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REMARKS ON THE ASYMPTOTIC BEHAVIOUR
OF PERTURBED LINEAR SYSTEMSf

by JAMES S. W. W O N G

(Received 25 March, 1968)

1. Introduction. We are here concerned with following result of Trench:

THEOREM. (Trench [5]). Let vx and v2 be two linearly independent solutions of the differen-
tial equation

v" = a(t)v,

where a(t) is continuous on [0, oo), and let b(t) be a continuous function of t for t^O satisfying

>
\b(t)\m(t)dt< oo,

Jo
where m(t) = max {| v^t) |2, |u2(0|2}. Then, if <x1 and a2 ore two arbitrary constants, there
exists a solution it of

u" = (a(t) + b(t))u

which can be written in the form

u = cci(t)vi+a2(t)v2,

with
lima,-(0 = a; for i = 1,2.

(-•00

The purpose of this note is to extend the above theorem to general systems with non-
linear perturbations. Here we consider

x' = A(t)x, (1)
and

y' = A(t)y+f(t,y), (2)

where A(t) is a n x n matrix with real-valued continuous functions as elements, and / ( / , x)
is an n-vector continuous f o r O ^ / ^ c o , | j > | < o o . (We define

| A | = SUP £ | fly j

for any matrix A = {a,-,}, and accordingly for any vector v = {vt}, I v I = sup I vt I.) Denote

by AXO = {Xij(t)} the fundamental solution matrix of (1). We envisage conditions o n / ( / , j )
such that every solution of (2) may be represented in the form y{t) = X(t)c(t), where lim c(t)

(-•00

exists and is finite, and that, for any given vector c, there exists a solution of (2) such that
y(t) = X(t)x(t) with limc(0 = c. Several applications of our main theorem are also indicated.

(-•00

t This work was supported by NRC Grant A-3125.
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2. The main theorem. We assume throughout this discussion that f(t,y) satisfies the
condition

| | M), (3)
where X{t), </>(/•) are non-negative continuous functions on [0, oo), with <f>(r) non-decreasing in
r and satisfying the condition

(f>(rl r2) ^ <t>(ri)<f>(r2)- (4)

Our extension of Trench's result is contained in the following theorem.

THEOREM 1. Let </>(r) in addition satisfy the condition

dr
o, (5)

for some r0 > 0. If

f°° ( P \ -.
A(/)expl —I trace A(u)du \Mn (i)(j)(M(t)) dt < oo, (6)

Jo \ Jo /
where

M(0= max |* , /0 | ,

then every solution of (2) may be written in the form y(t) = X(t)c(t), where limc(f) exists and is
<-»CO

finite; moreover, for any given vector c there exists a solution of (2) such that y(t) = X{t)c(t)
with lim c(t) = c.

(-•oo

The proof of the above theorem depends on the following two lemmas due to Wintner
and Bihari.

LEMMA 1. (Wintner [7]) Let fi(t) be a non-negative and continuous function on [0, oo),
satisfying the condition

f
Jo

fi(t)dt< co, (7)
Jo

and let </>(r) be given as above satisfying (4) and (5). Then each solution of the system

v' = g(t,v), (8)

with g(t, v) satisfying the condition

tends to a finite vector as t -> oo, and each finite vector is the limit as t -> oo of some solution of
(8).

LEMMA 2. (Bihari [2], Brauer [3]) Let n(t), 4>(r) be non-negative and continuous functions
on [0, co). Then every solution v(t) o/(8) with initial condition | v(0) | ^ v0 obeys the following
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inequality

| v(t)1 ^ <J>~11 O(u0) + n(s) ds j , (10)

for all t whenever
du

I Ks)dsZ I
Jo Jt>o

where
Ji>(

Proof of Theorem 1. Write y(t) = AXOc(O> where c(r) is to be determined. Substituting
this into (2), one easily obtains

Jo
c(0 = c(0)+ I X-1(s)/(5,Jf(s)c(s))d5. (11)

J
We now may estimate A'"1^) by

- I trace 4(u)duJ, (12)

where C2 is another constant and EA(t) = expl — trace A{u)du j . Since (j>(r) satisfies (5),
V J

where C\ is some convenient constant which may be taken as (« —l)*1""^, for example.
Using (3), (4) and (12), we obtain for (10) the following estimate:

| c (0 | ^ |c(0)| + C2 ['x(s)EA(S)M"-\s)<l>(M(s))ct>(\c(s)\)ds, (13)
Jo

= expl —
V Jo

we may apply Lemma 2 to (13) (In this case, the upper bound given in (10) holds unrestrictedly.),
and obtain

\c(t)\£<I>-1U(\c(O)\) + C2['x{s)EA(s)M'>-\s)(l)(M(s))ds\ (14)

Hence we conclude from (6) that \c(t)\ is bounded. Now, since the integral in (11) is
dominated by a constant multiple of the integral in (6), it follows that lim c(i) exists and is

r-»oo

finite. On the other hand, c(t) satisfies the differential equation

c'W^X-'MfrXitXt)), (15)

and from (3), (4) and (12) we have

\X~l(t)f(t,X(t)c(t))\ ^ C1A(0M0M"-1(0^M(0)^(|c(0|).

ByconsideringLemmalwith0(/,c) = *"'(*)/(/, AXOc) and ̂ (/) = C1X(t)EA(t)M"-\t)(j)(M(t))
we may conclude that, for each finite vector c there exists a solution c(t) of (15) such
that lim c(f) = c, which completes the proof.
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Remark 1. The above theorem easily reduces to the result of Trench by taking for n = 2,

0

0 o
and

0

Here/(/,>>) satisfies the condition | / ( ? , j ) | ^

Remark 2. As a typical example of a function <f>(r) satisfying the assumptions given in
Theorem 1, we may take <j>(r) = r" for 0 g p ^ 1.

Remark 3. A similar approach to that given in [5] will yield the above result with
f(t,y) = B(t)y under the additional hypothesis that trace B{t) = 0. On the other hand, Trench's
result may also be deduced from well-known results on linear systems; in particular,
Coddington and Levinson [4], p. 99, Problems 5, 6.

3. Applications and remarks.

THEOREM 2. In addition to the above assumptions on k(t) and (j)(r), we assume further
that <f>(r) satisfies (5), and

limf'
(-•oo Jo

I X(t)dt< oo, (16)
Jo

traceA(u)du > - o o . (17)
o

If all solutions of (I) are bounded, then (a) all solutions of (2) are bounded, (b) all solutions of (I)
are asymptotically stable if and only if all solutions of (2) are asymptotically stable.

Proof. Since (16), (17) and the hypothesis that all solutions of (1) are bounded imply (6),
the above assertion follows immediately from Theorem 1.

Remark 4. In case/(f, j>) = B(t)y and <j)(r) = r, the above theorem reduces to a standard
result on stability of linear systems (e.g. Bellman [1], p. 43, Theorem 6; Coddington and
Levinson [4], pp. 98-99, Problems 3, 4).

THEOREM 3. Under the same assumptions as those of Theorem I, if we assume instead of (5)
that

r'"^=»' <18>
(p(u)

then there exist solutions y(t) of (2) which can be written in the form y{t) = X{t)c{t),
where lim c(t) exists and is finite.
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Proof. Write y(t) = X(f)c(t) with | c(0) | = c0 so chosen such that

— - > \ nKQdt,

where n(t) is defined in the proof of Theorem 1. It is easy to see from Lemma 2 that the same
argument carries over almost verbatim.

Remark 5. In case n = 2, with A(i) as given in Remark 1 and

0

where p ^ 1, the above result reduces to a theorem of Waltman [6], where the result is stated
for p = 2m— 1, with m a positive integer.

Added in Proof. Further results and related references may be found in F. Brauer and
J. S. W. Wong, "On asymptotic behaviour of perturbed linear systems," to appear in/. Differ-
ential Equations.
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