ON MEASURES OF SYMMETRY OF CONVEX BODIES
G. D. CHAKERIAN AND S. K. STEIN

1. Introduction and statement of theorems. Let K be a convex
body (compact, convex set with interior points) in #-dimensional Euclidean
space E,, and let V(K) denote the volume of K. Let K’ be a centrally sym-
metric body of maximum volume contained in K (in fact, K’ is unique; see
2 or 9), and define

c(K) = V(K')/V(K).
Let
c¢(n) = inf{c(K) : K C E,}.

It is known that ¢(n) > 27" for all » (9); that is, any #-dimensional convex
body K contains a centrally symmetric convex body of volume >2"V(K).
(Better results are known in E;, E, and E;: ¢(1) =1, ¢(2) = 2/3, and
¢(3) > 2/9. For references, see (4, p. 254).) One could also consider K as a
non-homogeneous convex solid with an integrable density f(p) at each p € K
and ask for a centrally symmetric convex subset K’ of maximum total mass.
This leads one to define, for each integrable density f on K,

r(K;f) = M(K')/M(K),

where K’ is a centrally symmetric convex body of maximum mass M (K’)
contained in K, and M (K) is the mass of K. (Note that K’ need not be
unique. However, if the density is a concave function, then essentially the
same argument used ia (9), applied to the ordinate set of f, shows that K’
is unique.) Let
#(K) = inf u(K;f),
where the infimum is taken over all integrable densities on K, and define
p(n) = inf{u(K) : K C E,}.

We shall prove in § 3 that

(1.1) wn) > 2", for all #,
and
(1.2) p(2) = 3.

The inequality (1.1) is a result of an obvious generalization of the computa-
tion of ‘“‘mean symmetry”’ used in (9), while (1.2) depends on the following
theorem, proved in §2.
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TureorREM 1. Any plane convex body K can be covered by three translates of
—K. A triangle T cannot be covered by fewer than three translates of —T.

It is evident that if a convex body K can be covered by 7 translates of —K
(so that K is the union of 7 centrally convex symmetric sets), then u(K)>7r"1.
This leads us to consider the numbers g(K) and g(n), defined as follows:

g2(K) is the least number r such that K can be covered by r translates of —K.
g(n) = max{g(K) : K C E,}.

Theorem 1 simply states that g(2) = 3. In (3), numbers %(K) and k(n) are
defined:

h(K) is the least number r with the following property: whenever § is any
family of pairwise intersecting translates of K, then there exist r points such
that each member of § contains at least one of them.

h(n) = max{h(K) : K C E,}.

It is proved in (3) that k(n) is finite, and that if K C E; with K = —K,
then 2(K) < 3. Moreover, it is conjectured that £2(2) = 3 and 2(n) <7 + 1
for all n. The second conjecture is false, as follows from

THEOREM 2. For all n, h(n) > g(n) > c(n)™.

The first inequality is proved in § 2. The second inequality is immediate,
since the definition of g(n) implies that any convex body K contains a cen-
trally symmetric body of volume at least g(z)~1V(K), so that ¢(K) > g(n)™%;
hence, ¢(n) > g(n)~. Now, it is shown in (2) that if T is a simplex in E,,

then 3
< < /22 () v

Thus, by Theorem 2, k(n) is greater than » + 1 for all sufficiently large #,
and in fact grows faster than any fixed power of #. The conjecture on k(%)
is false even for » = 3, since, as shown in § 2,

(1.3) gB) > 1.

Since %(n) is finite, so is g(n) by Theorem 2. We shall give an independent
proof of the finiteness of g(n) in § 2.

A convex body is ‘“k-symmetric”’ if it coincides with its reflection through
some k-dimensional plane. For example, in E,, ‘“mirror symmetry’’ means
(n — 1)-symmetry, and “central symmetry” is 0-symmetry. Let K’ be a
k-symmetric convex body of maximum volume contained in K. Let

c(K; k) = V(K)/V(K),

and
c(n, k) = inf{c(K; k) : K C E,}.
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Thus ¢(n, 0) = c¢(n). It is proved by Krakowski (6) that c(2,1) > 5/8, the
best result known so far in E,. Nohl (8) proves that any centrally symmetric
plane convex body K contains a 1-symmetric body of area 2(1/2 — 1) V(K).
In §4 we prove

THEOREM 3.

max{k!, (n — k)!}
2" ) '

c(n, k) > 0< k< n.

Thus, for example, any convex body in E, contains a mirror symmetric
body of volume > (2r)~1V(K). The result of Macbeath (7), that any convex
body in E, contains a rectangular parallelotope of volume #—"V(K), implies
that c¢(n, k) > n"; however, Theorem 3 gives a considerably better lower
bound.

In §4 we also give an integral-geometric formula involving the ‘“‘mean
k-symmetry’’ of K; see formula (4.11).

2. Proofs of the covering theorems.

Proof of Theorem 1. Fary (1) proved that any plane convex body K admits
an inscribed affine regular hexagon H (image of a regular hexagon under an
affine transformation of E,). K is contained in the interior of the hexagram S
formed by extending alternate sides of H. S can be covered by three trans-
lates, H;, 1 = 1,2, 3, of H. Then K is covered by the three translates of —K
circumscribed about the H,.

The second part of the theorem follows from the observation that a trans-
late of — 7 covers two vertices of 7" only when 7" and — 7 have a side in
common. This completes the proof.

Remark. The proof shows that if P;, P., P; are the centres of the sides
of a triangle formed by connecting three alternate vertices of H, then K is
the union of the three centrally symmetric sets (2P; — K) M K centred at
P, 1=1,23.

Proof of Theorem 2. We prove the first inequality, the second being trivial,
as shown in § 1. Let § be the family of all translates of K by elements of K,
so § = {qg+ K : ¢ € K}. One notices that  is a pairwise intersecting family,
since

g1+ g2 € (@1 + K) N (g2 + K),

whenever ¢i, g2 € K. Hence there exist » = £(K) points p4, ..., p, such that
each ¢ + K, ¢ € K, contains at least one of them. In other words for each
g € K, there is at least one of the p; such that p; € ¢ + K, or equivalently,
q € p; — K. Thus
KC U {p:— K},
1<i<r

and g(K) < r = h(K); hence g(n) < h(n). This completes the proof.
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Proof of (1.3). We show that a regular tetrahedron 7" in E; cannot be
covered by fewer than seven translates of —T; hence g(3) > g(T) > 7. Assume
that 7" has edges of length one and let E denote the 1-skeleton of 7" (union
of the six edges of T). For each translate p — T of — 7T, p € E;, let I(p)
denote the total length of E M (p — T'). Consideration of a few cases (we
omit the tedious details) shows that [(p) < 1 for all p € E;. Moreover,
I(p) = 1 only if the plane of some face of p — T  contains a vertex of 7.

Suppose now that there exist p;, 7 = 1,..., 6, such that

rc\VJ (p:.—1).
1<4<6

Let T, =p,—T,7=1,...,6. Since the total edge length of 7" is 6, it
follows that I(p;) = 1, each T'; has a face on some vertex of 7, and it is not
possible that T, E and T, N\ E “overlap” (have a segment of non-zero
length in common) for ¢ # j. Each vertex of T" must be interior to a face
of some T';; otherwise, a neighbourhood in the interior of T near that vertex
would not be covered. But a vertex cannot be interior to faces of T, T,
1 5% j, since that would yield an “overlap” of 7, M E and T'; M E. Thus four
of the T';, say for ¢ = 1, 2, 3,4, have a vertex of T interior to one of their
faces, while Ts and T’ do not. But then 75 and 7' do not cover any interior
points of T, and it is clear that the interior of 7 is not contained in U ¢;<sT ;.
(In fact, V(T'y\T) < 3V(T), for 1 < 7 < 4.) This contradiction completes
the proof.

Remark. We show how 1" can be covered by eight translates of —7". In the
following, assume that the centroid of 7T is at the origin.

(i) Let p be the mid-point of an edge of $7 and ¢ the mid-point of the
opposite edge. Let 7y and T’ be translates of —7" with centroids at p and ¢
respectively. One observes that 37 C 7, \U T%.

(ii) T is the union of a regular octahedron R and four translates S,
1 <7< 4, of 3T .Each S, can be covered by two translates of —T, by (i).
Hence there are points p;, 1 < 7 < 8, such that

U SiC U Tiy

1<i<4 1<i<8

where 1", = p; — T. With a judicious choice of the p;, R is also covered by

the T°;, so
TrCc VT,
1<i<8
In fact, if the vertices of 7 are ay, .. ., aq, it can be verified that the following
choice of p; works:
b= %(ai+3di+1), 1 <i<4,
! 1@a; + a1 + aiye), 518,

with the convention that a; = ¢; when 7 = j (mod 4).
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This remark, together with the proof of (1.3), implies that g(7) is either
7 or 8. We conjecture that g(7) = 8. Indeed, it seems that the surface of T°
cannot be covered by fewer than eight translates of —7.

Proof that g(n) < . Let T be a simplex of maximum volume inscribed in
K. Then, as proved in (7), at each vertex of T some support plane of K is
parallel to the opposite face of 7. These support planes form a simplex con-
taining K, and in fact this simplex is a translate of —»n7" (one sees this by
transforming the entire configuration by an affine transformation of E, sending
T onto a regular simplex). Thus if we can cover —»T by 7 translates of — T,
then we can cover K by r translates of —K. Hence g(n) < 7(n), where 7(n)
is the minimum number of translates of a regular simplex T" of E, needed
to cover nT.

Remark. A similar argument can be used to prove that 4(n) is finite. In-
deed, suppose § = {¢ + K : ¢ € Q} is a pairwise intersecting family of tran-
slates of K. One easily shows that the condition that § is pairwise intersecting
is equivalent to

Q-QCK-K.

Using the simplex 7" of the last proof, one sees that — K is contained in a
translate of nK; hence K — K is contained in a translate of (z + 1)K. But
some translate of Q is contained in Q — Q, thence in (# + 1)K. Now (n+1)K
is inscribed in a translate of —n(n + 1)7, so Q is contained in a translate of
—n(n + 1)T. Now suppose that —n(n + 1)T" is covered by r translates of
—T. Then Q is covered by 7 translates of —K. That is, there exist r points
$1, ..., pr such that

QC U (p.—K).
1<ir
Then for each g € Q, there exists one of the p; such that ¢ € p, — K, or
equivalently, p; € ¢ + K. Hence h(n) < s(n), where s(#) is the minimum
number of translates of a regular simplex 7" in E, needed to cover n(n + 1)7.
3. Proofs of the results on u(n).

Proof of (1.1). Let f be an integrable density on K, and for each p € K,
let S(p) = (2p — K) N K, and M(p) = [su) f(g)dg, the mass of S(p). As
shown in (9, p. 146), one has

[swredp = 2V(K),  for each g € K.
By Fubini’s theorem,
Jx Mp)ap = [xif sor F(@dg)dp = [x F(O srse dp}dg = 27V (K) M (K).

Thus, for some p, M (p) > 2—"M (K), and it follows that u(K) > 2—". Hence
u(n) > 27", as was to be proved.
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Proof of (1.2). Let K be a convex body in E,, and let f be a density on K.
By Theorem 1, K is the union of three centrally symmetric convex sets; hence
one of these necessarily has at least one third the total mass of K. Hence
w(K) > 3, and u(2) > 3.

If 7" is an equilateral triangle, it is easy to prove that any translate of — 7
covers at most one third of the perimeter of 7'; hence any centrally symmetric
subset of 7" covers at most one-third of the perimeter of 7. Thus by con-
centrating the mass in a uniform strip around the boundary of 7, we can
obtain, for each ¢ > 0, an f such that u(7;f) < 3 + e Hence u(7) < 1,
and p(2) < %. This completes the proof.

4. The lower bound on k-symmetry. Before proceeding to the proof
of Theorem 3, it will be convenient to introduce the following notation. An
“m-frame’”’ is an n-tuple of mutually orthogonal unit vectors ey, . . ., e, at the
origin. The subspace spanned by ey, . .., e¢; will be denoted by [e;, ..., €]
We need a preliminary

LEMMA. Let K be a convex body of volume V in E,. Let 1 <k < n — 1. Then
there is an n-frame ey, . . . , e, such that
’ 144 n!
A" < g v
where A’ is the k-dimensional volume of the projection of K onto les, . . ., ek,
and A" is the (n — k)-dimensional volume of the projection of K onto [exi1, - . -
€]

Proof. By a lemma of Macbeath (7, p. 59), there is a unit vector e; such
that

b1P1<ﬂV,

where b; is the length of the projection of K onto [e;] and P; is the (n — 1)-
dimensional volume of the projection K; of K onto the hyperplane E,; ortho-
gonal to [e;]. Applying Macbeath’s lemma to K; in E;, we next find a unit
vector e, 1 e; such that

bng < (ﬂ -_ I)Pl,
where b; is the length of the projection of K onto [e:] and P is the (n — 2)-
dimensional volume of the projection K. of K onto the (z — 2)-plane ortho-

gonal to [ey, e:]. Continuing in this manner, we find for each 7, 2 < r <k, a
unit vector e, 1 e, ..., e,_1, such that

brPr< (n—r+1)P,_1,

where b, is the length of the projection of K onto [e,] and P, is the (n — 7)-
dimensional volume of the projection K, of K onto the (# — r)-plane ortho-
gonal to [e, ..., e,]. One deduces from the above string of inequalities that
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n!

(4.1) blbz...bkpk<(n—__k—)!V.

Let 4’ be the k-dimensional volume of the projection K’ of K onto [ey, . . . , e].
Since b; b . .. b; is the k-dimensional volume of a rectangular parallelotope
circumscribed about K’ in [ey, ..., ], we have

4.2) A" < b by .. by

The lemma follows from (4.1) and (4.2), with 4" = P,.

Proof of Theorem 3. Let the convex body K C E, have volume V. Let
ei, ...,e, be the n-frame of co-ordinate vectors
. 0, 77,
ei=(6ﬂ,...,5in), ’L=1,...,7’l;5i]~={1' 1::;'.
Through each point p € [ey, ..., €,], there is a k-plane E;(p) orthogonal to
ler, - . ., enx]. Let K(p) be the reflection of K through E;(p), and let V(p)
be the volume of K M K(p). K N K(p) is a k-symmetric body contained in
K. We proceed to find a positive lower bound for its maximum volume.
Through each point ¢ € [e,—xt1, - . - , €], there is an orthogonal (n — k)-
plane E,_;(q). Let S(p, ¢) be the (n — k)-dimensional volume of

E, (9 N K N K(p).
Then
V(p) =[x S(p, g)dg,

where the integration is over the projection K’ of K onto [e,—g41, - « « , €] If
K’ is the projection of K onto [ey, ..., e,], then

(4.3) [x Vp)dp =[x dpfxr S(p, @)dq = [k dgfxr S(p, )dp.

Now E,_;(q) "\ K(p) is the reflection of E, ;(g) N\ K through the point
(b, @) = Ex(p) N E,—x(g); hence, by the formula of (9, p. 145),

(4.4) [z S(0, 9ap = [S(@1/2",

where S(g) is the (# — k)-dimensional volume of E, ;(¢) N K.
Let 4’ be the (» — k)-dimensional volume of K’ and A"’ the k-dimensional
volume of K’’. Then, by Schwarz’s inequality,

(4.5) [x [S@Ydg > (1/A")[[x S(g)dq]® = V2/A".
Moreover,
(4.6) A’ max V(p) > [x V(p)dp.
Then (4.3), (4.4), (4.5), and (4.6) yield
2
) max V(p) > 5,7_%71—477.
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In (4.7), A’A" is the product of the projections of K onto any preassigned
pair of orthogonal k-plane and (n — k)-plane. The lemma implies that for
some such pair

f 11l
r A, | (J - L
(4.8) A'A"” < n! mel(n——k)!'k!f'
The theorem follows from (4.7) and (4.8), since

c(K;: k) > V' max V(p).

peK’

Remark. From (4.3) and (4.4), we have
4.9) [x Vp)dp = 257 [0 [S(@)]dg.

If dE, is the integral-geometric ‘‘rotational density” for k-planes, then
dE; = dE,_; for orthogonal planes. The kinematic densities for k-planes and
orthogonal (#n — k)-planes are given by

where dp is the volume element in an (# — k)-plane orthogonal to E,, and
dg is the volume element in a k-plane orthogonal to E,_; (Hadwiger 5, p. 227).

For each k-plane E;, let K(E;) be the reflection of K across E; and V' (Ey)
the volume of K M K (E;). Then it follows from (4.9) and (4.10) that

(4.11) JV(EYAE, = 2" [[V(E,_x N K)*dE, 4,
k=1,2,...,n — 1, where the integrations are over all k-planes and (n — k)-

planes respectively. (In (4.11), V(E,x N K) is the (»n — k)-dimensional
volume of E,_, M K.)
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