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Dear Editor,

Sharp bounds for winning probabilities in the competitive rank selection problem

1. Introduction

In this problem two players A and B observe sequentially n uniquely rankable options.
All arrival orders of ranks are supposed to be equally likely (probability = 1/n! each) and
A and B have to select one option each. The decision must be based on relative ranks only
(no-information game) and A has the priority of choice.

Let p(n, k) be the probability that player A will choose a better rank than player B, given
that neither A nor B has stopped (selected an option) before step k. We call p(n, k) the winning
probability of A at step k in a n-options game.

Note that p(n, n) is not defined, because if A has not yet stopped on {1, 2, - - - , n — 1} then
A must select option n and thus B must have stopped earlier.

Enns and Ferenstein [2], who studied this problem as ‘the horse game’, pointed out already
that the p(n, k) are not monotone. Therefore the proof of the existence of lim,—, c p(n, k(n))
is not easy (this question will be studied in a more technical paper; see also Enns et al. [3]).
The corresponding question for the full information game has been completed by Chen et al.
[1].

Another interesting question is: what is the range of p(n, k) for different n and k? Numer-
ical evidence (already obtained by Enns and Ferenstein) suggest that 1/2 is a lower bound and
3/4 is an upper bound. We now present an elementary probabilistic proof that these values are
indeed the sharp uniform bounds. (We formulate our results in terms of ¢ (n, k) = 1 —p(n, k).)

2. Results
Theorem 2.1. Let q(n, k) = 1—p(n, k). Then 1/4 < g(n, k) <1/2foralln,1 <k <n-—1.

Proof. The step k = n — 1 is special in the sense that if A does not stop then B must stop.
Therefore A must stop at option number n — 1 if P(A wins atstepn — 1) > 1/2 and may stop
if P(A wins at step n — 1) = 1/2 (but must refuse otherwise). Therefore it is easy to see that
gn,n—1) | 1/4asn — oo. Thus g(n, k) > 1/4fork =n —1,i.e. fork+1=n.

Our proof is based on backwards induction. Suppose that

qgn,m) > 1/4, k+1<m<n. (1)
We now show that g(n, k) > 1/4. Let

Ay = {A accepts option number k}
W(A) = {A wins the game }

and let By and W (B) denote the corresponding events for B. Since Ay and By are mutually
exclusive we have P(Ax U By) = P(Ax) + P(Bx). Also, clearly, P(W(B)) = 1— P(W(A)).
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Thus we can write

k—1
qgn, k) = P(Ak Nw) | ) 6,~>
i=1

~

k—1
—i—P(BkﬂW(B) | ﬂ@) )
j=1
k—1
+P(Akméka(B) | ﬂ6j>,
j=1

where C; = A; U B; and where E denotes the complement of E.

We look first at the last term. If both A and B refuse k then both players pass on to step
k + 1. In this case B will win, under optimal play, with probability g(n, k 4 1), i.e. by the
induction hypothesis (1), with probability 1/4 at least. Therefore

k—1 k—1
- _ _ 1 - - _
P(Ak N B NW(B) | ﬂlcj> > ZP(Ak N By | ﬂlcj) 3)
J= J=

Secondly, if A does not accept k, then B has the choice of either stopping at step k or else
passing on to step k + 1. Optimal behaviour forces B to accept k only if this yields a winning
probability strictly greater than g (n, k + 1), i.e. only if

k—1
P(W(B)|Bkﬂﬂc_’j> >qn, k+1)>1/4 4)

j=1

and to refuse k if the reverse strict equality < holds. Thus the second term of (2) yields

k—1 k—1
P(Bk Nw) | ) Q) > q(n, k+ 1)P(Bk N Q)
j=1 j=1

k-1
1 —
> ZP(Bk | QCJ)- )
j=

Now, since Ax U Bx U (Ax N By) is the certain event and since (3) and (5) holds, it suffices
from (2) to show that

k—1 k—1
P(AkﬂW(B)|ﬂCj>2%P(Ak | ﬂq). (6)
j=1 j=1

We note first that, as in the case k = n — 1, A would act suboptimally if A accepted k unless

)/ ()=

and that p(n, k) > 1/2foralll <k <n —1.
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Indeed A can use any strategy B can use (at least) and optimal play must therefore yield a
winning probability of 1/2 at least. On the other hand, A must accept if

)/ ()-

because otherwise B would accept and win with this probability, which again would contradict
A’s optimal behaviour. Therefore A accepts k under optimal play only if the relative rank r of
k satisfies the inequality (see also [2])

()/()==

A wins in this case with this probability

()/C)

Consequently, since all relative ranks are equally likely (Rényi [4]), and since

P(W(A)) =1—- P(W(B)),
1 ¢ k n
2(-()/0):

k—1
P(Ak NW) | Q) =
j=1 r=1

oo () )21

If s = 0 then Ay = @, by definition, and nothing remains to be shown. Therefore let s > 1.

‘We now show that
k n
wwin=()/ )

is,foralll <k <mnand1 <r <k, aconvex function of . Note that

k(k —1)---(k —r + 1)

where

b(n,k,r) =
nnh—1---m—r+1)
so that
k—r
b(n,k,r +1)=>bn,k,r) .
n—r

To prove convexity it suffices to show that
b(n,k,r +2)+bn,k,r) >2bn, k,r +1).

Butsince ]l <r <k < nwecan writtk = cn,r = dn forsome 0 < d < c¢ < 1. The
validity of the preceding inequality follows then, after straightforward simplifications, from

mn+1—-cn)l—2c) 0
n(l—d)2+1—d}> ‘

sign {

Therefore the b(n, k, r) are (strictly) convex in 1 < r <k foralln > k.

https://doi.org/10.1239/jap/1032438396 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1032438396

1010 F. THOMAS BRUSS AND GUY LOUCHARD

Now let

a(s) =Y b kr),

r=1

b(s) ==Y (1 —b(n.k.r) =5 —a(s).

r=1

By Rényi’s theorem on relative ranks the kth observation has relative rank r < k with prob-
ability 1/k (independently of preceding observations). Conditioned on the event that neither
A nor B have stopped before k, a(s)/k is thus the probability that A stops on k and wins and
b(s)/ k the probability that A stops and B wins.

Therefore, to show inequality (6), it suffices to show that

b b, L o
a(s) + b(s) s 4
or equivalently, that b(s) > s/4.
Now,
s
b(s)=s—Y bnkr)
r=1
s
b(n,k,1)+bn,k,s+1)
> 5 — 8
5=y > @®)
r=1
N1+
> 5 — ; =1 9)

where the inequality (8) follows from the convexity of the b(n, k, r) and (9) from the inequality
b(n,k,s+1) < % <b(n,k,s) <b(n,k,1) < 1. This proves (7) which implies (6), and thus
the proof is complete.

Corollary 2.1. The bounds 1/4 < q(n, k) < 1/2 are sharp.

Proof. Since g(n,n — 1) | 1/4 as n — oo the lower bound is sharp. Since p(n, k) > 1/2 for
alll <k <n—1wehaveg(n,k) <1/2forall 1l <k <n — 1, and so 1/2 is an upper bound.
This bound is sharp too since p(2,1) = ¢g(2,1) = 1/2.
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