A)) = {f o g)(A).

PROOF OF PROPOSITION 4.8.

\\e-tBx-e-lAx\\ = f
Jo

- Bx)ds

<tM2\\Ax-Bx\\.

Thus,

[
o '

2\

\\f(A)x - f(B)x\\ < a\\Ax - Bx\\ +

< a\\Ax - Bx\\ + I M2\\Ax - Bx\\ da(t)
Jo

+2M r
Js

which implies (4.9).

r ^i,
Js t

PROOF OF COROLLARY 4.10. It is clear from Proposition 4.8 that lim^oc
\\f(Ak)x - f(A0)x\\ < 2M/i°° do(t)/t,Vs > 0. Since J,00 do{t)/t is fi-
nite, (see Theorem 2.1(iii)), this implies that lim^oo \\f(Ak)x — /(A0)x|| = 0,
as desired.

PROOF OF THEOREM 4.11. By Theorem (2.4), calculating as with the Riesz-
Dunford functional calculus,

e-ifwx

/•OO

= / e-sAA-kAkxda'(s)
Jo

= I I e (io — A) /
Jo JTE

=L [L
2niwk

e~sw da'(s) \ (w - A)~]Akx
2niwr
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so that (4.12) follows from Theorem 2.1. For the first equality above, we applied
the Riesz-Dunford calculus, as in [19, part I, VII.9]. Note that interchanging the
order of integration is justified by the fact that \\(w — A)~l || is bounded on Fe,
since s — A generates a bounded strongly continuous semigroup.

Since s u p ^ ^ ^ \f(w)/w\ is finite, for any / e SB, we may obtain (4.13)
from (4.12) by differentiating at t — 0.

PROOF OF THEOREM 4.5. First, assume 0 e p(A).
Let 5^,£ = {z||arg(z)| < xfr} n {z\\z\ > s}, F^e be the boundary of 5^i£.

Choosing (/>, \js so that 0 < r9 < r<j) < \j/ < n/2, we may argue exactly as in
the proof of Theorem 4.11 to show that

f(A
r)x=[

2niw3

By the Riesz-Dunford functional calculus, as in [19, part I, VII.9], we have, for
w i s0i£,
(**) (w-Arylx= {w-zr)-\z - A)"1*—,

./r>.. 2?™
This agrees with the definition of Ar; the proof is the same as that of [44,

Lemma 2.3.2].
We now apply (*) and (**), for x e S>{A^), as follows, where all integrals

are taken over F ,̂ E, for e > 0 sufficiently small.

f(Ar)x= [ f(w)(w-Ar)~lA3x W

2niw3

dz dw= f f(w) f(w-zrrl(z-A)-iA3x — —
J J 2ni 2ni

= / [ / fiw)(w - zryl ^ 1 (z - Ay'A3x^:

= j f(zr)(z - AT'A'x ^-^ = (/ o fr){A)x.

It is clear from Theorem 2.2 that @(A3) is left invariant by e~'g(A), Vg e SB.
This implies that 3>(A3) is a core for g(A). Thus the calculation above implies
(4.6), when Oe p(A).

For general A as in the Theorem, we may now assert that

(***)
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It is not hard to see, from (3.8), that lim^oC^ + s)rx = Arx, Vx G
Thus, by Corollary 4.10, and (* * *), f(Ar)x = ( / o fr){A)x, Wx e 9{A); as
argued earlier, this implies that f(Ar) = ( / o fr)(A).

PROOF OF PROPOSITION 4.7. This is exactly the same as the proof of The-
orem 4.5, using the fact that

Arx = / wr{w- A)~lAk

for k sufficiently large, x e £>(A), when 0 e p(A), A is of type 6 < n and
0 < \jr < n.

5. A functional calculus construction for Stieltjes functions
and nonnegative operator monotone functions

We shall consider a large class of functions that we will show preserve type,
that is, f(A) is of type 9 whenever A is, so that — f(A) generates a bounded
holomorphic semigroup of angle <p whenever — A does (see Section 3).

The class & consists of all nontrivial functions of the form
/»OO

(5.1) f(z) = az + b+ (z/(z + t))d/i(t), zeC-(-oo,0),

where a, b > 0 are constants and /x is a nondecreasing function on [0, oo) such
that /0°° d/jL(t)/(l + t) < oo. We assume that /x is normalized as follows:
H(0) — 0 and ix{t) = /x(f+), V7 > 0. With this normalization, a, b and \i are
uniquely determined by / : a = lim^oo f{t)/t, b — / (0) . & c SB, that is, the
restriction of / e & to E + is in SS.

In the terminology of [18,2,23,35], functions in & are nonnegative operator
monotone functions on M+. They have the following very useful geometric
characterization, where we write U HP for the upper half plane {z 6 C| Im(z) >
0}.

LEMMA 5.2. A function f defined and continuous on C — (—oo, 0) and holo-
morphic in the interior belongs to & if and only if f : U HP —> UHP and
f : (0, oo) -»• (0, oo).

The "only if" part is obvious, as Im(z/(z +1)) = rlm(z)/|z +1\2. Functions
in ffi also preserve the lower half plane LHP. The "if" part follows from
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a classical integral representation for functions preserving U HP obtained by
Nevanlinna; see [18, 23, 35].

We consider also the class ^ o f Stieltjes functions

(5.3) g(z)=a+ f — <tt(f), Z G C - ( - O O , 0 ] ,

J z + t
where a > 0, and A. is right-continuous and nondecreasing and where
/0°° dk(t)/(l+t) < oo. The Stieltjes functions are characterized by the property
that they interchange UHP and LHP.

LEMMA 5.4. A holomorphic function f on C — (—oo, 0] belongs to y if and
only if f : VHP -+ LHP and f : (0, oo) -* (0, oo).

The "only if" follows from the fact that Im(l/(z + 0 ) = -Im(z)/|z + t\2;
for the "if" part see [1, p. 127] and [5, 35].

The following properties, which follow immediately from Lemmas 5.3 and
5.4 and (5.1), (5.3), may be found in [5, 35].

LEMMA 5.5. (i) The class M is closed under composition, that is, f o g is
in & whenever f and g are in &.

(ii) fog and g o / e y whenever f G & and g G 5?.
(iii) If f and g are in 5? and f o g is defined and continuous at 0, then

f o g € M.
(iv) The classes & and 5^are closed convex cones which are logarithmically

convex.
(v) Ifgey,theng/(Xg + l)ey,VX>0.

(vi) z h* zg(z) € & whenever g e y.
(vii) z i->- f(z)/z e y whenever f e &.

A typical representative of ^ i s the function g(z) = 1/z. The properties (ii),
(iii) and (iv) above imply that

COROLLARY 5.6. (i) / G & «* 1// € y iff is nontrivial.
(ii) / / / e &, then z h+ /(1/z) e yandz i-> z/(l/z) G Si.

(iii) z i->- [/(z"1)]"1 G Si whenever f is a nontrivial member of &.

A fundamental connection between the classes M and y is

LEMMA 5.7. g e y'<* 3fg G Si such that g(z) - fg{\/z).
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This follows from the definition of S?and &: if g is given by (5.3), we take

f°° w
(5.8) fg(w)=a+

Jo 1 +tw

Note that the functions in both 0ft and ^preserve the right half-plane.

EXAMPLES 5.9. Some examples of functions in 0ft are
(a) za = sin(an)/a7T /0°° z/(z + t) d(ta), 0 < a < 1;

(c) J~z arctan(£/V?> = ff z/(z + t) d(y/i), fi > 0.

The properties in 5.5 and 5.6 enable us to make new examples from the
examples above.

DEFINITION 5.10. Suppose A is of type 9 < n and / e £# is as in (5.1). We
define f(A) to be the closure of

Jo
(5.11) f(A)x =aAx + bx+ j (t + A)'1 Axd/x(t), x€

This is well-defined, since \\t(t + A)~l || is bounded, as t -> oo. This bounded-
ness also implies that the operator defined by (5.11) is closable, for the following
reason. Let M = sup{||s(.s + A)'11|| s > 0}. Then, for any x e

(A + l)~1f(A)x = aA(A + l)~lx + b(A

J
o

so that

f1 f°° du(t)\
dfi(t) + M(M + l) -^j1 \ \\x\\.

By the comments after (5.1), this implies that (A + I)"1 f(A) is bounded, so
that, since A is closed, the operator defined by (5.11) is closable.
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We shall write f(A) for the closure of the operator defined by (5.11). In
explicit computations, however, we shall use (5.11). Such a calculation was
considered also by Hirsch ([25, 26]).

Since (t + A)"1 — (1 + tA~x)~lA~l, we may similarly define a functional
calculus for g G S?. (See Theorem 3.7.)

DEFINITION 5.12. Suppose A is of type 9 < TZ, Im(i4) is dense and g e
as in (5.3). We define g(A) to be the closure of

/»OO

(5.13) g(A)x = ax + (t + Aylxdk(t), x €

Since 3% c SB, f(A) is also defined in Theorem 2.2, for / e 3?. We will show
later that these two constructions agree (Proposition 5.17). Our construction
(5.11) has some advantages. It involves only resolvents, which are much easier
to calculate explicitly than semigroups {e~'A}. Definition (5.11) makes sense
for a wider class of operators, operators of type 9 < n. Lemma 5.7 allows us to
consider the Stieltjes functional calculus via g(A) = fg{A~l), for g e 5?.

As a map A i->- f(A), the functional calculus (5.11) is continuous, in a
sense analogous to the strong operator topology; this is expressed precisely in
Proposition 5.14 and Corollary 5.16.

PROPOSITION 5.14. Suppose A and B are two operators of type (9, M), where
9 < Tx, whose resolvents commute. Then Vx e S>{A) n $>(B), s > 0,

| |/(A)x-/(fi)x|| < 2M||x||/z(s) + ||Ax-

(5.15)
for any f e 3? as in (5.1).

PROOF. Since (A + t)~lAx = x - t(A + t)~lx, we have

-f(B)x\\ < a\\Ax -Bx\\+ \\t(B + t)~lx - t(A + O ^ U dfi(t)
Jo

= a\\Ax - Bx\\ +

f
Js

10
)

t\\(A + t)~l(B + ty\Ax - Bx)\\ dfi(t).

Equation (5.15) now follows immediately from the fact that \\t(A + t) l\\ and
\\t(B + t)~l || are less than or equal to M, Vt > 0 (see Definition 3.3).
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COROLLARY 5.16. Suppose {Ak}™=0 is a sequence of operators of type (0, M),
whose resolvents commute, x G f^L0^(Ak) and lim^oo Akx = Aox. Then
lim^oo f(Ak)x = f(A0)x, V/ e ^ .

PROOF. It is clear from Proposition 5.14 that limJt_>0O||/(i4,t)x — f(A0)x\\ <
2M\\x\\[i(s), Vs > 0. Since \ims^0/JL(S) = 0 (see the comments after The-
orem (5.1)), this implies that lim^oo \\f(Ak)x — f(Ao)x\\ = 0, as desired.

We must verify that our construction, in Definition 5.10, agrees with the
Bochner-Phillips construction, when / e £%. We do this essentially by showing
that they both agree with the Cauchy integral formula construction (4.13).

PROPOSITION 5.17. Suppose f e & and —A generates a bounded strongly
continuous semigroup. Let f(A)x be the operator from Definition 5.10 and let
f(A)2 be the operator defined by Theorem 2.2. Then f(A)i = f(A)2.

PROOF. First, suppose e — A generates a bounded strongly continuous semig-

roup and x € @(A3). Then, with Fe as in Theorem 4.11, we argue as with the

Riesz-Dunford functional calculus,

f{){ATlAz

=/,h+6+f , , dw
-A)-lA3x —

+ t ' J u;3

— aAx + bx + / I / {w — A)~lA3x—-\dn(t)I \ [ -^—(w - A)"M3x -^
Jo Ure w + t w3 J

OO

(t= 2ni I
Jo

= 2nif(A)lX.

Now suppose —A generates a bounded strongly continuous semigroup. For
x G @(A3), the calculation above shows that f{A+s)xx — f{A+s)%x,"is > 0.
Corollaries 4.10 and 5.16 now imply that

(*) f(A)lX = f(A)2x, Vx € ®(A3).

It is clear from (2.4) that e~'f(Ah leaves @(A3) invariant. This implies that
%)(A3) is a core for f(A)2, thus, since / (A) , is closed, (*) implies that f(A)2 c
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f{A)\. Since, in an equivalent norm, f{A)x is accretive and f(A)2 is m-
accretive, this implies that f(A)x = f(A)2.

We have also the following analogue of Theorem 4.5, and extension of
Proposition 4.7.

THEOREM 5.19. Suppose r > 0, A is an operator of type 9 < n and rO < n.
Let fr(z) = zr and suppose that both f and f o fr are in SP\5^). Then

f(Ar) = ( / o fr)(A).

The proof is the same as that of Theorem 4.5, with the representation

(Ar+O~1Ar*= / (wr + t)-1wr(w-AylAkx dW

for appropriate ty, £, k(cf. [29, p. 322])

6. Preservation of type

We prove that, when —A generates a bounded holomorphic semigroup of
angle 6 (0 < 9 < TT/2), then the same is true of f(A), for any / e gg + S*.
Thus we are able to generate new generators from a given one.

In terms of Definition 3.3, this is saying that functions in 2% + y preserve
type, that is, f{A) is of type 9 whenever A is. (Theorem 6.4.)

More generally, we obtain what is more than a spectral mapping theorem,
what may be called a type mapping theorem: if h e & and h : Sn —>• San, for
some 0 < a < 1, and A is of type 9, then h(A) is of type a9. (Corollary 6.3.)
This is an extension of Kato's lemma (Lemma 3.9).

THEOREM 6.1. Suppose f e @, 0 < 9 < n/2 and A is of type 9. Then f(A)
is of type 9.

REMARK 6.2. It will be clear from the proof that the conclusion of The-
orem 6.1 is valid whenever / G 9S has the property that the map z t->
[/(z1/r)]r £ &,Vr > 1. It is thus natural to ask which functions in & have
this property. It is straightforward to verify that functions in & have this prop-
erty (Lemma 6.6); it is an open question whether all functions in 38 have this
property.
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COROLLARY 6.3. Suppose 0 <0 < n/2, A is of type 9,h e &andh : Sn - •
San, for some 0 < a < 1. Then h(A) is of type a9.

When the range of A is dense, we can prove that type is preserved by a large
class of functions, S% + S^, this includes functions not in 38.

For k = f + g, where / G 8% and g e 5?, we define k(A) to be the closure of
f(A) + g(A), with domain 9(f(A)) D @(g(A)). The operator -k(A) is then
the generator of e~'f{A)e~'g{A).

THEOREM 6.4. Suppose 0 < 9 < n/2, A is of type 9, lm(A) is dense and
k G 01 + y. Then k(A) is of type 9.

THEOREM 6.5. The functions in & preserve all sectors 5^, 0 < if < n.

PROOF. A brief calculation shows that 0,(z) = z/(z + t) preserves sectors,
V? > 0. Thus this follows from the representation (5.1).

LEMMA 6.6. Suppose f G 01 and r > 1. Then fr(z) = [f(zi/r)Y is also in
0Z. (cf [35, Corollary 2]).

PROOF. This follows from the geometric characterization of Si, Lemma 5.2
and Lemma 6.5.

PROOF OF THEOREM 6.1. Fixr > 1 such that r9 < n/2. Let h(z) = /(z1 / r ) ,
g(z) = [h(z)Y. By Lemma 6.6, g G M\ it is clear from Lemma 5.2 that h e £%.

By Corollary 3.10, Ar is of type rO. By Theorem 2.2, g(Ar) is of type n/2,
thus by Corollary 3.10 again,

f(A) = f((Ar)l/r), by Proposition 4.7,

= h(Ar), by Theorem 4.5,

= lg(Ar)]l/r, by Theorem 4.2,

is of type n/2r. This implies that, Vi/f > 9, f(A) is of type iff, which is
equivalent to f(A) being of type 9.

PROOF OF COROLLARY 6.3. g(z) = [h(z)]« G 0£, by Lemma 6.6. By The-
orem 6.1, g(A) is of type 9. By Theorem 4.2, h{A) = [g(A)]a, thus by
Lemma 3.9, h(A) is of type a9.
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PROOF OF THEOREM 6.4. By Theorem 6.1, since the sum of two commuting
operators of type 9 is of type 9, it is sufficient to show that g(A) is of type 9,
whenever g e y.

By Theorem 3.7, A is injective and A'1 is of type 9. For x e @(A~X) =
Im(A), (see (5.3))

poo

g(A)x = ax + (t + AYlx dk(t)
Jo

/»O0

= ax+ (tA~l + \)A~lx dk(t)
Jo

where fg e S& is given by (5.8). Taking closures, this implies that g(A) —
fg(A~x), which is of type 9, by Theorem 6.1.

7. Operators of type 0

We show that f(A) is of type 0, whenever A is of type 0 and / G £S, that
is, —f(A) generates a bounded holomorphic strongly continuous semigroup of
angle n/2. (Theorem 7.2.)

This is a partial answer to the following open question in [28]: suppose
—A generates a bounded holomorphic strongly continuous semigroup and / e
SB. Does —f(A) also generate a bounded holomorphic strongly continuous
semigroup? Theorem 7.2 answers this question in the affirmative, when the
angle of the holomorphic semigroup generated by —A is n/2; in addition, this
angle is preserved by the holomorphic semigroup generated by —f(A) These
are the holomorphic semigroups of most interest, since they include elliptic
operators, such as the Laplacian (see Example 7.3).

More generally, we show that the answer to this open question is affirmative
whenever —A generates a bounded holomorphic strongly continuous semigroup
of angle greater than n/4 (Proposition 7.4). It is not clear if the angle of the
semigroup is preserved, for arbitrary / e SB (see, however, Remark 6.2 and
Theorem 6.1).

The proof is essentially the same as the proof of Theorem 6.1, with the
following additional result.

PROPOSITION7.1. Suppose/ e SBandn e N. Thengn(z) = [f(zl/n)]n e SB.

https://doi.org/10.1017/S1446788700032067 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032067


266 Christian Berg, Khristo Boyadzhiev and Ralph deLaubenfels [21]

THEOREM 7.2. Suppose A is of type 0 and f e 38. Then f(A) is of
type 0.

EXAMPLE 7.3. Let A = - A , on LP(R"), for 1 < p < oo. Then , V/ € 38,
is of type 0.

The same is true for A = —A, on LP{Q), with Dirichlet boundary conditions,
for 1 < p < oo, where £2 C M." is a region with smooth boundary.

For the case 1 < p < oo, an H°°-functional calculus, for —A, on LP(R),
is constructed in [41], and an f/°°-functional calculus for A = —A, on Lp(£2),
with Dirichlet boundary conditions, for 1 < p < oo, where Q C M." is as above,
is constructed in [20].

Theorem 7.2 follows immediately from the following.

PROPOSITION 7.4. Suppose A is of type 0, n e N and n9 < n/2. Then f(A)
is of type n/2n, V/ € 38.

PROOF OF PROPOSITION 7.1. For t > 0, we have

where 0 ( 0 = f'(t)[f(t)/t]"~l is completely monotone because it is the product
of the completely monotone functions / ' and t H* f(t)/t. The latter is eas-
ily seen to be completely monotone using the integral representation in The-
orem 2.1 (hi). Since t i->- t1/n is a Bernstein function, it now follows from
Theorem 2.1(i) that g'n is completely monotone, that is, gn e 38.

PROOF OF PROPOSITION 7.4. Let hn(z) = [gn(z)]l/n). This is also in 38, by
Theorem 4.2 and Proposition 7.1. By Corollary 3.10, A" is of type nO. By
Theorem 2.2, gn(A

n) is of type TC/2, thus by Corollary 3.10 again,

f(A) = /((^T)17"), by Proposition 4.7,

= hn(A"), by Theorem 4.5,

= [gn(An)]w", by Theorem 4.2,

is of type n/2n.
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Added in proof

After the paper was accepted we learned of the following papers which have
related results: [12,39]
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