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Dear Editor,

Sharp bounds for winning probabilities in the competitive rank selection problem

1. Introduction

In this problem two players A and B observe sequentially n uniquely rankable options.

All arrival orders of ranks are supposed to be equally likely (probability = 1/n! each) and

A and B have to select one option each. The decision must be based on relative ranks only

(no-information game) and A has the priority of choice.

Let p(n, k) be the probability that player A will choose a better rank than player B, given

that neither A nor B has stopped (selected an option) before step k. We call p(n, k) the winning

probability of A at step k in a n-options game.

Note that p(n, n) is not defined, because if A has not yet stopped on {1, 2, · · · , n − 1} then

A must select option n and thus B must have stopped earlier.

Enns and Ferenstein [2], who studied this problem as ‘the horse game’, pointed out already

that the p(n, k) are not monotone. Therefore the proof of the existence of limn→∞ p(n, k(n))

is not easy (this question will be studied in a more technical paper; see also Enns et al. [3]).

The corresponding question for the full information game has been completed by Chen et al.

[1].

Another interesting question is: what is the range of p(n, k) for different n and k? Numer-

ical evidence (already obtained by Enns and Ferenstein) suggest that 1/2 is a lower bound and

3/4 is an upper bound. We now present an elementary probabilistic proof that these values are

indeed the sharp uniform bounds. (We formulate our results in terms of q(n, k) = 1− p(n, k).)

2. Results

Theorem 2.1. Let q(n, k) = 1 − p(n, k). Then 1/4 ≤ q(n, k) ≤ 1/2 for all n, 1 ≤ k ≤ n −1.

Proof. The step k = n − 1 is special in the sense that if A does not stop then B must stop.

Therefore A must stop at option number n − 1 if P(A wins at step n − 1) > 1/2 and may stop

if P(A wins at step n − 1) = 1/2 (but must refuse otherwise). Therefore it is easy to see that

q(n, n − 1) ↓ 1/4 as n → ∞. Thus q(n, k) ≥ 1/4 for k = n − 1, i.e. for k + 1 = n.

Our proof is based on backwards induction. Suppose that

q(n, m) ≥ 1/4, k + 1 ≤ m ≤ n. (1)

We now show that q(n, k) ≥ 1/4. Let

Ak = {A accepts option number k}

W (A) = {A wins the game }

and let Bk and W (B) denote the corresponding events for B. Since Ak and Bk are mutually

exclusive we have P(Ak ∪ Bk) = P(Ak ) + P(Bk ). Also, clearly, P(W (B)) = 1 − P(W (A)).
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Thus we can write

q(n, k) = P

(

Ak ∩ W (B) |

k−1
⋂

j=1

C̄ j

)

+ P

(

Bk ∩ W (B) |

k−1
⋂

j=1

C̄ j

)

(2)

+ P

(

Āk ∩ B̄k ∩ W (B) |

k−1
⋂

j=1

C̄ j

)

,

where C j = A j ∪ B j and where Ē denotes the complement of E .

We look first at the last term. If both A and B refuse k then both players pass on to step

k + 1. In this case B will win, under optimal play, with probability q(n, k + 1), i.e. by the

induction hypothesis (1), with probability 1/4 at least. Therefore

P

(

Āk ∩ B̄k ∩ W (B) |

k−1
⋂

j=1

C̄ j

)

≥
1

4
P

(

Āk ∩ B̄k |

k−1
⋂

j=1

C̄ j

)

. (3)

Secondly, if A does not accept k, then B has the choice of either stopping at step k or else

passing on to step k + 1. Optimal behaviour forces B to accept k only if this yields a winning

probability strictly greater than q(n, k + 1), i.e. only if

P

(

W (B) | Bk ∩

k−1
⋂

j=1

C̄ j

)

> q(n, k + 1) ≥ 1/4 (4)

and to refuse k if the reverse strict equality < holds. Thus the second term of (2) yields

P

(

Bk ∩ W (B) |

k−1
⋂

j=1

C̄ j

)

≥ q(n, k + 1)P

(

Bk |

k−1
⋂

j=1

C̄ j

)

≥
1

4
P

(

Bk |

k−1
⋂

j=1

C̄ j

)

. (5)

Now, since Ak ∪ Bk ∪ (Āk ∩ B̄k) is the certain event and since (3) and (5) holds, it suffices

from (2) to show that

P

(

Ak ∩ W (B) |

k−1
⋂

j=1

C̄ j

)

≥
1

4
P

(

Ak |

k−1
⋂

j=1

C̄ j

)

. (6)

We note first that, as in the case k = n − 1, A would act suboptimally if A accepted k unless

(

k

r

)/(

n

r

)

≥
1

2

and that p(n, k) ≥ 1/2 for all 1 ≤ k ≤ n − 1.
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Indeed A can use any strategy B can use (at least) and optimal play must therefore yield a

winning probability of 1/2 at least. On the other hand, A must accept if

(

k

r

)/(

n

r

)

>
1

2

because otherwise B would accept and win with this probability, which again would contradict

A’s optimal behaviour. Therefore A accepts k under optimal play only if the relative rank r of

k satisfies the inequality (see also [2])

(

k

r

)/(

n

r

)

≥
1

2
.

A wins in this case with this probability

(

k

r

)/(

n

r

)

.

Consequently, since all relative ranks are equally likely (Rényi [4]), and since

P(W (A)) = 1 − P(W (B)),

P

(

Ak ∩ W (B) |

k−1
⋂

j=1

C̄ j

)

=
1

k

s
∑

r=1

(

1 −

(

k

r

)/(

n

r

))

,

where

s = sup

{

r ∈ N :

(

k

r

)/(

n

r

)

≥
1

2

}

.

If s = 0 then Ak = ?, by definition, and nothing remains to be shown. Therefore let s ≥ 1.

We now show that

b(n, k, r) =

(

k

r

)/(

n

r

)

is, for all 1 ≤ k < n and 1 ≤ r ≤ k, a convex function of r. Note that

b(n, k, r) =
k(k − 1) · · · (k − r + 1)

n(n − 1) · · · (n − r + 1)

so that

b(n, k, r + 1) = b(n, k, r)
k − r

n − r
.

To prove convexity it suffices to show that

b(n, k, r + 2) + b(n, k, r) ≥ 2b(n, k, r + 1).

But since 1 ≤ r ≤ k < n we can write k = cn, r = dn for some 0 < d ≤ c < 1. The

validity of the preceding inequality follows then, after straightforward simplifications, from

sign

{

(n + 1 − cn)(1 − c)

n(1 − d)2 + 1 − d

}

> 0.

Therefore the b(n, k, r) are (strictly) convex in 1 ≤ r ≤ k for all n ≥ k.
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Now let

a(s) :=

s
∑

r=1

b(n, k, r),

b(s) :=

s
∑

r=1

(1 − b(n, k, r)) = s − a(s).

By Rényi’s theorem on relative ranks the kth observation has relative rank r ≤ k with prob-

ability 1/k (independently of preceding observations). Conditioned on the event that neither

A nor B have stopped before k, a(s)/k is thus the probability that A stops on k and wins and

b(s)/k the probability that A stops and B wins.

Therefore, to show inequality (6), it suffices to show that

b(s)

a(s) + b(s)
=

b(s)

s
≥

1

4
, (7)

or equivalently, that b(s) ≥ s/4.

Now,

b(s) = s −

s
∑

r=1

b(n, k, r)

≥ s −

s
∑

r=1

b(n, k, 1) + b(n, k, s + 1)

2
(8)

≥ s −

s
∑

r=1

1 + 1
2

2
= 1

4 s, (9)

where the inequality (8) follows from the convexity of the b(n, k, r) and (9) from the inequality

b(n, k, s + 1) < 1
2

≤ b(n, k, s) ≤ b(n, k, 1) ≤ 1. This proves (7) which implies (6), and thus

the proof is complete.

Corollary 2.1. The bounds 1/4 ≤ q(n, k) ≤ 1/2 are sharp.

Proof. Since q(n, n − 1) ↓ 1/4 as n → ∞ the lower bound is sharp. Since p(n, k) ≥ 1/2 for

all 1 ≤ k ≤ n − 1 we have q(n, k) ≤ 1/2 for all 1 ≤ k ≤ n − 1, and so 1/2 is an upper bound.

This bound is sharp too since p(2, 1) = q(2, 1) = 1/2.
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