
ON MEASURES OF SYMMETRY OF CONVEX BODIES 

G. D. CHAKERIAN AND S. K. STEIN 

1. Introduction and statement of theorems. Let I be a convex 
body (compact, convex set with interior points) in w-dimensional Euclidean 
space Eni and let V(K) denote the volume of K. Let Kr be a centrally sym­
metric body of maximum volume contained in K (in fact, Kf is unique; see 
2 or 9), and define 

c(K) = V{K')/V(K). 

Let 
c(n) = inf{c(K) :K CEn}. 

I t is known that c{n) > 2~n for all n (9); that is, any ^-dimensional convex 
body K contains a centrally symmetric convex body of volume >2~nV(K). 
(Better results are known in Elf E2, and E3 : c(l) = 1, c(2) = 2/3, and 
c(3) > 2/9. For references, see (4, p. 254).) One could also consider K as a 
non-homogeneous convex solid with an integrable density f(p) at each p Ç K 
and ask for a centrally symmetric convex subset K' of maximum total mass. 
This leads one to define, for each integrable densi ty/ on K, 

p(K;f) = M(K')/M(K), 

where Kf is a centrally symmetric convex body of maximum mass M{Kf) 
contained in K, and M(K) is the mass of K. (Note that K' need not be 
unique. However, if the density is a concave function, then essentially the 
same argument used in (9), applied to the ordinate set of / , shows that K' 
is unique.) Let 

H(K) =Mn(K;f), 

where the infimum is taken over all integrable densities on K, and define 

M(n) =mi{n(K):KCEn}. 

We shall prove in § 3 that 

(1.1) n(n) > 2-», for all n, 
and 
(1.2) „(2) = J. 

The inequality (1.1) is a result of an obvious generalization of the computa­
tion of "mean symmetry'' used in (9), while (1.2) depends on the following 
theorem, proved in §2. 
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THEOREM 1. Any plane convex body K can be covered by three translates of 
— K. A triangle T cannot be covered by fewer than three translates of —T. 

It is evident that if a convex body K can be covered by r translates of — K 
(so that K is the union of r centrally convex symmetric sets), then ix(K)^r~l. 
This leads us to consider the numbers g(K) and g(n), defined as follows: 

g{K) is the least number r such that K can be covered by r translates of —K. 

g(n) = max{g(20 : K C En}. 

Theorem 1 simply states that g(2) = 3. In (3), numbers h(K) and h(n) are 
defined : 

h(K) is the least number r with the following property: whenever % is any 
family of pairwise intersecting translates of K, then there exist r points such 
that each member of % contains at least one of them. 

h(n) = msx{h(K) :K CEn}. 

It is proved in (3) that h(n) is finite, and that if K C E2 with K = —K, 
then h(K) < 3. Moreover, it is conjectured that A(2) = 3 and h(n) < n + 1 
for all n. The second conjecture is false, as follows from 

THEOREM 2. For all n} h(n) > g(n) > c{n)~\ 

The first inequality is proved in § 2. The second inequality is immediate, 
since the definition of g{n) implies that any convex body K contains a cen­
trally symmetric body of volume at least g(n)~lV(K)f so that c(K) > gin)"1; 
hence, c(n) > gin)"1. Now, it is shown in (2) that if T is a simplex in Eny 

then 

6(,)<e(r)<>/|(f)"(^ î)"v^M. 
Thus, by Theorem 2, h(n) is greater than n + 1 for all sufficiently large n, 
and in fact grows faster than any fixed power of n. The conjecture on h(n) 
is false even for n = 3, since, as shown in § 2, 

(1.3) g(3) > 7. 

Since h(n) is finite, so is g(n) by Theorem 2. We shall give an independent 
proof of the finiteness of g(n) in § 2. 

A convex body is "^-symmetric" if it coincides with its reflection through 
some ^-dimensional plane. For example, in Eni

 l'mirror symmetry" means 
(n — l)-symmetry, and "central symmetry" is O-symmetry. Let K' be a 
A-symmetric convex body of maximum volume contained in K. Let 

c(K;k) = V(K')/V(K), 

and 

c(n,k) = M{c(K;k) :KCEn}. 
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Thus c(n, 0) = c(n). I t is proved by Krakowski (6) that c(2, 1) > 5/8, the 
best result known so far in E2. Nohl (8) proves that any centrally symmetric 
plane convex body K contains a 1-symmetric body of area 2(V2 — 1) V(K). 
In § 4 we prove 

THEOREM 3. 

f , , . maxjfe!, (n — k)\} n , , ^ 

Thus, for example, any convex body in En contains a mirror symmetric 
body of volume > (2n)~1V(K). The result of Macbeath (7), that any convex 
body in En contains a rectangular parallelotope of volume n~nV(K), implies 
that c(n, k) > n~n\ however, Theorem 3 gives a considerably better lower 
bound. 

In § 4 we also give an integral-geometric formula involving the "mean 
^-symmetry" of K; see formula (4.11). 

2. Proofs of the covering theorems. 

Proof of Theorem 1. Fâry (1) proved that any plane convex body K admits 
an inscribed affine regular hexagon H (image of a regular hexagon under an 
affine transformation of E2). K is contained in the interior of the hexagram 5 
formed by extending alternate sides of H. S can be covered by three trans­
lates, Hu i = 1, 2, 3, of H. Then K is covered by the three translates of —K 
circumscribed about the Ht. 

The second part of the theorem follows from the observation that a trans­
late of — T covers two vertices of T only when T and — T have a side in 
common. This completes the proof. 

Remark. The proof shows that if Pi , P2 , Pz are the centres of the sides 
of a triangle formed by connecting three alternate vertices of H, then K is 
the union of the three centrally symmetric sets (2P* — K) C\ K centred at 
Pu i = 1,2,3. 

Proof of Theorem 2. We prove the first inequality, the second being trivial, 
as shown in § 1. Let g be the family of all translates of K by elements of K, 
s o S = {q -\- K : q £ K}. One notices that % is a pairwise intersecting family, 
since 

<zi + g2 e (qi + K)r\ fa + K), 
whenever qu qi G K. Hence there exist r = h(K) points pu . . . , pr such that 
each q + K, q G K, contains at least one of them. In other words for each 
q Ç K, there is at least one of the pt such that pi G q + K, or equivalently, 
q G pi — K. Thus 

KC W \p,-K), 
Ki<r 

and g(K) < r = h(K); hence g(n) < h(n). This completes the proof. 
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Proof of (1.3). We show that a regular tetrahedron T in Ez cannot be 
covered by fewer than seven translates of —T; hence g (3) > g(T) > 7. Assume 
that T has edges of length one and let E denote the 1-skeleton of T (union 
of the six edges of T). For each translate p — T of — T,p£ £3 , let l(p) 
denote the total length of E P\ (p — T). Consideration of a few cases (we 
omit the tedious details) shows that l(p) < 1 for all p € Ez. Moreover, 
l(p) — 1 only if the plane of some face of p — T contains a vertex of T. 

Suppose now that there exist piy i = 1, . . . , 6, such that 

TC^J (Pi- T). 

Let Tt; = pi — Z1, i = 1, . . . , 6. Since the total edge length of T is 6, it 
follows that I (pi) = 1, each Tt has a face on some vertex of J\ and it is not 
possible that TtC\E and Tj C\ E "overlap" (have a segment of non-zero 
length in common) for i ^ j . Each vertex of T must be interior to a face 
of some Tt; otherwise, a neighbourhood in the interior of T near that vertex 
would not be covered. But a vertex cannot be interior to faces of Tu TJf 

i ?é j , since that would yield an "overlap" of 7\ r\ E and Ti C\ E. Thus four 
of the Tu say for i = 1, 2, 3, 4, have a vertex of T interior to one of their 
faces, while T5 and T& do not. But then T5 and T$ do not cover any interior 
points of T, and it is clear that the interior of T is not contained in Wi<î<47Y 
(In fact, V(Tt Pi T) < %V(T), for 1 < i < 4.) This contradiction completes 
the proof. 

Remark. We show how T can be covered by eight translates of — T. In the 
following, assume that the centroid of T is at the origin. 

(i) Let p be the mid-point of an edge of \T and q the mid-point of the 
opposite edge. Let 7\ and T2 be translates of — T with centroids at p and q 
respectively. One observes that \T C T\\J T2. 

(ii) T is the union of a regular octahedron R and four translates 5\, 
1 < i < 4, of §JT .Each S* can be covered by two translates of — T, by (i). 
Hence there are points pu 1 < i < 8, such that 

U 5 , C U 7\, 
K i < 4 l< i<8 

where T^ = pi — T. With a judicious choice of the />*, 7̂  is also covered by 
the Tu so 

T C U TV 
K i < 8 

In fact, if the vertices of T are au . . . , a4, it can be verified that the following 
choice of pt works: 

= iKat + 3at+1), 1 < i < 4 , 
pi \l(2at + ai+1 + ai+2), 5 <i < 8, 

with the convention that a* = dj when i = j (mod 4). 
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This remark, together with the proof of (1.3), implies that g(T) is either 
7 or 8. We conjecture that g(T) = 8. Indeed, it seems that the surface of T 
cannot be covered by fewer than eight translates of — T. 

Proof that g(ri) < °°. Let T be a simplex of maximum volume inscribed in 
K. Then, as proved in (7), at each vertex of T some support plane of K is 
parallel to the opposite face of T. These support planes form a simplex con­
taining K, and in fact this simplex is a translate of — nT (one sees this by 
transforming the entire configuration by an affine transformation of En sending 
T onto a regular simplex). Thus if we can cover — nT by r translates of —T, 
then we can cover K by r translates of — K. Hence gin) < r(n), where r(n) 
is the minimum number of translates of a regular simplex T of En needed 
to cover nT. 

Remark. A similar argument can be used to prove that h(ri) is finite. In­
deed, suppose % = {q + K : q G Q) is a pairwise intersecting family of tran­
slates of K. One easily shows that the condition that % is pairwise intersecting 
is equivalent to 

Q-QCK-K. 

Using the simplex T of the last proof, one sees that — K is contained in a 
translate of nK\ hence K — K is contained in a translate of (n + 1)K. But 
some translate of Q is contained in Q — Q, thence in (n + 1)K. Now (n+l)K 
is inscribed in a translate of — n(n + 1)7", so Q is contained in a translate of 
— n(n + \)T. Now suppose that — n(n + 1)T is covered by r translates of 
— T. Then Q is covered by r translates of —K. That is, there exist r points 
pi, . . . , pr such that 

e c u (pi-K). 
Ki<r 

Then for each q G Q, there exists one of the pi such that q Ç pt — Ky or 
equivalently, pt £ q + K. Hence h(n) < s(n), where s(ri) is the minimum 
number of translates of a regular simplex T in En needed to cover n(n + 1)7". 

3. Proofs of the results on /*(n). 

Proof of (1.1). Let / be an integrable density on K, and for each p £ K, 
let S(p) = (2p - K) C\K, and M(p) = fs(P)f(q)dq, the mass of S(p). As 
shown in (9, p. 146), one has 

js(vhQdp = 2~nV(K), for each q 6 K. 

By Fubini's theorem, 

jKM(p)dp =SK\!s(P)f(q)dq}dp =!Kf(q){jsiPhQdp}dq = 2~"V(K)M(K). 

Thus, for some p, M(p) > 2~nM(K), and it follows that /i(K) > 2~n. Hence 
li(ri) > 2~w, as was to be proved. 
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Proof of (1.2). Let K be a convex body in E2, and l e t / be a density on K. 
By Theorem 1, X is the union of three centrally symmetric convex sets; hence 
one of these necessarily has at least one third the total mass of K. Hence 
fx(K) > i and »(2) > | . 

If r is an equilateral triangle, it is easy to prove that any translate of — T 
covers at most one third of the perimeter of T\ hence any centrally symmetric 
subset of T covers at most one-third of the perimeter of T. Thus by con­
centrating the mass in a uniform strip around the boundary of Ty we can 
obtain, for each e > 0, an / such that ix(T;f) < \ + e. Hence y.(T) < \, 
and JU(2) < \. This completes the proof. 

4. The lower bound on ^-symmetry. Before proceeding to the proof 
of Theorem 3, it will be convenient to introduce the following notation. An 
uw-frame" is an w-tuple of mutually orthogonal unit vectors e\, . . . , en at the 
origin. The subspace spanned by eix, . . . , eir will be denoted by [etl, . . . , eir]. 
We need a preliminary 

LEMMA. Let K be a convex body of volume V in En. Let 1 < k < n — 1. Then 
there is an n-frame ei, . . . , en such that 

where A1 is the k-dimensional volume of the projection of K onto [e\, . . . , £ * ] , 
and A" is the (n — k)-dimensional volume of the projection of K onto [ek+i, . . . , 
en]-

Proof. By a lemma of Macbeath (7, p. 59), there is a unit vector ei such 
that 

6 i P i < nV, 

where b\ is the length of the projection of K onto [ei] and Pi is the (n — 1)-
dimensional volume of the projection Ki of K onto the hyperplane Ei ortho­
gonal to [ei]. Applying Macbeath's lemma to K\ in E\, we next find a unit 
vector e2 ± tfi such that 

b2Pi< (n- l)Pu 

where b2 is the length of the projection of K onto [e2] and P2 is the (n — 2)-
dimensional volume of the projection K2 of K onto the (n — 2)-plane ortho­
gonal to [elf e2\. Continuing in this manner, we find for each r, 2 < r < k, a 
unit vector eT _L ei, . . . , gr_i, such that 

br Pr < (n - r + l)Pr-u 

where br is the length of the projection of K onto [eT] and PT is the (n — r)-
dimensional volume of the projection Kr of K onto the (n — r)-plane ortho­
gonal to [eu . . . , er]. One deduces from the above string of inequalities that 
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(4.1) b1b2...bkPh<-^-^V. 

Let A1 be the ^-dimensional volume of the projection Kr of K onto [eu . . • , ek\. 
Since bi b2 . . . bk is the ^-dimensional volume of a rectangular parallelotope 
circumscribed about Kf in [ely . . . , ek], we have 

(4.2) A' < bx b2 . . . bk. 

The lemma follows from (4.1) and (4.2), with A" = Pk. 

Proof of Theorem 3. Let the convex body K C En have volume V. Let 
ei, . . . , en be the n-frame of co-ordinate vectors 

^0 i y£ j 
et = (on, • • • , ôiw), i = 1, . . . , n; btj = < ' . 

t 1 » * = ./• 
Through each point £ Ç [ei, . . . , £*_*], there is a &-plane £&(£) orthogonal to 
[eu . . . , en_*]. Let K(p) be the reflection of K through Ek(p), and let V(p) 
be the volume of K C\ K(p). K C\ K(p) is a fe-symmetric body contained in 
K. We proceed to find a positive lower bound for its maximum volume. 

Through each point q £ [£*-*+1, . . . , en], there is an orthogonal (n — &)-
plane En_k(q). Let S(p,q) be the (?z — &)-dimensional volume of 

En-_k{q)r\KC\K{p). 

Then 
F(/>) = U" S(P, q)dq, 

where the integration is over the projection K" of K onto [en-k+i, • • • » #»]• If 
K' is the projection of K onto [ei, . . . , en-k], then 

(4.3) J*, F(p)<# = 5* *PU" S(P> <Ùd(L = U" d(lU' S(P> MP-

Now En-k(q) C\K(p) is the reflection of En_k(q) C\ K through the point 
(p, q) = Ek(p) H En-k(q); hence, by the formula of (9, p. 145), 

(4.4) ÎK>S(p,q)dp = [S(q)]>/2«-\ 

where S(q) is the (n — k)-dimensional volume of En^k(q) C\ K. 
Let A' be the (n — k)-dimensional volume of Kf and A" the ^-dimensional 

volume of K". Then, by Schwarz's inequality, 

(4.5) J*. [S(q)]*dq > (l/A")[fK„ S(q)dq}* = W/A". 

Moreover, 
(4.6) i l 'max V(p) >Jr V(p)dp. 

peK' 

Then (4.3), (4.4), (4.5), and (4.6) yield 

(4.7) max V(p) > 2 " - * ^ ' 2 " 
V' 
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In (4.7), A'A" is the product of the projections of K onto any preassigned 
pair of orthogonal &-plane and (n — k)-plane. The lemma implies that for 
some such pair 

(4.8) ^ < B ! 7 ^ _ L _ , . ! . } . 

The theorem follows from (4.7) and (4.8), since 

c(K;k) > F_ 1max V(p). 
peK' 

Remark. From (4.3) and (4.4), we have 

(4.9) fK. V(p)dp = 2«-»JK„ [S(q)]*dq. 

If dEk is the integral-geometric "rotational density" for ^-planes, then 
dËjc = dËn-jc for orthogonal planes. The kinematic densities for ^-planes and 
orthogonal (n — k) -planes are given by 

(4.10) dEk = dpdËk, dEn_k = dqdEn-k, 

where dp is the volume element in an (n — k) -plane orthogonal to Ek, and 
dq is the volume element in a &-plane orthogonal to En-k (Hadwiger 5, p. 227). 
For each &-plane Ek, let K(Ek) be the reflection of K across Ek and V(Ek) 
the volume of K C\K(Ek). Then it follows from (4.9) and (4.10) that 

(4.11) jV(Ek)dEk = 2«~n j[V(En.k r\ K)]*dEn-k, 

k = 1,2, . . . t n — 1, where the integrations are over all ^-planes and (n — k)-
planes respectively. (In (4.11), V(En-kr\K) is the (n — k)-dimensional 
volume of En_k C\ K.) 
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