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Abstract

We consider Markov processes that alternate continuous motions and jumps in a general
locally compact Polish space. Starting from a mechanistic construction, a first contri-
bution of this article is to provide conditions on the dynamics so that the associated
transition kernel forms a Feller semigroup, and to deduce the corresponding infinites-
imal generator. As a second contribution, we investigate the ergodic properties in the
special case where the jumps consist of births and deaths, a situation observed in several
applications including epidemiology, ecology, and microbiology. Based on a coupling
argument, we obtain conditions for convergence to a stationary measure with a geomet-
ric rate of convergence. Throughout the article, we illustrate our results using general
examples of systems of interacting particles in Rd with births and deaths. We show that
in some cases the stationary measure can be made explicit and corresponds to a Gibbs
measure on a compact subset of Rd . Our examples include in particular Gibbs measures
associated to repulsive Lennard-Jones potentials and to Riesz potentials.
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1. Introduction

In the spirit of jump-diffusion models, we consider Markov stochastic processes that alter-
nate continuous motions and jumps in some locally compact Polish space E. We call these
general processes jump–move processes. In this paper, the state space E is typically not a finite-
dimensional Euclidean space, in contrast to standard jump-diffusion models. Many examples
of such dynamics have been considered in the literature, including piecewise deterministic pro-
cesses [6], branching particle systems [1, 27], spatially structured population models [2], and
some variations of these [4, 15], to cite a few. A particular case that will be of special interest to
us is when E = ∪n≥0En for some disjoint spaces En, E0 consisting of a single element, and the
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jumps can only occur from En to En+1 (like a birth) or from En to En−1 (like a death). We call
the latter dynamics a birth–death–move process [14, 22]. We will provide several illustrations
in the particular case of interacting particles in Rd, with births and deaths. These processes are
observed in a wide range of applications, including microbiology [14], epidemiology [17], and
ecology [21, 24]. The main motivation for this contribution is to provide some foundations for
the statistical inference of such processes, especially by studying their ergodic properties.

In Section 2 we start from a mechanistic general definition of jump–move processes, in the
sense that we explicitly construct the process iteratively over time, which equivalently provides
a simulation algorithm. This defines a Markov process (Xt)t≥0 whose jump intensity function
reads α(Xt), for some continuous function α, and that between its jumps follows a continuous
Markov motion on E. We then derive, in Section 3, conditions ensuring that the transition
kernel of (Xt)t≥0 forms a Feller semigroup on Cb(E) or on C0(E), where Cb(E) denotes the
set of continuous and bounded functions on E and C0(E) is the set of continuous functions
that vanish at infinity. We obtain the natural result that if α is bounded, then a jump–move
process is Feller (on Cb(E) or on C0(E)) whenever the transition kernel of the jumps and the
transition kernel of the inter-jump motion (i.e. the move part) are. Similarly, the infinitesimal
generator is just the sum of the generator of the jumps and the generator of the move, the
domain corresponding under mild conditions to the domain of the generator of the move.

In Section 4, we focus on birth–death–move processes. We obtain simple conditions on the
birth and death intensity functions ensuring their ergodicity with a geometric rate of conver-
gence, in line with standard results for simple birth–death processes on N [13] and for spatial
birth–death processes (the case without move) established by [18] and [22]. This study con-
stitutes our main contribution for statistical applications. It generalizes the results obtained in
[14], where ergodicity was established under the assumption that the number of individuals n
in the population is bounded. Following [22], the main ingredient to establish our more general
result is a coupling with a simple birth–death process on N, which provides conditions imply-
ing that the single element of E0 is an ergodic state for the process. However, the inclusion of
inter-jump motions makes this coupling more delicate to justify than for the pure spatial birth–
death processes of [22]. We manage to realize the coupling under the assumption that the birth–
death–move process is Feller on C0(E), which necessitates the properties discussed above.

We emphasize that the above results are very general, in the sense that we specify neither
E, nor the exact jump transition kernel, nor the form of the inter-jump continuous Markov
motion. Our only real working assumption is the boundedness of the intensity function α.
Notably, unlike [14], we do not assume that α is lower-bounded from zero. However, we
provide many illustrations in the case where (Xt)t≥0 represents the dynamics of a system of
particles in Rd, introduced in Section 2.4. In this situation, we consider continuous inter-jump
motions driven by deterministic growth-interacting dynamics, as already exploited in ecology
[10, 24], or driven by interacting systems of stochastic differential equations (SDEs), in partic-
ular overdamped Langevin dynamics, the Feller properties of which translate straightforwardly
to the move part of (Xt)t≥0. As to the jumps, they are continuous Feller in general, but not nec-
essarily Feller on C0(E). The picture becomes more intelligible, however, when they consist
only of births and deaths. We present in Section 3.3 general birth transition kernels that imply
the Feller properties under mild assumptions. On the other hand, a simple uniform death kernel
cannot be Feller on C0(E) in this setting unless the particles are restricted to a compact subset
of Rd. We finally show in Section 5 that for a system of interacting particles in Rd with births
and deaths, we may obtain an explicit Gibbs distribution for the invariant probability measure.
This happens when the inter-jump motion is driven by a Langevin dynamics based on some
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potential function V , and the jump characteristics depend in a suitable way on the same poten-
tial V . Our assumptions on V include in particular Riesz potentials, repulsive Lennard-Jones
potentials, soft-core potentials, and (regularized) Strauss potentials, which are standard models
used in spatial statistics and statistical mechanics.

We have gathered in the appendix the proofs of the intermediate results used for the cou-
pling described in Section 4. Other proofs, along with additional results, are postponed to
supplementary material.

2. Jump–move processes

2.1. Iterative construction

Let E be a Polish space equipped with the Borel σ -algebra E and a distance d. Let (�,F)
be a measurable space and (Px)x∈E a family of probability measures on (�,F). In order to
define a jump–move process (Xt)t≥0 on E, we need three ingredients:

(i) An intensity function α : E →R+ that governs the inter-jump waiting times.

(ii) A transition kernel K for the jumps, defined on E × E .

(iii) A continuous homogeneous Markov process ((Yt)t≥0, (Px)x∈E) on E, the distribution of
which will drive the inter-jump motion of (Xt)t≥0.

Throughout this paper, we will work under the assumption that α : E →R+ is continuous
and bounded by α∗ > 0, i.e., for all x ∈ E,

0 ≤ α(x) ≤ α∗. (2.1)

We denote by (QY
t )t≥0 the transition kernel of (Yt)t≥0, given by

QY
t (x, A) = Px(Yt ∈ A), x ∈ E, A ∈ E .

The following iterative construction provides clear intuition for the dynamics of the pro-
cess (Xt)t≥0. It follows closely the presentation in the supplementary material of [14], where
an algorithm of simulation on a finite time interval is also derived. However, since α is not
lower-bounded from zero, unlike in the previous reference, it is possible that eventually there
are no more jumps, a situation taken into account by Equation (2.2) below. The algorithm of
simulation adapts straightforwardly to this case.

Let
(
Y (j)

t
)

t≥0, j ≥ 0, be a sequence of processes on E identically distributed as (Yt)t≥0. Set
T0 = 0 and let x0 ∈ E. Then (Xt)t≥0 can be constructed as follows. For j ≥ 0, iteratively do the
following:

(i) Given XTj = xj, generate
(
Y (j)

t
)

t≥0 conditional on Y (j)
0 = xj according to the kernel

(QY
t (xj, .))t≥0.

(ii) Given XTj = xj and
(
Y (j)

t
)

t≥0, generate τj+1 according to the following distribution on
R+ ∪ {+∞}:⎧⎨

⎩
P(τj+1 ≤ t) = 1 − exp

(
− ∫ t

0 α
(

Y (j)
u

)
du
)

for all t ∈R+,

P(τj+1 = +∞) = exp
(
− ∫∞

0 α
(

Y (j)
u

)
du
)

.
(2.2)
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(iii) Given XTj = xj,
(
Y (j)

t
)

t≥0 and τj+1,

if τj+1 = ∞ then set Xt = Y (j)
t−Tj

for all t ≥ Tj (and stop the iterative construction),

else generate xj+1 according to the transition kernel K(Y (j)
τj+1 , .).

(iv) Set Tj+1 = Tj + τj+1, Xt = Y (j)
t−Tj

for t ∈ [Tj, Tj+1), and XTj+1 = xj+1.

We denote by (FY
t )t≥0 the natural filtration of (Yt)t≥0, i.e. FY

t = σ (Yu, u ≤ t), and by (Ft)t>0
the natural filtration of (Xt)t≥0. We make these filtrations complete (see [3, Section 20.1])
and abusively use the same notation. The jump–move process ((Xt)t≥0, (Px)x∈E) constructed
above is a homogeneous Markov process with respect to (Ft)t>0. The trajectories of (Xt)t≥0
are continuous except at the jump times (Tj)j≥1, where they are right-continuous. The specific
form (2.2) implies that the intensity of jumps is α(Xt). Denote by Nt =∑

j≥0 1Tj≤t the number
of jumps before t ≥ 0. Under the assumption (2.1), for any n ≥ 0 and t ≥ 0 we have

P(Nt > n) ≤ P(N∗
t > n), (2.3)

where N∗
t follows a Poisson distribution with rate α∗t. This in particular implies that (Nt)t≥0

is a non-explosive counting process. All of the aforementioned properties of (Xt)t≥0 are either
immediate or verified in [14].

Note that the above construction only implies the weak Markov property of (Xt)t≥0 in gen-
eral, at least because the process (Yt)t≥0 is only assumed to be a (weak) Markov process. A
more abstract construction obtained by ‘piecing out’ strong Markov processes is introduced in
[11], leading to a strong Markov jump–move process. The strong Markov property can also be
obtained in our case by strengthening the assumptions; see Section 3.1.

The transition kernel of (Xt)t≥0 will be denoted, for any t ≥ 0, x ∈ E, and A ∈ E , by

Qt(x, A) = P(Xt ∈ A|X0 = x) = Px(Xt ∈ A).

Also, for f ∈ Mb(E), where Mb(E) is the set of real-valued bounded and measurable functions
on E, we will write Qtf (x) =Ex[f (Xt)] = ∫

E Qt(x, dy)f (y). Similarly we will write QY
t f (x) =

EY
x (f (Yt)).

2.2. Special case of the birth–death–move process

A birth–death–move process is the particular case of a jump–move process in which E
takes the form E =⋃∞

n=0 En, with (En)n≥0 a sequence of disjoint Polish spaces, and in which
the jumps are only births and deaths. We assume that each En is equipped with the Borel σ -
algebra En, so that E is associated with the σ -field E = σ

(⋃∞
n=0 En

)
. We further assume that E0

consists of a single element, denoted by Ø. In this setting, the Markov process (Yt)t≥0 driving
the motions of (Xt)t≥0 is supposed to satisfy

Px((Yt)t≥0 ⊂ En) = 1x∈En , ∀x ∈ E, ∀n ≥ 0.

We introduce a birth intensity function β : E →R+ and a death intensity function δ : E →
R+, both assumed to be continuous on E and satisfying α= β + δ. We prevent a death in E0
by assuming that δ(Ø) = 0. The probability transition kernel K for the jumps then reads, for
any x ∈ E and A ∈ E ,

K(x, A) = β(x)

α(x)
Kβ (x, A) + δ(x)

α(x)
Kδ(x, A), (2.4)
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where Kβ : E × E → [0, 1] is a probability transition kernel for a birth and Kδ : E × E → [0, 1]
is a probability transition kernel for a death. They satisfy, for x ∈ E and n ≥ 0,

Kβ (x, En+1) = 1x∈En and Kδ(x, En) = 1x∈En+1 .

Notice that a simple birth–death process is the particular case in which E =N, En = {n} and
the intensity functions β and δ are sequences. More general examples of the inter-jump process
Y , of the intensity functions β and δ, and of the kernels Kβ and Kδ are presented in Sections 2.4
and 5; see also [14].

For later purposes, when E =⋃∞
n=0 En as in the present section, we define the function

n(.) : E →N by n(x) = k when x ∈ Ek, so that x ∈ En(x) is always satisfied.

2.3. Kolmogorov backward equation

The goal of this section is to present the Kolmogorov backward equation for the transition
kernel of the general jump–move process (Xt)t≥0 of Section 2.1, providing a more probabilistic
viewpoint on its dynamics, and to show that the solution exists and is unique. To obtain these
results we use methods similar to those used in [9] for pure jump processes; see also [22]. The
key assumption is the boundedness (2.1) of the intensity α, which prevents the explosion of
the process. The proofs are postponed to Section S-1 of the supplementary material.

Theorem 1. For all x ∈ E and all A ∈ E , the function t �→ Qt(x, A), for t> 0, satisfies the
following Kolmogorov backward equation:

Qt(x, A) =EY
x

[
1Yt∈A e− ∫ t

0 α(Yu) du
]

+
∫ t

0

∫
E

Qt−s(y, A)EY
x

[
K (Ys, dy) α(Ys)e

− ∫ s
0 α(Yu) du

]
ds. (2.5)

In the case of the birth–death–move process of Section 2.2, the above equation reads, for
x ∈ En,

Qt(x, A) =EY
x

[
1Yt∈A e− ∫ t

0 α(Yu) du
]

+
∫ t

0

∫
En+1

Qt−s(y, A) EY
x

[
β (Ys)Kβ (Ys, dy) e− ∫ s

0 α(Yu) du
]

ds

+
∫ t

0

∫
En−1

Qt−s(y, A) EY
x

[
δ (Ys)Kδ (Ys, dy) e− ∫ s

0 α(Yu) du
]

ds. (2.6)

To show the existence of a unique solution to (2.5), let Qt,p(x, A) := Px(Xt ∈ A, Tp > t) be
the transition probability from state x to A in time t with less than p jumps. Notice that we
can define Qt,∞ = lim

p→∞ Qt,p, because Qt,p ≤ Qt,p+1 ≤ 1. In the following proposition we use a

minimality argument as in [9] to prove that Qt,∞ is the unique solution to (2.5).

Proposition 1. We have that Qt,∞ is the unique sub-stochastic solution of (2.5), i.e. it is
the unique solution satisfying Qt(x, E) ≤ 1 for all x ∈ E. Moreover, Qt,∞ is stochastic, i.e.
Qt,∞(x, E) = 1 for all x ∈ E.

To conclude this section, we present an interpretation of Qt,∞ for the birth–death–move pro-
cess of Section 2.2, which is much in the spirit of [22]. We write Qt,(p)(x, A) for the transition
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probability from x to A in time t without having entered
⋃∞

k=p+1 Ek; that is,

Qt,(p)(x, A) = Px (Xt ∈ A, ∀s ∈ [0, t], n(Xs) ≤ p) .

We can also define Qt,(∞)(x, A) = lim
p→∞ Qt,(p)(x, A) ≤ 1 by monotonicity.

Proposition 2. For all x ∈ E and all A ∈ E , Qt,(∞)(x, A) = Qt,∞(x, A).

2.4. Systems of interacting particles in Rd

In this section, we focus on the dynamics of a system of interacting particles in Rd. We
provide general examples of birth kernels, death kernels, and inter-jump motions in this setting,
which in our opinion constitute realistic models for applications and are actually already used
in some domains. Some of them, moreover, lead to an explicit Gibbs stationary measure of the
dynamics, as we will show in Section 5. These running examples will serve in the rest of the
paper to illustrate the theoretical results and make explicit our assumptions.

Let W ⊂Rd be a closed set where the particles live, equipped with a σ -field B. A collection
of n particles in W is a point configuration for which the ordering does not matter. For this
reason, for n ≥ 1, we will identify two elements (x1, . . . , xn) and (y1, . . . , yn) of Wn if there
exists a permutation σ of {1, . . . , n} such that xi = yσ (i) for any 1 ≤ i ≤ n. Following [15], [22],
and others, we thus define En as the space obtained by this identification. Specifically, denot-
ing by πn : (x1, . . . , xn) ∈ Wn �→ {x1, . . . , xn} the associated projection, for n ≥ 1 the space En

corresponds to En = πn(Wn) equipped with the σ -field En = πn(B⊗n), while E0 = {Ø} con-
sists of just the empty configuration. The general state space of a system of particles is then
E = ∪n≥0En equipped with the σ -field E = σ

(∪n≥0En
)

. This formalism allows us to go back
and forth quite straightforwardly between the space En and the space Wn, the latter being in
particular more usual for defining the inter-jump motion of n particles, as detailed below. Note
that an alternative formalism consists in viewing a configuration of particles as a finite point
measure in W, in which case E becomes the set of finite point measures in W; see for instance
[12]. We choose in this paper to adopt the former point of view. We denote by ‖.‖ the Euclidean
norm on Rd. If x = {x1, . . . , xn} ∈ En and ξ ∈ W, then x ∪ ξ stands for {x1, . . . , xn, ξ} ∈ En+1,
and if 1 ≤ i ≤ n, we write x \ xi for {x1, . . . , xi−1, xi+1, . . . , xn} ∈ En−1.

As long as we are concerned with continuous inter-jump motions, we need to equip E with
a distance. Following [26], we consider the distance d1 defined for x = {x1, . . . , xn(x)} and
y = {y1, . . . , yn(y)} in E such that n(x) ≤ n(y) by

d1(x, y) = 1

n(y)

⎛
⎝ min
σ∈Sn(y)

n(x)∑
i=1

(‖xi − yσ (i)‖ ∧ 1) + (n(y) − n(x))

⎞
⎠ , (2.7)

with d1(x,Ø) = 1 and where Sn denotes the set of permutations of {1, . . . , n}. The paper [26]
and Section S-4 in the supplementary material detail some topological properties of (E, d1). For
the purposes of this section, let us quote in particular that n(.) : (E, d1) → (N, |.|) is continuous
and that πn is continuous. Note that distances other than d1 could also be chosen, provided
these two last properties (at least) are preserved. Incidentally, the Hausdorff distance, which is
a common choice of distance between random sets, does not satisfy these properties (see the
supplementary material) and is not appropriate in our setting.

We now show how we can easily construct a continuous Markov process (Yt)t≥0 on E
from continuous Markov processes on Wn for any n ≥ 1. We focus on the case where, for
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any x ∈ E and n ≥ 0, Px((Yt)t≥0 ⊂ En) = 1x∈En , as we required for birth–death–move processes
in Section 2.2. It is then enough to define a process Y |n on each En. To do so, consider a
continuous Markov process (Z|n

t )t≥0 on Wn whose distribution is permutation-equivariant with

respect to its initial value Z |n
0 . This means that for any permutation σ ∈ Sn, the law of Z |n

t =
(Z |n

t,1, . . . , Z |n
t,n) given Z |n

0 = (zσ (1), . . . , zσ (n)) is the same as the law of (Z |n
t,σ (1), . . . , Z |n

t,σ (n))

given Z |n
0 = (z1, . . . , zn). Let x = {x1, . . . , xn} ∈ En and take the process Z |n

t with initial state

Z |n
0 = (x1, . . . , xn). Note that, from the previous permutation-equivariance property, the choice

of ordering for the coordinates of this initial state does not matter, as will become clear below.
We finally define the process Y |n

t on En starting from x as

Y |n
t = πn

(
Z |n

t

)
=
{

Z |n
t,1, . . . , Z |n

t,n

}
. (2.8)

Note that the continuity of t → Y |n
t (with respect to d1) follows from the continuity of t → Z |n

t
and the continuity of πn. The continuity of t → Yt is then implied by the continuity of n(.).

With this construction, the transition kernel of Y reads, for any f ∈ Mb(E),

QY
t f (x) =

∑
n≥0

E
[
f (Y |n

t ) |Y |n
0 = x

]
1x∈En

=
∑
n≥0

E
(

f (πn(Z |n
t )) | Z |n

0 = (x1, . . . , xn)
)

1x∈En ,

so that, denoting by QZ |n
t the transition kernel of Z |n in Wn, we have

QY
t f (x) =

∑
n≥0

QZ |n
t (f ◦ πn)((x1, . . . , xn))1x∈En . (2.9)

Note that if we had chosen another ordering for the initial state, i.e. Z |n
0 = (xσ (1), . . . , xσ (n))

for some σ ∈ Sn, then the transition kernel of Y would have remained the same, since by
permutation-equivariance

E
(

f (πn(Z |n
t )) |Z |n

0 = (xσ (1), . . . , xσ (n))
)

=E
(

f (πn(Z |n
t,σ (1), . . . , Z |n

t,σ (n))) | Z |n
0 = (x1, . . . , xn)

)
,

(2.10)

which is E
(

f (πn(Z |n
t )) | Z |n

0 = (x1, . . . , xn)
)

.

We are now in a position to present general examples of jump transition kernels and inter-
jump motions for a system of particles in W. The first example introduces a death transition
kernel where an existing particle dies with a probability that may depend on the distance to
the other particles. The next two examples focus on birth transition kernels, driven either by a
mixture of densities around each particle or by a Gibbs potential. The last two examples apply
the above construction of (Yt)t≥0 on E to introduce inter-jump Langevin diffusions and growth
interaction processes.

Example 1 (death kernel): Let g : R+ →R∗+ be a continuous function. For x = {x1, . . . , xn} ∈
En, set w(x1, x) = 1 if n = 1, and if n ≥ 2, for any i ∈ {1, . . . , n} set

w(xi, x) = 1

z(x)

∑
k �=i

g (‖xk − xi‖) ,
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with z(x) =∑n
i=1

∑
k �=i g(‖xk − xi‖). A general example of a death transition kernel is

Kδ(x, A) =
n(x)∑
i=1

w(xi, x)1{x \ xi∈A}, x ∈ E, A ∈ E .

The probability w(xi, x) that xi disappears then depends on the distance between xi and the other
particles in x through g. Uniform deaths correspond to the particular case w(xi, x) = 1/n(x).

Example 2 (birth kernel as a mixture): Let ϕ be a density function on W, and let φ1 : W →
R and φ2 : R+ →R be two continuous functions. For x = {x1, . . . , xn(x)} ∈ E \ E0 we set

v(xi, x) = exp
(
φ1(xi) +∑

k �=i φ2 (‖xk − xi‖)
)

, and we consider the birth kernel defined for

�⊂ W and x ∈ E \ E0 by Kβ (Ø, �) = ∫
�
ϕ(ξ )dξ and

Kβ (x, �∪ x) = 1

n(x)

n(x)∑
i=1

1

z(xi, x)

∫
�

ϕ

(
ξ − xi

v(xi, x)

)
dξ,

where �∪ x = {{u} ∪ x, u ∈�} and z(xi, x) = ∫
W ϕ ((ξ − xi)/v(xi, x)) dξ . Note that z(xi, x) =

v(xi, x)d if W =Rd. It is easily checked that Kβ (x, En+1) = Kβ (x,W ∪ x) = 1 for x ∈ En, and in
particular this kernel is a genuine birth kernel in the sense that the transition from En to En+1 is
due only to the addition of a new particle, the existing ones remaining unchanged. Moreover,
the new particle is generated as a mixture of distributions driven by ϕ, each of them centred at
the existing particles. The term v(xi, x) quantifies the dispersion of births around the particle xi,
and it depends on the distance between xi and the other particles through φ2. A natural example
is a mixture of isotropic Gaussian distributions on Rd (restricted to W), respectively centred at
xi with standard deviation v(xi, x).

Example 3 (birth kernel based on a Gibbs potential): We introduce a measurable function
V : E →R, called a potential, satisfying z(x) := ∫

W exp(−(V(x ∪ ξ ) − V(x))) dξ <∞ for all
x ∈ E, and we consider the birth kernel defined for �⊂ W and x ∈ E by

Kβ (x, �∪ x) = 1

z(x)

∫
�

e−(V(x∪ξ )−V(x)) dξ .

Note that Kβ (x,W ∪ x) = 1 for x ∈ E. With this kernel, given a configuration x, a new particle
is more likely to appear in the vicinity of points ξ ∈ W that make V(x ∪ ξ ) − V(x) minimal.
This kind of kernel Kβ was introduced in [22] for spatial birth–death processes, the case
of a birth–death–move process with no move. Their importance is due to the fact that the
invariant measure of a spatial birth–death process associated to Kβ , with uniform deaths and
specific birth and death intensities, has been explicitly obtained in [22] and corresponds to
the Gibbs measure with potential V . This result is the basis of perfect simulation of spatial
Gibbs point process models; see [19]. We will similarly show in Section 5 that the same Gibbs
measure is also invariant for a birth–death–move process associated to the same characteristics
for the jumps and a well chosen inter-jump move process (Yt)t≥0 constructed as in the next
example.

Example 4 (Langevin diffusions as inter-jump motions): Let g : Rd →Rd be a globally
Lipschitz continuous function, β > 0, and {Bt,i}1≤i≤n, n ≥ 1, a collection of n independent
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Brownian motions on Rd. We start from the following system of SDEs, usually called
overdamped Langevin equations:

dZ |n
t,i = −

∑
j �=i

g(Z |n
t,i − Z |n

t,j ) dt +
√

2β−1 dBt,i, 1 ≤ i ≤ n.

For z = (z1, . . . , zn) ∈ (Rd)n, denoting by 
n : (Rd)n → (Rd)n the function defined by 
n(z) =
(
n,1(z), . . . , 
n,n(z)) with 
n,i(z) =∑

j �=i g(zi − zj), this system of SDEs reads

dZ |n
t = −
n(Z |n

t ) dt +
√

2β−1 dB |n
t , (2.11)

where B |n
t = (Bt,1, . . . , Bt,n). Since 
n is a permutation-equivariant function, that is, for any

σ ∈ Sn,

n(zσ (1), . . . , zσ (n)) = (
n,σ (1)(z), . . . , 
n,σ (n)(z)),

and since B |n
t is exchangeable, we can verify by writing (2.11) in integral form that the law

of Z|n
t is permutation-equivariant with respect to its initial state. So when W =Rd, we can

define each inter-jump process Y |n in En from Z |n as in (2.8), yielding (Yt)t≥0 on E. The
same construction can be generalized if W �Rd by considering a Langevin equation with
reflecting boundary conditions [8]. This inter-jump dynamics, associated with the birth kernel
of Example 3 and a drift function g related to the potential V , converges to a Gibbs measure on
W with potential V (see Section 5).

Example 5 (growth interaction processes): This example is motivated by models used in ecol-
ogy [5, 10, 23, 24]. Each particle consists of a plant located in S ⊂Rd and associated with
a positive mark, which typically represents the size of the plant, so that W = S ×R+ here.
Births and deaths of plants occur according to a spatial birth-and-death process, while a deter-
ministic growth applies to their mark. Specifically, when a plant appears, its mark is set to
zero or generated according to a uniform distribution on [0, ε] for some ε > 0 [24]. Then the
mark increases over time, in interaction with the other marks. In order to formally define this
inter-jump dynamics, let us denote by (Ui(t),mi(t))t≥0, for i = 1, . . . , n, the components of the
process (Z|n

t )t≥0, where Ui(t) ∈ S and mi(t)> 0, so that Z|n
t ∈ Wn. We introduce the system

dZ |n
t

dt
=
(

(0, F1,n(Z |n
t )), . . . , (0, Fn,n(Z |n

t ))
)
, (2.12)

where, for all 1 ≤ i ≤ n, Fi,n is a function from Wn into R+. We thus have Ui(t) = Ui(0) for
all i, and the evolution of the marks (m1(t), . . . ,mn(t)) is driven by a deterministic differential
equation depending on (U1(0), . . . ,Un(0)) as expected. To define Y |n by (2.8), we finally
assume permutation-equivariance, namely that Fσ (i),n(z1, . . . , zn) = Fi,n(zσ (1), . . . , zσ (n)) for
all i and all σ ∈ Sn, which is satisfied in all of the examples in the aforementioned references.

3. Feller properties and infinitesimal generator

3.1. Feller properties

We assume henceforth that E is a locally compact Polish space. Let Cb(E) be the set of
continuous and bounded functions on E, and let C0(E) be the set of continuous functions that
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vanish at infinity in the sense that for all ε > 0, there exists a compact set B ∈ E such that
x /∈ B ⇒ |f (x)|< ε.

Following [7] and [20], we say that the jump–move process (Xt)t≥0 on E with transition
kernel Qt is Feller continuous (or Feller on Cb(E)) if QtCb(E) ⊂ Cb(E), and we say that it is
Feller (or Feller on C0(E)) if both limt→0 ‖Qtf − f ‖∞ = 0 for any f ∈ C0(E) (strong continuity)
and QtC0(E) ⊂ C0(E).

The following proposition, proved in Section S-2 of the supplementary material, provides
information on the continuity property of Qt when t goes to 0.

Proposition 3. We have the following:

(i) For any f ∈ Cb(E) and any x ∈ E, lim
t→0

Qtf (x) = f (x).

(ii) Let f ∈ Mb(E). Then lim
t→0

‖Qtf − f ‖∞ = 0 if and only if lim
t→0

‖QY
t f − f ‖∞ = 0.

By the second item above, the strong continuity of Qt is implied by the strong continuity of
QY

t , which in turn holds automatically if QY
t C0(E) ⊂ C0(E) by continuity of Yt. We thus obtain

the following natural conditions for the jump–move process on E to be Feller continuous or
Feller. The proof is given in Section S-2 of the supplementary material.

Theorem 2. Let (Xt)t≥0 be a general jump–move process on E.

(i) If QY
t Cb(E) ⊂ Cb(E) and K Cb(E) ⊂ Cb(E), then (Xt)t≥0 is a Feller continuous process.

(ii) If QY
t C0(E) ⊂ C0(E) and K C0(E) ⊂ C0(E), then (Xt)t≥0 is a Feller process.

We deduce in particular from this theorem that if QY
t Cb(E) ⊂ Cb(E) and K Cb(E) ⊂ Cb(E)

(or alternatively with C0(E) instead of Cb(E)), then (Xt)t≥0 is a strong Markov process for the
filtration (Ft)t≥0, a property implied by the Feller continuous and Feller properties; see [3].
The Feller property will also be useful to us in Section 4 to construct a coupling between a
birth–death–move process and a simple birth–death process on N, with a view to establishing
ergodic properties.

In Section 3.3 we investigate the conditions of Theorem 2 for the examples of dynamics
of systems of interacting particles in Rd introduced in Section 2.4. For these examples, the
conditions turn out to be generally satisfied under mild assumptions.

3.2. Infinitesimal generator

In this section we compute the infinitesimal generator associated to the jump–move process
(Xt)t≥0. We first introduce some notation and recall the definition of the generator; see for
instance [7]. In connection with this, recall that the family (Qt)t≥0 of transition operators is
a semigroup on (Mb(E), ‖.‖∞). If moreover the process (Xt)t≥0 is Feller continuous (resp.
Feller), then (Qt)t≥0 is a semigroup on (Cb(E), ‖.‖∞) (resp. (C0(E), ‖.‖∞)).

Let L ⊂ Mb(E) and (Ut)t≥0 be a semigroup on (L, ‖.‖∞). We set

L0 =
{

f ∈ L : lim
t→0

‖Utf − f ‖∞ = 0

}
and DA =

{
f ∈ L : lim

t→0

Utf − f

t
exists in (L, ‖.‖∞)

}
.

For f ∈DA, define Af = limt↘0 (Utf − f )/t. The operator A : DA → L is called the infinites-
imal generator associated to the semigroup (Ut)t≥0 and DA is called the domain of the
generator A.
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In the following we denote by L0 (resp. LY
0 ) and A (resp. AY ) the set and the infinitesimal

operator associated to (Qt)t≥0 (resp. (QY
t )t≥0). Note that L0 = LY

0 by Proposition 3.

Theorem 3. Let (Xt)t≥0 be a general jump–move process on a Polish space E. Suppose that if
f ∈ LY

0 , then α× f ∈ LY
0 and Kf ∈ LY

0 . Then DA =DAY , and for any f ∈DAY ,

Af =AY f + α× Kf − α× f .

This result, proved in Section S-3 of the supplementary material, shows that the generator
A of the jump–move process (Xt)t≥0 is simply the sum of the generator of the move AY and
the generator of the jump, specifically of a pure jump Markov process with intensity α and
transition kernel K, i.e. α× (K − Id) (see [9]).

Note that for a pure jump process, QY
t = Id for any t ≥ 0, LY

0 =DAY = Mb(E), and AY ≡ 0,
so that all assumptions of Theorem 3 are trivially true in this setting. More generally, consider
a jump–move process with a Feller inter-jump process, i.e. QY

t C0(E) ⊂ C0(E), and a Feller
jump transition, i.e. K C0(E) ⊂ C0(E), so that (Xt)t≥0 is Feller by Theorem 2. Then we can take
LY

0 = C0(E), and again the assumptions of Theorem 3 are satisfied since α is bounded.

3.3. Application to systems of interacting particles in Rd

We go back to the setting of Section 2.4, namely, systems of interacting particles in W ⊂Rd,
in order to investigate whether the examples of dynamics presented therein are (continuous)
Feller or not. To do so and be able to check the conditions of Theorem 2, we need to first
clarify what the sets Cb(E) and C0(E) are in this framework. Remember that in this setting
E = ∪n≥0En, where En = πn(Wn) corresponds to the set of unordered n-tuples of W, and we
have equipped E with the distance d1 defined by (2.7). As a first result, it can be verified
that (E, d1) is a locally compact Polish space; see [26, Proposition 2.2] and Section S-4 in
the supplementary material. To characterize the elements of Cb(E), we shall use the following
proposition, proved in the supplementary material.

Proposition 4. Let x ∈ E and let (x(p))p≥1 be a sequence converging to x, i.e. d1(x(p), x) → 0
as p → ∞. Then there exists p0 ≥ 1 such that for all p ≥ p0, n(x(p)) = n(x) and, when n(x) ≥ 1,
there exists a sequence (σp)p≥p0 of Sn(x) such that for any i ∈ {1, . . . , n(x)},

‖x(p)
σp(i) − xi‖ −→

p→∞ 0. (3.1)

To deal with C0(E), we provide a characterization of the compact sets of each En, for n ≥ 1,
and an important property of the compact sets of E.

Proposition 5. Suppose that W is a closed set of Rd.

(i) Let n ≥ 1 and let A be a closed subset of (En, d1). Then A is compact if and only if the
following property holds:

∀ w ∈ W, ∃ R ≥ 0, s.t. ∀ x = {x1, ..., xn} ∈ A, max
1≤k≤n

{‖xk − w‖} ≤ R.

(ii) Let A be a compact set of E. Then there exists n0 ≥ 0 such that A ⊂⋃n0
n=0 En.
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The previous two propositions are the main tools we need to investigate the continuous
Feller and Feller properties of the jump kernel K of a jump–move process. Concerning the
inter-jump move process (Yt)t≥0, recall that we can easily define it on each En from a con-
tinuous process (Z|n

t )t≥0 on Wn through the projection (2.8). In general, properties on E
are not simply derived from properties on En; for instance, we deduce from Proposition 5
that

∑
n fn1En for fn ∈ C0(En) is not necessarily in C0(E) (take W compact and fn(x) = n(x)).

Nonetheless, the formula (2.9) implies that the Feller properties of (Yt)t≥0 on (E, d1) are
inherited from those of (Z|n

t )t≥0 on Wn.

Proposition 6. Let (Yt)t≥0 be defined on E by (2.8). If (Z |n
t )t≥0 is a Feller continuous (resp.

Feller) process on Wn for every n ≥ 1, then (Yt)t≥0 is a Feller continuous (resp. Feller) process
on E.

By this result, standard inter-jump motions are Feller continuous and Feller, as is the
case under mild assumptions for our examples 4 and 5, detailed below. Concerning the
jump kernels, the global picture is as follows. They are generally Feller continuous, but not
necessarily Feller even if the underlying space W is compact, as shown in the following exam-
ple. However, if we restrict ourselves to birth kernels, then they are generally Feller (see
Examples 2 and 3 below). On the other hand, if we restrict ourselves to death kernels, then
they are Feller if W is compact, but not otherwise; see Example 1 below. Notice that a birth-
and-death jump kernel as in (2.4) is (continuous) Feller when the birth kernel Kβ and the
death kernel Kδ are. So it is generally continuous Feller, and if W is compact, it is generally
Feller.

Let us make these informal claims more precise through some examples. The first example
presents a jump kernel on a set W, possibly compact, that is continuous Feller but not Feller.
The other ones correspond to the examples introduced in Section 2.4.

Example Consider the jump kernel K defined by Kf (x) =∑n(x)
i=1 f ({xi})/n(x) for f ∈ Mb(E)

and x = {x1, . . . , xn(x)} ∈ E, so that K(x, E1) = 1 for any x ∈ E. Let x(p) be a sequence con-
verging to x, from which we define p0 and (σp)p≥p0 as in Proposition 4. Let f ∈ Cb(E).

Then Kf (x(p)) =∑n(x)
i=1 f (x(p)

σp(i))/n(x) tends to
∑n(x)

i=1 f (xi)/n(x) = Kf (x) as p → ∞, which shows
the continuous Feller property of K, i.e. K Cb(E) ⊂ Cb(E). Let us now show that K is
not Feller. Assume without loss of generality that 0 ∈ W. Consider the function f (x) =
max (1 − ‖x‖, 0)1n(x)=1, where we abusively write ‖x‖ := ‖x1‖ when x = {x1}, x1 ∈ W. Note
that f ∈ C0(E). Let B be a compact subset of E. From Theorem 5, there exists n0 ≥ 0 such
that B ⊂ ∪n0

n=0En. Choose y = {0, . . . , 0} ∈ En0+1. Then y /∈ B but Kf (y) = 1, proving that
Kf /∈ C0(E).

Example 1 (continued) (death kernel): For the death kernel Kδ of this example, we have the
following:

(i) KδCb(E) ⊂ Cb(E), and

(ii) KδC0(E) ⊂ C0(E) if W is compact, but not necessarily otherwise.

To prove the first property, take x ∈ E, a sequence (x(p))p≥0 converging to x, and p0 and

(σp)p≥p0 from Proposition 4. Then it is not difficult to verify that limp→∞ w(x(p)
σp(i), x(p)) =
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w(xi, x) by continuity of g. Moreover, d1

(
x(p) \ x(p)

σp(i), x \ xi

)
≤∑j �=i ‖x(p)

σp(j) − xj‖/(n − 1),

which shows that x(p) \ x(p)
σp(i) −→

p→∞ x \ xi. Therefore, for any f ∈ Cb(E),

lim
p→∞ Kδf (x(p)) = lim

p→∞

n(x)∑
i=1

w
(

x(p)
i , x(p)

)
f
(

x(p) \ x(p)
i

)

= lim
p→∞

n(x)∑
i=1

w
(

x(p)
σp(i), x(p)

)
f
(

x(p) \ x(p)
σp(i)

)

=
n(x)∑
i=1

w(xi, x)f (x\ xi)

= Kδf (x).

Let us now consider the second claim, (ii). Take f ∈ C0(E) and ε > 0. We fix a compact set
A of (E, d1) such that |f (x)|< ε for x /∈ A. By Proposition 5, A ⊂⋃n0

n=0 En for some n0. As a
straightforward consequence of Proposition 5 (see the supplementary material), the set B :=⋃n0+1

n=0 En is a compact set when W is compact and it satisfies Kδ(x, A) = 0 for x /∈ B. This
implies that for x /∈ B,

|Kδf (x)| ≤
∣∣∣∣
∫

A
f (y)Kδ(x, dy)

∣∣∣∣+
∣∣∣∣
∫

Ac
f (y)Kδ(x, dy)

∣∣∣∣
≤ ||f ||∞Kδ(x, A) + ε Kδ(x, Ac) ≤ ε, (3.2)

and so Kδf ∈ C0(E). Let us finally show that this result is no longer valid if W is not compact.
Assume without loss of generality that 0 ∈ W, and consider as in the previous example the
function f ∈ C0(E) defined by f (x) = max (1 − ‖x‖, 0)1n(x)=1. Let B be any compact subset
of E. Then B2 = B ∩ E2 is compact because E2 is closed and, by Proposition 5, for any x =
{x1, x2} ∈ B2, there exists R> 0 such that max{‖x1‖, ‖x2‖} ≤ R. Take y = {0, y2} in E2 such
that ‖y2‖> R + 1, which is possible since W is not compact. Then y /∈ B but Kδf (y) = w(y2, y),
proving that Kf /∈ C0(E).

Example 2 (continued) (birth kernel as a mixture): For this example, we shall prove that if
W̊ �=∅ and if the dispersion function v is continuous, then KβCb(E) ⊂ Cb(E) and KβC0(E) ⊂
C0(E). Take f ∈ Cb(E), x ∈ E, and a sequence (x(p))p≥0 converging to x, from which we define
p0 and (σp)p≥p0 from Proposition 4. We have, for p ≥ p0,

Kβ f (x(p)) = 1

n(x)

n(x)∑
i=1

1

z(x(p)
σp(i), x(p))

∫
W

f (x(p) ∪ {ξ})ϕ
⎛
⎝ ξ − x(p)

σp(i)

v(x(p)
σp(i), x(p))

⎞
⎠ dξ

= 1

n(x)

n(x)∑
i=1

∫
Rd 1{x(p)

σp(i)+v(x(p)
σp(i),x

(p))ξ∈W}f (x(p) ∪ {x(p)
σp(i) + v(x(p)

σp(i), x(p))ξ})ϕ(ξ )dξ∫
Rd 1{x(p)

σp(i)+v(x(p)
σp(i),x

(p))ξ∈W}ϕ(ξ )dξ
.
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By continuity of v, the indicator functions involved tend to 1{xi+v(xi,x)ξ∈W} for any xi +
v(xi, x)ξ ∈ W̊. On the other hand, for any i ∈ {1, ..., n(x)} and any ξ ,

d1

(
x(p) ∪ {x(p)

σp(i) + v(x(p)
σp(i), x(p))ξ}, x ∪ {xi + v(xi, x) ξ}

)

≤ 1

n(x) + 1

⎛
⎝n(x)∑

j=1

‖x(p)
σp(j) − xj‖ + ‖x(p)

σp(i) + v(x(p)
σp(i), x(p)) ξ − xi − v(xi, x) ξ‖

⎞
⎠

≤ 1

n(x) + 1

⎛
⎝n(x)∑

j=1

‖x(p)
σp(j) − xj‖ + ‖x(p)

σp(i) − xi‖ + ‖ξ‖ |v(x(p)
σp(i), x(p)) − v(xi, x)|

⎞
⎠ ,

which tends to 0 as p → ∞. So by continuity of f , f (x(p) ∪ {x(p)
σp(i) + v(x(p)

σp(i), x(p))ξ}) tends to
f (x ∪ {xi + v(xi, x)ξ ). We conclude by the dominated convergence theorem, since f is bounded
and ϕ is a density, that Kβ f (x(p)) converges to Kβ f (x) as p → ∞, which proves that KβCb(E) ⊂
Cb(E).

Let us now prove that KβC0(E) ⊂ C0(E). Let f ∈ C0(E) and ε > 0. We fix a compact set
A ⊂ E such that x /∈ A ⇒ |f (x)|< ε. By Proposition 5, A ⊂⋃n0

n=0 En for some n0. Letting
An = A ∩ En, for n = 0, . . . , n0, we observe that An is a compact set because En is closed. By
Proposition 5, there exists Rn ≥ 0 such that for every a = {a1, . . . , an} ∈ An, max1≤k≤n ‖ak‖ ≤
Rn. Now let Bn = {x ∈ En,

∑n
k=1 ‖xk‖/n ≤ Rn} and B =⋃n0−1

n=0 Bn. We can verify (see the proof
of Proposition 5) that Bn is compact and so is B. We claim that if x /∈ B, then Kβ (x, A) = 0.
Indeed, if Kβ (x, A)> 0, then Kβ (x, An)> 0 for some n ∈ {0, . . . , n0}, but since Kβ (x, A0) ≤
Kβ (x, {Ø}) = 0, it cannot be n = 0. Now, for n = 1, . . . , n0, Kβ (x, An)> 0 implies that x ∈
En−1 and An ⊂ {z ∪ x, z ∈ W} since Kβ (x,W ∪ x) = 1. So max1≤k≤n−1 ‖xk‖ ≤ Rn, whereby
x ∈ Bn−1. This shows that if Kβ (x, A)> 0 then x ∈ B, as we claimed. We deduce that for any
x /∈ B, |Kβ f (x)| ≤ ε as in (3.2).

Example 3 (continued) (birth kernel based on a Gibbs potential): This birth kernel Kβ is both
Feller continuous and Feller, whenever the potential V is continuous and locally stable. By the
latter, we mean that there exists ψ ∈ L1(W) such that for any x ∈ E, exp(−(V(x ∪ ξ ) − V(x))) ≤
ψ(ξ ); see for instance [19]. Under these conditions, we can prove similarly as in Example 2 that
KβCb(E) ⊂ Cb(E) by use of the dominated convergence theorem and that KβC0(E) ⊂ C0(E).
Note that the examples of potentials considered in Section 5, leading to an invariant Gibbs
measure, are continuous and locally stable.

Example 4 (continued) (Langevin diffusions as inter-jump motions): The inter-jump process
(Yt)t≥0, defined through the SDE (2.11), is a Feller continuous and Feller process on E. This
is due to the fact that, g being globally Lipschitz, the function 
n in (2.11) is also globally
Lipschitz for any n ≥ 1, and so the solution (Z |n

t )t≥0 of (2.11) is Feller continuous and Feller
(see [25]). The conclusion then follows from Proposition 6.

Example 5 (continued) (growth interaction processes): In this example, the inter-jump motion
is driven by (2.12). If the functions F1,n, . . . , Fn,n are Lipschitz continuous, then (Yt)t≥0 is
Feller continuous and Feller. Indeed, the solution of (2.12) is continuous in the initial condition
Z|n

0 under this assumption (see [16]), implying the Feller continuity of (Yt)t≥0 by Proposition

6. Moreover, since the marks mi(t) in (Z|n
t )t≥0 are all increasing functions, we have that

‖Z|n
t ‖ ≥ ‖Z|n

0 ‖. Let f ∈ C0(Wn), ε > 0, and R> 0 be such that ‖x‖> R ⇒ |f (x)|< ε. Then, if
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‖Z|n
0 ‖> R, we have ‖Z|n

t ‖ ≥ R and so f (Z|n
t )< ε, proving that Z|n

t is Feller and so is (Yt)t≥0 by
Proposition 6.

4. Ergodic properties of birth–death–move processes

In this section we focus on birth–death–move processes as described in Section 2.2.
Accordingly, the state space is E =⋃∞

n=0 En where (En)n≥1 is a sequence of disjoint locally
compact Polish spaces with E0 = {Ø}, and the jump kernel K reads as in (2.4). Remember that
in this setting the jump intensity function is α = β + δ, where β and δ are the birth and death
intensity functions. We introduce the following notation:

βn = sup
x∈En

β(x), δn = inf
x∈En

δ(x), and αn = βn + δn. (4.1)

Inspired by [22], we construct in Section 4.1 a coupling between (Xt)t≥0 and a simple birth–
death process (ηt)t≥0 on N with birth rates βn and death rates δn. This coupling allows us to
state conditions on the sequences (βn) and (δn) ensuring the convergence of the birth–death–
move process towards a unique invariant probability measure. This is presented in Section
4.2. A geometric rate of convergence is then derived in Section 4.3, and we characterize some
invariant measures in Section 4.4.

4.1. Coupling of birth–death–move processes

Let (Xt)t≥0 be a birth–death–move process, as defined in Section 2.2, and let (ηt)t≥0 be a
simple birth–death process on N with birth rate βn and death rate δn given by (4.1). Note that
(ηt)t≥0 can be viewed as a birth–death–move process on N having a constant move process
yt = y0, for all t ≥ 0. We denote by (tj)j≥1 the jump times of (ηt)t≥0 and by nt := ∑

j≥1 1tj≤t

the number of jumps before t ≥ 0. We also denote by qt the transition kernel of (ηt)t≥0, i.e.
qt(n, S) = P(ηt ∈ S|η0 = n) for any n ∈N and S ∈P(N).

We define the coupled process Č = (X′, η′) as a jump–move process on the state space
Ě = E ×N equipped with the σ -algebra Ě = E ⊗P(N). Denoting by d the distance on E, we
also equip Ě with the distance ď((x, k); (y, n)) := d(x, y) + |n − k|/(n ∧ k)1nk �=0. To fully char-
acterize Č, we now specify its jump intensity function α̌, its jump kernel Ǩ, and its inter-jump
move process Y̌ .

The intensity function α̌ : E ×N→R+ is given by

α̌(x, n) =
{
β(x) + δ(x) + βn + δn if x ∈ Em, m �= n,
βn + δ(x) if x ∈ En.

One can easily check that α̌ is a continuous function on Ě, bounded by 2α∗.
The transition kernel Ǩ : Ě × Ě → [0, 1] takes the same specific form as in [22]:

(i) If x ∈ Em, m �= n:

Ǩ((x, n); A × {n}) = α(x)

α̌(x, n)
K(x, A);

Ǩ((x, n); {x} × {n + 1}) = βn

α̌(x, n)
;

Ǩ((x, n); {x} × {n − 1}) = δn

α̌(x, n)
.
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(ii) If x ∈ En:

Ǩ((x, n); A × {n + 1}) = β(x)

α̌(x, n)
Kβ (x, A);

Ǩ((x, n); {x} × {n + 1}) = βn − β(x)

α̌(x, n)
;

Ǩ((x, n); A × {n − 1}) = δn

α̌(x, n)
Kδ(x, A);

Ǩ((x, n); A × {n}) = δ(x) − δn

α̌(x, n)
Kδ(x, A).

The inter-jump move process Y̌ is finally obtained by an independent coupling of (Yt)t≥0

and (yt)t≥0; specifically, its transition kernel QY̌
t is given, for any (x, p) ∈ Ě and A × S ∈ Ě , by

QY̌
t ((x, p); A × S) = P(Y̌t ∈ A × S|Y̌0 = (x, p))

= P(Yt ∈ A|Y0 = x)1p∈S = QY
t (x, A)1p∈S. (4.2)

This means that Y̌t = (Y ′
t, y′

t) = (Y ′
t, y′

0) for any t ≥ 0, where (Y ′
t)t≥0 and (y′

t)t≥0 are independent
and follow the same distribution as (Yt)t≥0 and (yt)t≥0, respectively. Since Y is a continuous
Markov process for the distance d, we can choose a version of Y ′ such that Y̌ is also continuous
for ď. Observe moreover that (Y̌t)t≥0 satisfies

P((Y̌t)t≥0 ⊂ En × {k} | Y̌0 = (x, p)) = 1x∈En 1k=p, ∀x ∈ E, ∀n ≥ 0.

Given α̌, Ǩ, and Y̌ as above, the jump–move process Č is well defined and can be con-
structed as in Section 2.1. We denote by Q̌t its transition kernel, by (Ťj)j≥1 its jump times, and
by Ňt := ∑

j≥1 1Ťj≤t the number of jumps before t ≥ 0. We also set τ̌j = Ťj − Ťj−1. The fact

that Č defines a genuine coupling of X with η is the object of the following theorem.

Theorem 4. Let (Xt)t≥0 be a birth–death–move process on E with transition kernel Qt, asso-
ciated to the continuous Markov process Y on E and with jump kernel K, as defined in Section
2.2. Let (ηt)t≥0 be a simple birth–death process on N with transition kernel qt, having a birth
rate sequence (βn) and a death rate sequence (δn) given by (4.1). Suppose that (Yt)t≥0 is a
Feller process and that KC0(E) ⊂ C0(E). Then the transition kernel Q̌t of the jump–move pro-
cess Č on E ×N constructed above satisfies the following, for any t ≥ 0, (x, n) ∈ E ×N, A ∈ E ,
and S ∈P(N):

(i) Q̌t((x, n); E × S) = qt(n, S), and

(ii) Q̌t((x, n); A ×N) = Qt(x, A).

If the move (Yt)t≥0 is constant, which is the setting in [22], then the proof is easy under
(2.1) by use of the derivative form of the Kolmogorov backward equation. In the general
case of a birth–death–move process, this strategy no longer works, and the statement becomes
more challenging to prove. We manage to prove it by exploiting the generator of (Xt)t≥0; see
Theorem 3, which explains the Feller conditions in Theorem 4.

Proof of Theorem 4. To prove the first part of the theorem, we use the following lemmas
and corollary, proved in the appendix. Fix (x, n) ∈ E ×N and p ≥ 0, and let

ψp : t ∈R+ �→ Q̌t((x, n), E × {p}).
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Lemma 1. For any (x, n) ∈ E ×N and p ≥ 0, ψp is a continuous function.

Lemma 2. For any (x, n) ∈ E ×N and p ≥ 0, ψp is right-differentiable and satisfies

∂+
∂t
ψp(t) = −αp ψp(t) + βp−1 ψp−1(t) + δp+1 ψp+1(t).

Corollary 1. For any (x, n) ∈ E ×N and p ≥ 0,

ψp(t) = 1p=n +
∫ t

0

(−αp ψp(s) + βp−1 ψp−1(s) + δp+1 ψp+1(s)
)

ds;

in particular, ψp is differentiable.

Now let ws(x, n) = Q̌t−s(1E × qs(1{p}))(x, n) for s ∈ [0, t]. Then, using Corollary 1, we have
the following lemma.

Lemma 3. For any (x, n) ∈ E ×N and p ≥ 0, s �→ ws is differentiable on [0, t] and ∂ws/∂s ≡ 0.

Since w0(x, n) = Q̌t((x, n); E × {p}) and wt(x, n) = qt(n, {p}), Lemma 3 implies that these
two quantities are equal. The first part of Theorem 4 then follows from the decomposition

qt(n, S) =
∑
p∈S

qt(n, {p}) =
∑
p∈S

Q̌t((x, n); E × {p}) = Q̌t((x, n); E × S).

We turn to the proof of the second part of Theorem 4. Like the first part, it is based on three
results that are proved in the appendix. For (x, n) ∈ E ×N and f ∈ C0(E), we set

ψf : t ∈R+ �→ Q̌t(f × 1N)(x, n).

Lemma 4. Suppose that (Yt)t≥0 is a Feller process. Then for any (x, n) ∈ E ×N and any f ∈
C0(E), ψf is a continuous function.

Lemma 5. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Then for any
(x, n) ∈ E ×N and any f ∈DAY , the function ψf is right-differentiable and satisfies

∂+
∂t
ψf (t) =ψAf (t), (4.3)

where A is the infinitesimal generator of X given by Theorem 3.

Corollary 2. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Then for any
(x, n) ∈ E ×N and any f ∈DAY ,

ψf (t) = f (x) +
∫ t

0
ψAf (s) ds; (4.4)

in particular, the function ψf is differentiable with derivative corresponding to (4.3).

By the Dynkin theorem, the second part of Theorem 4 is implied by the equality
Q̌t((x, n); U ×N) = Qt(x,U) for any open set U ⊂ E, or equivalently

Q̌t(g × 1N)(x, n) = Qt(g)(x) (4.5)

for g = 1U . We prove (4.5) first for g ∈DAY and then for g ∈ C0(E), before getting the result
for g = 1U .
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Let g ∈DAY , and for s ∈ [0, t] define vs(x, n) =ψQsg(t − s) = Q̌t−s (Qsg × 1N) (x, n). We
shall prove that s �→ vs is differentiable with v′

s = 0. For any h ∈R, write (vs+h(x, n) −
vs(x, n))/h = A1 + A2 + A3 with

A1 = 1

h

(
ψQs+hg(t − s − h) −ψQsg(t − s − h)

)−ψAQsg(t − s − h),

A2 =ψAQsg(t − s − h) −ψAQsg(t − s),

A3 = 1

h

(
ψQsg(t − s − h) −ψQsg(t − s)

)+ψAQsg(t − s).

We know by Theorem 3, with LY
0 = C0(E), that DA =DAY , and since QsDA ⊂DA (see [7,

Chapter 1, Section 2]), we deduce from Corollary 2 that A3 tends to −∂ψQsg(t − s)/∂t +
ψAQsg(t − s) = 0 as h → 0. Regarding A2, note that Qsg ∈DA implies that AQsg ∈ C0(E)
(again see [7]), so that Lemma 4 applies and A2 → 0 as h → 0. Regarding A1, using the linearity
of ψf (t) in f , we can write

|A1| = |ψ(Qs+h−Qs)g/h−AQsg(t − s − h)| ≤ ‖(Qs+h − Qs)g/h −AQsg‖∞,

which also tends to 0 as h → 0. We therefore obtain that v′
s = 0 and so vt(x, n) = (Qtg ×

1N)(x, n) = Q̌t(g × 1N)(x, n) = v0(x, n), proving (4.5) when g ∈DAY .
Now let g ∈ C0(E). By our assumptions and Theorem 2, (Xt)t≥0 is Feller, which implies

that C0(E) =DA (see [7]). So there exists a sequence of functions (gm)m≥0 in DAY such
that ‖gm − g‖∞ → 0 as m → ∞. The two linear operators f ∈ Mb(E) �→ Q̌t(f × 1N) and f ∈
Mb(E) �→ Qt(f ) being bounded, we can take the limit in (4.5) when applied to gm to get the
same relation for g ∈ C0(E).

Finally take U ⊂ E an open subset. Then, for any m ≥ 0, define the function

φm : x ∈ E �→ d(x, E\U)

d(x, E\U) + d(x,Um)
,

where Um = {y ∈ E, d(y, E\U) ≥ 1/m}. Then φm ∈ C0(E) for any m ≥ 0, and for any x ∈ E
we have φm(x) → 1U(x) as m → ∞. Taking the limit, we obtain by the dominated conver-
gence theorem the relation (4.5) for g = 1U , which concludes the proof of the second part of
Theorem 4.

4.2. Convergence to an invariant measure

The main interest of the coupling constructed in the previous section is the following
specific property.

Proposition 7. Under the same setting as in Theorem 4, if x ∈ E with n(x) ≤ n, then

Q̌t((x, n); �) = 0 where � = {(y,m) ∈ E ×N; n(y)>m}.

Proof. Let x ∈ E and n ∈N be such that n(x) ≤ n. We show by induction on k ≥ 0
that P(x,n)(ČŤk

∈ �, Ťk <+∞) = 0. If k = 0, then P(x,n)(ČŤ0
∈ �, Ť0 <+∞) = 1(x,n)∈� = 0.
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Suppose next that there exists k ≥ 0 such that P(x,n)(ČŤk
∈ �, Ťk <+∞) = 0. Then

P(x,n)(ČŤk+1
∈ �, Ťk+1 <+∞)

=E(x,n)

[
E(x,n)

(
1ČŤk+1

∈�

∣∣∣∣ČŤk
,
(

Y̌ (k)
t

)
t≥0

, τ̌k+1

)
1Ťk+1<+∞

]

=E(x,n)

[
Ǩ
(

Y̌ (k)
τ̌k+1

, �
)

1τ̌k+1<+∞1Ťk<+∞
]

=E(x,n)

[
Ǩ
(

Y̌ (k)
τ̌k+1

, �
)

1
Y̌(k)
τ̌k+1

∈�1τ̌k+1<+∞1Ťk<+∞
]

(by definition of Ǩ)

=E(x,n)

[
Ǩ
(

Y̌ (k)
τ̌k+1

, �
)

1ČŤk
∈�1τ̌k+1<+∞1Ťk<+∞

]
(for any t ≥ 0, ČŤk

∈ �⇔ Y̌ (k)
t ∈ �)

≤E(x,n)

[
1ČŤk

∈�1Ťk<+∞
]

= P(x,n)

[
ČŤk

∈ �, Ťk <+∞
]
= 0,

which proves the induction step. To conclude, recall that P(x,n)(Ňt <∞) = 1, and notice that
because of the form of � one has {Čt ∈ �} = {ČŤŇt

∈ �} for any t ≥ 0. Then

Q̌t((x, n); �) =
∞∑

k=0

P(x,n)(ČŤk
∈ �, Ňt = k) ≤

∞∑
k=0

P(x,n)(ČŤk
∈ �, Ťk <+∞) = 0.

�
We deduce from Proposition 7 that for any x ∈ Em with m ≤ n,

P(x,n)

(
(Čs)s≥0 ⊂ �c

)
= 1.

In association with Theorem 4, this means that the simple process (ηt)t≥0 that is coupled with
(Xt)t≥0 converges more slowly to the state 0 than (Xt)t≥0 converges to the state Ø. We can thus
build upon renewal theory (see [9]) to prove that Ø is an ergodic state for (Xt)t≥0 whenever 0
is an ergodic state for (ηt)t≥0. Conditions ensuring the latter are either (4.6) or (4.7) below, as
established in [13], so that we obtain the following, as verified in the supplementary material.

Theorem 5. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Suppose that
δn > 0 for all n ≥ 1 and one of the following condition holds:

(i) there exists n0 ≥ 0 such that βn = 0 for any n ≥ n0, or (4.6)

(ii) βn > 0 for all n ≥ 1,
∞∑

n=2

β1 . . . βn−1

δ1 . . . δn
<∞, and

∞∑
n=1

δ1 . . . δn

β1 . . . βn
= ∞. (4.7)

Then μ(A) := limt→∞ Qt(x, A) exists for all x ∈ E and A ∈ E , and is independent of x.
Moreover, μ is a probability measure on (E, E), and it is the unique invariant probability
measure for the process, i.e. such that μ(A) = ∫

E Qt(x, A)μ(dx) for any A ∈ E and t ≥ 0.

4.3. Rate of convergence

Based on the coupling constructed in Section 4.1, and under the assumptions of Theorem 5,
the rate of convergence of Qt towards the invariant measure μ follows from the rate of con-
vergence of the simple birth–death process η towards its invariant distribution. This is proven
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and exploited in [18] in the case of spatial birth–death processes (without move), based upon
the coupling of [22]. Since Theorem 4 and Proposition 7 extend this coupling, we deduce in
the following theorem the same rates of convergence as in [18]. The proof is the same, and we
omit the details.

Theorem 6. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Let γ1 and γ2
be two probability measures on (E, E), such that one of the two following conditions holds:

(i) (4.6) holds true, and for k = 1, 2, γk

( n0⋃
n=0

En

)
= 1; (4.8)

(ii) (4.7) holds true, and for k = 1, 2,
∞∑

n=2

γk(En)

√
δ1 . . . δn

β1 . . . βn−1
<∞. (4.9)

Then there exist real constants c> 0 and 0< r< 1 such that for any t ≥ 0,

sup
A∈E

∣∣∣∣
∫

E
Qt(x, A)γ1(dx) −

∫
E

Qt(y, A)γ2(dy)

∣∣∣∣≤ crt.

Moreover, when the condition (4.8) holds, the constants c and r can be chosen independently
of γ1 and γ2.

This result is presented in several particular cases in [18, Corollary 3.1] that are also valid
in our setting. In particular, when γ1 corresponds to the invariant measure μ obtained in
Theorem 5, and γ2 is a point measure, the assumptions (4.8) and (4.9) simplify and we get
the following corollary.

Corollary 3. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Assume either
(4.6) or (4.7), along with the following:

∞∑
n=2

√
β1 . . . βn−1

δ1 . . . δn
<∞ and ∃N ≥ 0 s.t. ∀ n ≥ N, βn ≤ δn+1. (4.10)

Denote by μ the invariant measure given by Theorem 5. Then for any y ∈ E, there exist c(y)> 0
and 0< r< 1 (independent of y) such that

sup
A∈E

|μ(A) − Qt(y, A)| ≤ c(y) rt. (4.11)

Moreover, the function c(.) satisfies ∫
E

c(y) dμ(y)<+∞.

4.4. Characterization of some invariant measures

In general the invariant measure μ of a birth–death–move process (Xt)t≥0, provided it exists,
can be a very complicated distribution that mixes the distribution in E due to births and deaths
of points, including the probability of being in En for each n, with the average distribution on
each En due to the move process Y . In particular, note that according to Theorem 5, Y does not
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need to be a stationary process for (Xt)t≥0 to converge to an invariant measure. Heuristically,
this is because the move process is always eventually ‘killed’ by a return to Ø of (Xt)t≥0 under
the hypotheses of Theorem 5.

The situation becomes more intelligible when Y admits an invariant measure that is
compatible with the jumps of (Xt)t≥0, as formalized in the next proposition.

Proposition 8. Suppose that (Yt)t≥0 is a Feller process and that KC0(E) ⊂ C0(E). Assume
moreover that there exists a finite measure μ on E such that for any f ∈DAY ,∫

En

AY f (x) dμ|En (x) = 0, ∀n ≥ 0, (4.12)

and
∫

E
(α(x)Kf (x) − α(x)f (x)) dμ(x) = 0. (4.13)

Then for any f ∈DAY ,
∫

E
Af (x) dμ(x) = 0.

Proof. By Theorem 3, for any f ∈DAY ,∫
E
Af (x) dμ(x) =

∫
E
(α(x)Kf (x) − α(x)f (x)) dμ(x) +

∫
E
AY f (x) dμ(x)

=
∑
n≥0

∫
En

AY f (x) dμ|En (x) = 0.

This proposition will be useful for characterizing the invariant measure of the birth–death–
move processes considered in Section 5. Indeed, suppose that the hypotheses of Theorem 5
are satisfied. Then (Xt)t≥0 converges to a unique invariant measure ν. Suppose moreover that
the pure jump Markov process with intensity α and transition kernel K admits some invariant
measure μ, and that for any n ≥ 0, μ|En is also invariant for the move process Y |n on En. Then
by Proposition 8 and the uniqueness of ν, we have that ν =μ.

5. Application to pairwise interaction processes on Rd

We present in this section examples of birth–death–move processes, defined through a pair-
wise potential function V on a compact set W ⊂Rd, that converge to the Gibbs probability
measure associated to V . The specificity is that we make compatible the jump dynamics with
the inter-jump diffusion, so that Proposition 8 applies and allows us to characterize this Gibbs
measure as the invariant measure.

When there is no inter-jump motion, this type of convergence is proved in [22] and is a
prerequisite for perfect simulation of spatial Gibbs point process models (see [19, Chapter 11]).
However, the weakness of this approach is that for rigid interactions (as for instance induced by
a Lennard-Jones or a Riesz potential; see the examples below), the dynamics based on spatial
births and deaths may mix poorly, so that the convergence to the associated Gibbs measure may
be very slow. Adding inter-jump motions that do not affect the stationary measure, as done in
this section, may alleviate this issue.
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Let W := I1 × · · · × Id where, for i ∈ {1, . . . , d}, Ii is a compact interval of R. Define W̃n =
{(x1, . . . , xn) ∈ (W̊)n, i �= j ⇒ xi �= xj}. As in Section 2.4, we let E0 = {Ø}, En = πn(W̃n) for
n ≥ 1, and E =⋃∞

n=0 En.
We consider a pairwise potential function V : E →R∪ {∞}, in the sense that there exist

a> 0 and φ : Rd →R∪ {∞} satisfying φ(ξ ) = φ( − ξ ) for all ξ ∈Rd such that for any x =
{x1, . . . , xn} ∈ En,

V(x) = a n(x) +
∑

1≤i �=j≤n

φ(xi − xj)

when n ≥ 2, while V({Ø}) = 0 and V({ξ}) = a for ξ ∈ W. Let φ0 : (0,∞) →R+ be a decreasing
function with φ0(r) → ∞ as r → 0. We will assume the following conditions on φ:

(A) The potential is locally stable, i.e. there exists ψ : W →R+ integrable such that

∀ n ≥ 1, ∀ x ∈ En, ∀ ξ ∈ W, exp

(
−

n∑
i=1

φ(xi − ξ )

)
≤ψ(ξ ).

(B) Either φ is bounded, or there exists r1 > 0 such that φ(ξ ) ≥ φ0(‖ξ‖) for all ‖ξ‖< r1.

(C) The function φ is weakly differentiable on Rd\{0}, exp(−φ) is weakly differentiable on
Rd, and for any p> d we have e−φ∇φ ∈ Lp

loc.

Let us present some examples of pairwise potentials φ that satisfy these assumptions. These
are standard instances used in spatial statistics and statistical mechanics.

Example (repulsive Lennard-Jones potential): For ξ ∈Rd, φ(ξ ) = c‖ξ‖−12 with c> 0. This
potential satisfies the condition (A) with ψ ≡ 1 and the condition (B). It is moreover dif-
ferentiable on Rd\{0}, and for any ξ ∈Rd\{0}, ∇φ(ξ ) = −12cξ/‖ξ‖14. We deduce that the
function e−φ∇φ can be extended to a continuous function on Rd by setting (e−φ∇φ)(0) = 0.
As a consequence, the condition (C) is satisfied.

Example (Riesz potential): It is defined on Rd\{0} by φ(ξ ) = c‖ξ‖α−d for c> 0 and 0<α < d.
As in the previous example, we obtain that φ satisfies the conditions (A), (B) and (C).

Example (soft-core potential): φ(ξ ) = − ln
(
1 − exp(−c‖ξ‖2)

)
for c> 0. Again this poten-

tial satisfies the condition (A) with ψ ≡ 1 and the condition (B). Moreover, for ξ ∈Rd\{0}
we compute ∇φ(ξ ) = −(2ce−c‖ξ‖2

)(1 − e−c‖ξ‖2
) ξ . As ‖∇φ(ξ )‖ ∼ 1/(c‖ξ‖) as ‖ξ‖ → 0, we

also obtain that the function e−φ∇φ can be extended to a continuous function on Rd, and the
condition (C) follows.

Example (regularized Strauss potential): For R> 0 and γ ≥ 0, the standard Strauss potential
corresponds to φ(ξ ) = γ 1‖ξ‖<R. We consider a regularized version by introducing a parameter
0< ε < R, so that φ(ξ ) = γ if ‖ξ‖ ≤ R − ε, φ(ξ ) = 0 if ‖ξ‖ ≥ R + ε, and φ is interpolated
between R − ε and R + ε in such a way that it is differentiable. With this regularized version,
φ satisfies the condition (A) with ψ ≡ 1 and the conditions (B) and (C).

Based on a potential V as above, we construct a birth–death–move process (Xt)t≥0 with the
following characteristics. The birth transition kernel is given as in Example 3 by

Kβ (x, �∪ x) = 1

z(x)

∫
�

e−(V(x∪ξ )−V(x)) dξ,
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for any x ∈ E and �⊂ W, where z(x) = ∫
W exp(−(V(x ∪ ξ ) − V(x))) dξ . Note that by the local

stability assumption (A), z(x)<∞ for any x ∈ E. The death transition kernel is just the uniform
kernel, a particular case of Example 1, i.e.

Kδf (x) = 1

n(x)

n(x)∑
i=1

f (x \ xi)

for any f ∈ Mb(E) and x = {x1, . . . , xn(x)} ∈ E. For the birth and death intensity functions, we
take

β(x) = z(x)

n(x) + 1
and δ(x) = 1n(x)≥1,

for any x ∈ E. Finally, for the move process, we start with the following Langevin diffusion
on W̃n:

dZ|n
t,i = −

∑
j �=i

∇φ(Z|n
t,i − Z|n

t,j) dt + √
2 dBt,i, 1 ≤ i ≤ n,

with reflecting boundary conditions (see [8]), and we deduce the move process Y on E as in
Example 4.

Proposition 9. The birth–death–move process (Xt)t≥0 defined above is a Feller process and
converges towards the invariant Gibbs probability measure on W with potential V, i.e. the
measure having a density proportional to exp(−V(x)) with respect to the unit-rate Poisson
point process on W.

Proof. First note that by the local stability assumption (A), β(x) ≤ e−c‖ψ‖1/(n(x) ∨ 1),
where ‖ψ‖1 = ∫

W ψ(ξ )dξ , so that α = β + δ is uniformly bounded as required by (2.1).

Under the assumptions (B) and (C), [8] proved that the process (Z|n
t )t≥0 is a well-defined

Markov process on W̃n and is a Feller process. By Proposition 6, Y is then a Feller process on
E. On the other hand, the jump transition kernel K given by (2.4) satisfies KC0(E) ⊂ C0(E), as
verified in Examples 1 and 3 in Section 3.3, since W is compact. We thus obtain by Theorem 2
that (Xt)t≥0 is a Feller process. Moreover, by (A) we have that for all n ≥ 1, βn ≤ e−c‖ψ‖1/n,
so that (4.7) is verified. All assumptions of Theorem 5 are satisfied, which implies that (Xt)t≥0
converges to a unique invariant probability measure as t → ∞.

It remains to characterize this invariant measure. The choices of β, δ, Kβ , and Kδ satisfy the
conditions of [22, Theorem 8.1] (see also [19, Chapter 11]), which implies that the invariant
measure μ for the birth–death process (without move) having the previous characteristics is the
one claimed in the proposition. We deduce that (4.13) holds true. On the other hand, [8] proved
under B and C that (Z|n

t )t≥0 converges towards the invariant measure on W̃n with a density (with
respect to the Lebesgue measure) proportional to exp(−∑1≤i �=j≤n φ(xi − xj)). After projection
on En, this means that (4.12) follows, with the same measure μ as before. Proposition 8 then
applies, and μ is the invariant measure of (Xt)t≥0. �

Appendix. Proofs of lemmas related to Theorem 4

A.1. Proof of Lemma 1

First note that for any x ∈ E, n ≥ 0, and h> 0 one has

P(x,n)(Ť1 ≤ h) =E(x,n)

(
1 − e− ∫ h

0 α̌(Y̌u) du
)

≤E(x,n)

(∫ h

0
α̌(Y̌u) du

)
≤ 2α∗h.
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Next take h> 0. Then

ψp(t + h) −ψp(t) =E(x,n)

[
1X′

t+h∈E1
η
′
t+h=p − 1X′

t∈E1
η
′
t=p

]
=
∑
k≥0

E(x,n)

[
Q̌h((X′

t, k); E × {p}) − 1k=p|η′
t = k

]
P(x,n)(η′

t = k). (A.1)

For any k ≥ 0 and y ∈ E,∣∣∣Q̌h((y, k), E × {p}) − 1k=p

∣∣∣= ∣∣∣E(y,k)

(
1
η
′
h=p1Ť1>h

)
+E(y,k)

(
1
η
′
h=p1Ť1≤h

)
− 1k=p

∣∣∣
≤E(y,k)

∣∣∣(1
η
′
h=p − 1k=p)1Ť1≤h

∣∣∣+E(y,k)

∣∣∣(1
η
′
h=p − 1k=p)1Ť1>h

∣∣∣
≤ P(x,n)(Ť1 ≤ h) +E(y,k)

∣∣∣(1k=p − 1k=p)1Ť1>h

∣∣∣
≤ 2α∗h,

whereby ∣∣ψp(t + h) −ψp(t)
∣∣≤∑

k≥0

2α∗h P(x,n)(η′
t = k) = 2α∗h −→

h↘0
0.

On the other hand, with the same calculations for h ∈ [0, t] we obtain

ψp(t) −ψp(t − h) =
∑
k≥0

E(x,n)

[
Q̌h((X′

t−h, k); E × {p}) − 1k=p|η′
t−h = k

]
Q̌t−h((x, n); E ×{k})

≤ 2α∗h −→
h↘0

0.

Therefore the function t ∈R+ �→ψq(t) is continuous.

A.2. Proof of Lemma 2

Take h> 0. Recall from (A.1) that

1

h

(
ψp(t + h) −ψp(t)

)= 1

h

∑
k≥0

E(x,n)

[
Q̌h((X′

t, k); E × {p}) − 1k=p|η′
t = k

]
Q̌t((x, n); E × {k}).

(A.2)

For any y ∈ E and k ≥ 0,

Q̌h((y, k), E × {p}) − 1k=p =E(y,k)

(
1
η
′
h=p − 1k=p

)
= A1(h) + A2(h) + A3(h), (A.3)

where

A1(h) =E(y,k)

(
(1
η
′
h=p − 1k=p)1Ť1>h

)
,

A2(h) =E(y,k)

(
(1
η
′
h=p − 1k=p)1Ňh=1

)
, and

A3(h) =E(y,k)

(
(1
η
′
h=p − 1k=p)1Ť2<h

)
.

Let us treat each term separately.
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First, we clearly have A1(h) = 0. Second, A2(h) reads

E(y,k)

(
(1
η
′
h=p − 1k=p)1τ̌1≤h1τ̌2>h−τ̌1

)
=E(y,k)

[
(1
η
′̌
τ1

=p − 1k=p)1τ̌1≤hP(y,k)

(
τ̌2 > h − τ̌1

∣∣∣F̌τ̌1 , Y̌ (1)
)]

=E(y,k)

[
(1
η
′̌
τ1

=p − 1k=p)1τ̌1≤he
− ∫ h−τ̌1

0 α̌
(

Y̌(1)
u

)
du
]

=E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)E(y,k)

[
e
− ∫ h−τ̌1

0 α̌
(

Y̌(1)
u

)
du
∣∣∣F̌τ̌1

]]

= E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)EY̌
Čτ̌1

[
e
− ∫ h−τ̌1

0 α̌
(

Y̌u

)
du
]]

=E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)EY̌
Čτ̌1

[
e
− ∫ h−τ̌1

0 α̌
(

Y̌u

)
du − 1

]]
+E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)

]
.

For the first term above,

1

h

∣∣∣∣E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)EY̌
Čτ̌1

[
e
− ∫ h−τ̌1

0 α̌
(

Y̌u

)
du − 1

]]∣∣∣∣≤ 4α∗E(y,k)(1τ̌1≤h) ≤ 8(α∗)2h.

For the second term, we have

E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)

]
=E(y,k)

[
1τ̌1≤hE(y,k)

[
1
η
′̌
τ1

=p − 1k=p

∣∣∣Y̌ (0), τ̌1

]]

=E(y,k)

[
1τ̌1≤h

(
Ǩ((Y ′(0)

τ̌1
, k); E × {p}) − 1k=p

)]
. (A.4)

Following the definition of Ǩ in Section 4.1, this formula takes one of two forms, depending
on whether y /∈ Ek or y ∈ Ek. If y /∈ Ek, then

E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)

]
=E(y,k)

⎡
⎣1τ̌1≤h

⎛
⎝ α

(
Y ′(0)
τ̌1

)
α̌
(

Y ′(0)
τ̌1
, k
) − 1

⎞
⎠
⎤
⎦ 1k=p

+E(y,k)

⎡
⎣1τ̌1≤h

βk

α̌
(

Y ′(0)
τ̌1
, k
)
⎤
⎦ 1k=p−1 +E(y,k)

⎡
⎣1τ̌1≤h

δk

α̌
(

Y ′(0)
τ̌1
, k
)
⎤
⎦ 1k=p+1;

that is,

E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)

]

=E(y,k)

⎡
⎣1τ̌1≤h

1

α̌
(

Y ′(0)
τ̌1
, k
)
⎤
⎦ (−αk1k=p + βk1k=p−1 + δk1k=p+1

)
. (A.5)
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Since∣∣∣∣∣∣
1

h
E(y,k)

⎡
⎣1τ̌1≤h

1

α̌
(

Y ′(0)
τ̌1
, k
)
⎤
⎦− 1

∣∣∣∣∣∣=
∣∣∣∣∣1hEY̌

(y,k)

[∫ h

0

(
e− ∫ s

0 α̌(Y′
u,k) du − 1

)
ds

]∣∣∣∣∣≤ 2α∗h,

we then conclude that

sup
k≥0,y/∈Ek

∣∣∣∣A2(h)

h
+ αk1k=p − βk1k=p−1 − δk1k=p+1

∣∣∣∣−→
h↘0

0. (A.6)

If instead y ∈ Ek, we obtain from (A.4)

E(y,k)

[
1τ̌1≤h(1

η
′̌
τ1

=p − 1k=p)

]

=E(y,k)

⎡
⎣1τ̌1≤h

β(Y ′(0)
τ̌1

)

α̌(Y ′(0)
τ̌1
, k)

⎤
⎦ 1k=p−1 +E(y,k)

⎡
⎣1τ̌1≤h

βk − β(Y ′(0)
τ̌1

)

α̌(Y ′(0)
τ̌1
, k)

⎤
⎦ 1k=p−1

+E(y,k)

⎡
⎣1τ̌1≤h

δk

α̌(Y ′(0)
τ̌1
, k)

⎤
⎦ 1k=p+1 +E(y,k)

⎡
⎣1τ̌1≤h

⎛
⎝δ(Y ′(0)

τ̌1
) − δk

α̌(Y ′(0)
τ̌1
, k)

− 1

⎞
⎠
⎤
⎦ 1k=p,

which is the same expression as (A.5). The convergence (A.6) then remains true when the
supremum is taken over y ∈ Ek, and so over y ∈ E, i.e.

sup
k≥0,y∈E

∣∣∣∣A2(h)

h
+ αk1k=p − βk1k=p−1 − δk1k=p+1

∣∣∣∣−→
h↘0

0.

Third, for A3(h) in (A.3), using (2.3) and defining Ň∗
h ∼P(2α∗h), we have

1

h
|A3(h)| ≤ 1

h
P(y,k)

(
Ňh ≥ 2

)
≤ 1

h
P
(

Ň∗
h ≥ 2

)
= 2 (α∗)2 h + o

h↘0
(h).

Combining the results for A1(h), A2(h), and A3(h) in (A.3), we get

sup
(y,k)∈Ě

∣∣∣∣1h
(

Q̌h((y, k); E × {p}) − 1k=p

)
+ 1k=pαk − βk1k=p−1 − δk1k=p+1

∣∣∣∣−→
h↘0

0.

Finally, coming back to (A.2), we obtain by uniform convergence, for any x ∈ E,

1

h

(
ψp(t + h) −ψp(t)

)−→
h↘0

∑
k≥0

{−αk1k=p + βk1k=p−1 + δk1k=p+1
}

Q̌t((x, n); E × {k}),

where the limit reads −αp ψp(t) + βp−1 ψp−1(t) + δp+1 ψp+1(t), using β−1 = 0.
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A.3. Proof of Corollary 1

For t ≥ 0, define

G(t) =ψp(t) − 1n=p −
∫ t

0

(−αp ψp(s) + βp−1 ψp−1(s) + δp+1 ψp+1(s)
)

ds.

Then G is continuous and right-differentiable on R+ by Lemma 2, and ∂+G(t)/∂t = 0. So G is
constant. But G(0) = 0 because s �→ψp(s) is bounded on R+ for any p ≥ 0. As a consequence
we obtain

ψp(t) = 1p=n +
∫ t

0

(−αp ψp(s) + βp−1 ψp−1(s) + δp+1 ψp+1(s)
)

ds.

In particular the integrand is continuous by Lemma 1, so ψp is differentiable.

A.4. Proof of Lemma 3

Let us expand qs(1{p}) as

qs(1{p}) =
∑
k≥0

qs(k, {p})1{k} =
∑
k≥0

Pk(ηs = p)1{k}. (A.7)

Take r> p. Then for s ≤ t, using (2.3) by setting n∗
t ∼P(α∗t), we have

∞∑
k=r

Pk(ηs = p) ≤
∞∑

k=r

Pk(ns ≥ k − p) ≤
∞∑

k=r

P(n∗
t ≥ k − p) =

∞∑
j=r−p

P(n∗
t ≥ j) −→

r→∞ 0,

because E(n∗
t )<∞. Coming back to (A.7), we thus have that for any ε > 0, there exists r ≥ 0

such that any d ≥ r satisfies

sups∈[0,t]

∥∥∥∥∥qs(1{p}) −
d∑

k=0

qs(k, {p})1{k}

∥∥∥∥∥
∞
< ε. (A.8)

Since Q̌t is a continuous linear operator on Mb(E ×N), we have

ws = Q̌t−s(1E × qs(1{p}))

= Q̌t−s

(
1E × lim

r→∞

r∑
k=0

qs(k, {p})1{k}

)

= lim
r→∞ Q̌t−s

(
1E ×

r∑
k=0

qs(k, {p})1{k}

)

= lim
r→∞

r∑
k=0

qs(k, {p})Q̌t−s
(
1E × 1{k}

)

=
∞∑

k=0

qs(k, {p})Q̌t−s
(
1E × 1{k}

)
. (A.9)
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Let φk(s) = qs(k, {p})Q̌t−s
(
1E × 1{k}

)
. From the Kolmogorov backward equation (2.6), we

deduce that ∂qs(k, {p})/∂s = −αkqs(k, {p}) + βkqs(k + 1, {p}) + δkqs(k − 1, {p}). Using in
addition Corollary 1, we deduce that φk is differentiable and

φ′
k(s) = [−αkqs(k, {p}) + βkqs(k + 1, {p}) + δkqs(k − 1, {p})] Q̌t−s

(
1E × 1{k}

)
+ qs(k, {p})

[
αkQ̌t−s

(
1E × 1{k}

)− βk−1Q̌t−s
(
1E × 1{k−1}

)− δk+1Q̌t−s
(
1E × 1{k+1}

)]
.

Since
sups∈[0,t]

∥∥∥Q̌t−s
(
1E × 1{k}

)∥∥∥∞ ≤ 1

and

sups∈[0,t]

∥∥∥αkQ̌t−s
(
1E × 1{k}

)− βk−1Q̌t−s
(
1E × 1{k−1}

)− δk+1Q̌t−s
(
1E × 1{k+1}

)∥∥∥∞ ≤ 3α∗,

we can show similarly as for (A.8) that

sups∈[0,t]

∥∥∥∥∥∥
∑
k≥r

φ′
k(s)

∥∥∥∥∥∥∞
−→
r→∞ 0.

Since by (A.9) ws =∑
k≥0 φk(s), we deduce that ws is differentiable on [0, t] and

∂

∂s
ws =

∞∑
k=0

φ′
k(s)

=
∞∑

k=0

[
βkqs(k + 1, {p})Q̌t−s

(
1E × 1{k}

)− βk−1qs(k, {p})Q̌t−s
(
1E × 1{k−1}

)]

+
∞∑

k=0

[
δkqs(k − 1, {p})Q̌t−s

(
1E × 1{k}

)− δk+1qs(k, {p})Q̌t−s
(
1E × 1{k+1}

)]
,

where β−1 = δ0 = 0. The first of these two telescoping series vanishes because β−1 = 0 and∥∥∥βkqs(k + 1, {p})Q̌t−s
(
1E × 1{k}

)∥∥∥∞ ≤ α∗qs(k + 1, {p}) ≤ α∗ P(n∗
t > k + 1 − p) → 0.

The second series vanishes by similar arguments and we have ∂ws/∂s ≡ 0.

A.5. Proof of Lemma 4

Let h> 0; then

ψf (t + h) −ψf (t) =E(x,n)

(
f (X′

t+h)1
η
′
t+h∈N

)
−E(x,n)

(
f (X′

t)1η′t∈N
)

=E(x,n)

[
Q̌h(f × 1N)(X′

t, η
′
t) − f (X′

t)1η′t∈N
]

. (A.10)

For any y ∈ E and k ∈N one has∣∣∣Q̌h(f × 1N)(y, k) − f (y)1k∈N
∣∣∣= ∣∣E(y,k)

(
f (X′

h)
)− f (y)

∣∣
≤ 2‖f ‖∞P(y,k)(Ť1 ≤ h) +

∣∣∣E(y,k)

(
(f (Y ′(0)

h ) − f (y))1Ť1>h

)∣∣∣
≤ 4α∗‖f ‖∞h + ∥∥QY

h f − f
∥∥∞,
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where we have used (4.2) in the second-to-last step. Coming back to (A.10), we deduce that∣∣ψf (t + h) −ψf (t)
∣∣≤ 4α∗‖f ‖∞h + ∥∥QY

h f − f
∥∥∞ .

As a Feller process, (Yt)t≥0 is strongly continuous at 0, so that ψf (t + h) →ψf (t) as h ↘ 0.
On the other hand, for h ∈ [0, t], we can prove similarly that∣∣ψf (t) −ψf (t − h)

∣∣≤ 4α∗‖f ‖∞h + ∥∥QY
h f − f

∥∥∞ ,

and ψf (t − h) →ψf (t) as h ↘ 0.

A.6. Proof of Lemma 5

Let h> 0. For any t ≥ 0,

∣∣∣∣ψf (t + h) −ψf (t)

h
−ψAf (t)

∣∣∣∣=
∣∣∣∣∣Q̌t

(
Q̌h(f × 1N)(x, n) − f (x)1n∈N

h
−Af (x) × 1n∈N

)∣∣∣∣∣
≤ sup

(y,k)∈Ě

∣∣∣∣∣ Q̌h(f × 1N)(y, k) − f (y)1k∈N
h

−Af (y) × 1k∈N

∣∣∣∣∣ .

The proof thus consists in showing that

sup
(y,k)∈Ě

∣∣∣∣∣ Q̌h(f × 1N)(y, k) − f (y)1k∈N
h

−Af (y) × 1k∈N

∣∣∣∣∣−→
h↘0

0.

For any h> 0, y ∈ E, and k ≥ 0,

1

h

(
Q̌h(f × 1N)(y, k) − f (y)1k∈N

)
=E(y,k)

[
f (X′

h) − f (y)

h

]

= 1

h

(
E(y,k)

[
f (X′

h)1Ť1>h

]
+E(y,k)

[
f (X′

h)1Ňh=1

]
+E(y,k)

[
f (X′

h)1Ť2<h

]
− f (y)

)
.

But

1

h

(
E(y,k)

[
f (X′

h)1Ť1>h

]
− f (y)

)
= 1

h

(
E(y,k)

[
f (Y ′(0)

h )1Ť1>h

]
− f (y)

)
= 1

h

(
E(y,k)

[
f (Y ′(0)

h )e− ∫ h
0 α̌(Y ′(0)

u ,k) du
]
− f (y)

)

=EY
y

[
f (Yh) − f (y)

h

]
+ 1

h
EY̌

(y,k)

[
f (Y ′

h)

(
e− ∫ h

0 α̌(Y′
u,k) du − 1 +

∫ h

0
α̌(Y ′

u, k) du

)]

− 1

h
EY̌

(y,k)

[∫ h

0
f (Y ′

h)α̌(Y ′
u, k) du

]
.
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Using this result and the expression for Af (y) from Theorem 3, we can write

1

h

(
Q̌h(f × 1N)(y, k) − f (y)1k∈N

)
−Af (y)

= 1

h

(
Q̌h(f × 1N)(y, k) − f (y)1k∈N

)
−AY f (y) + α(y)f (y) − α(y)Kf (y)

= A1(h) + A2(h) + A3(h) + A4(h) + A5(h),

where

A1(h) =EY
y

[
f (Yh) − f (y)

h

]
−AY f (y),

A2(h) = α̌(y, k)f (y) − 1

h
EY̌

(y,k)

[∫ h

0
f (Y ′

h)α̌(Y ′
u, k) du

]
,

A3(h) = 1

h
EY̌

(y,k)

[
f (Y ′

h)

(
e− ∫ h

0 α̌(Y′
u,k) du − 1 +

∫ h

0
α̌(Y ′

u, k) du

)]
,

A4(h) = 1

h
E(y,k)

[
f (X′

h)1Ňh=1

]
− α(y)Kf (y) + (α(y) − α̌(y, k))f (y),

A5(h) = 1

h
E(y,k)

[
f (X′

h)1Ť2<h

]
.

The end of the proof consists in proving that each of these five terms tends uniformly to 0
as h ↘ 0.

For the first one, note that

EY
y

[
f (Yh) − f (y)

h

]
= QY

h f (y) − f (y)

h
,

and since f ∈DY
A, by the definition of AY , sup(y,k)∈Ě |A1(h)| tends to 0 as h → 0.

To show that sup(y,k)∈Ě|A2(h)| −→
h↘0

0, we consider two cases: y /∈ Ek and y ∈ Ek. First

suppose that y /∈ Ek. Then α̌(y, k) = α(y) + αk and

A2(h) = 1

h

∫ h

0
EY̌

(y,k)

[
α̌(y, k)f (y) − f (Y ′

h)α̌(Y ′
u, k)

]
du

= αkE
Y
y

[
f (y) − f (Yh)

]+ 1

h

∫ h

0
EY

y

[
α(y)f (y) − f (Yh)α(Yu)

]
du,

where the switch from EY̌
(y,k) to EY

y is a consequence of (4.2), specifically the bivariate
generalization of it. Therefore,
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A2(h) = αk
(
f (y) − QY

h f (y)
)+ 1

h

∫ h

0
EY

y

[
EY

y

[
α(y)f (y) − f (Yh)α(Yu) |Yu

]]
du

= αk
(
f (y) − QY

h f (y)
)+ 1

h

∫ h

0
EY

y

[
α(y)f (y) − QY

h−uf (Yu)α(Yu)
]

du

= αk
(
f (y) − QY

h f (y)
)+ 1

h

∫ h

0
EY

y

[
α(y)f (y) − f (Yu)α(Yu)

]
du

+ 1

h

∫ h

0
EY

y

[
f (Yu)α(Yu) − QY

h−uf (Yu)α(Yu)
]

du

= αk
(
f (y) − QY

h f (y)
)+

∫ 1

0

(
f × α− QY

hv(f × α)
)

(y) dv

+
∫ 1

0
EY

y

[
α(Yhv)

(
f − QY

h(1−v)f
)

(Yhv)
]

dv.

So when y /∈ Ek,

|A2(h)| ≤ α∗‖QY
h f − f ‖∞ +

∫ 1

0
‖QY

hv(f × α) − f × α‖∞ dv + α∗
∫ 1

0
‖QY

h(1−v)f − f ‖∞ dv,

(A.11)

which does not depend on (y, k) ∈ Ě, and which converges to zero as h goes to 0 by the
dominated convergence theorem because f ∈DY

A ⊂ C0(E). When y ∈ Ek, we have α̌(y, k) =
βk + δ(y), and using the same computations we obtain the same inequality (A.11), leading to
the same convergence. So sup(y,k)∈Ě|A2(h)| −→

h↘0
0.

Regarding A3(h), its uniform convergence towards 0 is easily obtained from

|A3(h)| ≤ ‖f ‖∞
2h

EY̌
(y,k)

⎡
⎣(∫ h

0
α̌(Y ′

u, k) du

)2
⎤
⎦≤ ‖f ‖∞ (2α∗h)2

2h
= 2h‖f ‖∞(α∗)2.

Let us now prove that sup(y,k)∈Ě|A4(h)| −→
h↘0

0. We compute

1

h
E(y,k)

[
f (X′

h)1Ňt=1

]
= 1

h
E(y,k)

[
f (X′

h)1τ̌1≤h1τ̌2>h−τ̌1

]
= 1

h
E(y,k)

[
f (Y ′(1)

h−τ̌1
)1τ̌1≤hP(y,k)

(
τ̌2 > h − τ̌1

∣∣∣F̌τ̌1 , Y̌ (1)
)]

= 1

h
E(y,k)

[
1τ̌1≤hE(y,k)

[
f (Y ′(1)

h−τ̌1
)e

− ∫ h−τ̌1
0 α̌

(
Y̌(1)

u

)
du
∣∣∣F̌τ̌1

]]

= 1

h
E(y,k)

[
1τ̌1≤hE

Y̌
Čτ̌1

[
f (Y ′

h−τ̌1 )e
− ∫ h−τ̌1

0 α̌
(

Y̌u

)
du
]]

= 1

h
E(y,k)

[
1τ̌1≤hE

Y̌
Čτ̌1

[
f (Y ′

h−τ̌1 )
]]

+ 1

h
E(y,k)

[
1τ̌1≤hE

Y̌
Čτ̌1

[
f (Y ′

h−τ̌1 )

(
e
− ∫ h−τ̌1

0 α̌
(

Y̌u

)
du − 1

)]]
.

https://doi.org/10.1017/apr.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.20


96 F. LAVANCIER ET AL.

The second term converges uniformly to 0 because its norm is bounded by

E(y,k)

[
1τ̌1≤h ‖f ‖∞

h
EY̌

Čτ̌1

∣∣∣∣∣
∫ h−τ̌1

0
α̌(Y̌u) du

∣∣∣∣∣
]

≤ 2hα∗‖f ‖∞
h

P(y,k)(τ̌1 ≤ h) ≤ 4h(α∗)2‖f ‖∞.

Let us prove that the first term converges uniformly to α(y)Kf (y) − (α(y) − α̌(y, k))f (y),
proving that sup(y,k)∈Ě|A4(h)| −→

h↘0
0. We have

1

h
E(y,k)

[
1τ̌1≤hE

Y̌
Čτ̌1

[
f (Y ′

h−τ̌1 )
]]= 1

h
E(y,k)

[
1τ̌1≤hE(y,k)

[
EY̌

Čτ̌1

[
f (Y ′

h−τ̌1 )
] ∣∣∣Y̌ (0), τ̌1

]]

= 1

h
E(y,k)

⎡
⎣1τ̌1≤h

∫
z1∈E

∑
q≥0

EY̌
(z1,q)

[
f (Y ′

h−τ̌1 )
]

Ǩ
(

(Y ′(0)
τ̌1
, k); dz1 × {q}

)⎤⎦ .

We separate as before the cases y /∈ Ek and y ∈ Ek. If y /∈ Ek, we obtain

1

h
E(y,k)

[
1τ̌1≤hE

Y̌
Čτ̌1

[
f (Y ′

h−τ̌1 )
] ]

= 1

h
E(y,k)

⎡
⎣1τ̌1≤h

α
(

Y ′(0)
τ̌1

)
α̌
(

Y ′(0)
τ̌1
, k
) ∫

E
EY̌

(z1,k)

[
f (Y ′

h−τ̌1 )
]

K(Y ′(0)
τ̌1
, dz1)

⎤
⎦

+ 1

h
E(y,k)

⎡
⎣1τ̌1≤h

βk

α̌
(

Y ′(0)
τ̌1
, k
)EY̌

(Y ′(0)
τ̌1
,k+1)

[
f (Y ′

h−τ̌1 )
]⎤⎦

+ 1

h
E(y,k)

⎡
⎣1τ̌1≤h

δk

α̌
(

Y ′(0)
τ̌1
, k
)EY̌

(Y ′(0)
τ̌1
,k−1)

[
f (Y ′

h−τ̌1 )
]⎤⎦ . (A.12)

Let us show that the first term in (A.12) converges to α(y)Kf (y):

1

h
E(y,k)

⎡
⎣1τ̌1≤h

α
(

Y ′(0)
τ̌1

)
α̌
(

Y ′(0)
τ̌1
, k
) ∫

E
EY̌

(z1,k)

[
f (Y ′

h−τ̌1 )
]

K(Y ′(0)
τ̌1
, dz1)

⎤
⎦− α(y)Kf (y)

= 1

h
E(y,k)

⎡
⎣1τ̌1≤h

α
(

Y ′(0)
τ̌1

)
α̌
(

Y ′(0)
τ̌1
, k
) ∫

E
QY̌

h−τ̌1
(f × 1N)(z1, k)K(Y ′(0)

τ̌1
, dz1)

⎤
⎦− α(y)Kf (y)

=EY̌
(y,k)

[∫ 1

0
α
(
Y ′

hv
) ∫

E
QY

h(1−v)f (z1)K(Y ′
hv, dz1)e− ∫ hv

0 α̌(Y′
u,k) dudv

]
− α(y)Kf (y)
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=EY̌
(y,k)

[∫ 1

0
α
(
Y ′

hv
) ∫

E
QY

h(1−v)f (z1)K(Y ′
hv, dz1)dv

]
− α(y)Kf (y)

+EY̌
(y,k)

[∫ 1

0
α
(
Y ′

hv
) ∫

E
QY

h(1−v)f (z1)K(Y ′
hv, dz1)

(
e− ∫ hv

0 α̌(Y′
u,k) du − 1

)
dv

]
.

But for the last term,

∣∣∣EY̌
(y,k)

[ ∫ 1

0
α
(
Y ′

hv
) ∫

E
QY

h(1−v)f (z1)K(Y ′
hv, dz1)

(
e− ∫ hv

0 α̌(Y′
u,k) du − 1

)
dv
]∣∣∣

≤ α∗‖f ‖∞EY̌
(y,k)

[∫ 1

0

∫ hv

0
α̌(Y ′

u, k) du dv

]
≤ 2h(α∗)2‖f ‖∞,

and from (the bivariate version of) (4.2), we can replace EY̌
(y,k) by EY

y in the other term to get∣∣∣∣∣EY
y

[∫ 1

0
α(Yhv)

∫
E

QY
h(1−v)f (z1)K(Yhv, dz1)dv

]
− α(y)Kf (y)

∣∣∣∣∣
≤
∫ 1

0

∣∣∣EY
y

[
α(Yhv)KQY

h(1−v)f (Yhv) − α(Yhv)Kf (Yhv)
]∣∣∣ dv

+
∫ 1

0

∣∣∣EY
y

[
α(Yhv)Kf (Yhv) − α(y)Kf (y)

]∣∣∣ dv

≤ α∗
∫ 1

0
‖KQY

h(1−v)f − Kf ‖∞ dv +
∫ 1

0

∣∣QY
hv(α× Kf )(y) − (α× Kf )(y)

∣∣ dv

≤ α∗
∫ 1

0
‖QY

h(1−v)f − f ‖∞ dv +
∫ 1

0
‖QY

hv(α× Kf ) − (α× Kf )‖∞ dv,

which converges to 0 as h goes to 0 by the dominated convergence theorem, using the fact
that f ∈DY

A ⊂ C0(E) and KC0(E) ⊂ C0(E). This proves the convergence to α(y)Kf (y) of the
first term in (A.12). As for the second and third terms in (A.12), their sum converges to (βk +
δk)f (y) = (α̌(y, k) − α(y))f (y). Indeed, for any q,

1

h

∣∣∣∣∣∣E(y,k)

⎡
⎣1τ̌1≤h

1

α̌
(

Y ′(0)
τ̌1
, k
)EY̌

(Y ′(0)
τ̌1
,q)

[
f (Y ′

h−τ̌1 )
]⎤⎦− f (y)

∣∣∣∣∣∣
= 1

h

∣∣∣∣∣
∫ h

0
EY̌

(y,k)

[
EY

Y′
s

[
f (Yh−s)

]
e− ∫ s

0 α̌(Y′
u,k) du

]
ds − f (y)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ 1

0
EY̌

(y,k)

[
EY

Y′
hv

[
f (Yh(1−v))

] (
e− ∫ hv

0 α̌(Y′
u,k) du − 1

)]
dv

∣∣∣∣∣
+
∣∣∣∣∣
∫ 1

0
EY

y

[
EY

Yhv

[
f (Yh(1−v))

]]
dv − f (y)

∣∣∣∣∣

https://doi.org/10.1017/apr.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.20


98 F. LAVANCIER ET AL.

≤
∫ 1

0
‖f ‖∞EY̌

(y,k)

[∣∣∣∣∣
∫ hv

0
α̌(Y ′

u, k) du

∣∣∣∣∣
]

dv +
∫ 1

0

∣∣∣EY
y

[
QY

h(1−v)f (Yhv)
]
− f (y)

∣∣∣ dv

≤ α∗‖f ‖∞h +
∫ 1

0

∣∣QY
h f (y) − f (y)

∣∣ dv

≤ α∗‖f ‖∞h + ‖QY
h f − f ‖∞,

which converges to 0 as h goes to 0 by the dominated convergence theorem because f ∈DY
A ⊂

C0(E). This completes the proof of the claimed convergence of A4(h) when y /∈ Ek.
Suppose now that y ∈ Ek. The expansion carried out in (A.12) becomes in this case

1

h
E(y,k)

[
1τ̌1≤hE

Y̌
Čτ̌1

[
f (Yh−τ̌1 )

] ]

=1

h
E(y,k)

⎡
⎣1τ̌1≤h

β(Y ′(0)
τ̌1

)

α̌(Y ′(0)
τ̌1
, k)

∫
E
EY̌

(z1,k+1)

[
f (Y ′

h−τ̌1 )
]

Kβ
(

Y ′(0)
τ̌1
, dz1

)⎤⎦

+ 1

h
E(y,k)

⎡
⎣1τ̌1≤h

βk − β(Y ′(0)
τ̌1

)

α̌(Y ′(0)
τ̌1
, k)

EY̌
(Y ′(0)
τ̌1
,k+1)

[
f (Y ′

h−τ̌1 )
]⎤⎦

+ 1

h
E(y,k)

⎡
⎣1τ̌1≤h

δk

α̌(Y ′(0)
τ̌1
, k)

∫
E
EY̌

(Y ′(0)
τ̌1
,k−1)

[
f (Y ′

h−τ̌1 )
]

Kδ
(

Y ′(0)
τ̌1
, dz1

)⎤⎦

+ 1

h
E(y,k)

⎡
⎣1τ̌1≤h

δ(Y ′(0)
τ̌1

) − δk

α̌(Y ′(0)
τ̌1
, k)

∫
E
EY̌

(Y ′(0)
τ̌1
,k)

[
f (Y ′

h−τ̌1 )
]

Kδ
(

Y ′(0)
τ̌1
, dz1

)⎤⎦ .

(A.13)

The first, third, and fourth terms above can be treated exactly like the first term in (A.12)
to prove that they converge uniformly towards β(y)Kβ f (y), δkKδf (y), and (δ(y) − δk)Kδf (y),
respectively, the sum of which is α(y)Kf (y). For the second term, we compute

∣∣∣∣∣1hE(y,k)

[
1τ̌1≤h

β(Y ′(0)
τ̌1

)

α̌(Y ′(0)
τ̌1
, k)

EY̌
(Y ′(0)
τ̌1
,k+1)

[
f (Y ′

h−τ̌1 )

]]
− β(y)f (y)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ 1

0
EY̌

(y,k)

[
β(Y ′

hv)EY
Y′

hv

[
f (Yh(1−v))

] (
e− ∫ hv

0 α̌(Y′
u,k+1) du − 1

)]
dv

∣∣∣∣∣
+
∣∣∣∣∣
∫ 1

0
EY

y

[
β(Yhv)EY

Yhv

[
f (Yh(1−v))

]]
dv − β(y)f (y)

∣∣∣∣∣
≤ α∗‖f ‖∞

∫ 1

0

∫ hv

0
EY

y

[
α̌(Yu, k + 1)

]
du dv

+
∣∣∣∣∣
∫ 1

0
EY

y

[
β(Yhv)QY

h(1−v)f (Yhv)
]

dv − β(y)f (y)

∣∣∣∣∣
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≤ (α∗)2‖f ‖∞h +
∣∣∣∣∣
∫ 1

0
EY

y

[
β(Yhv)QY

h(1−v)f (Yhv) − β(Yhv)f (Yhv)
]

dv

∣∣∣∣∣
+
∣∣∣∣∣
∫ 1

0
EY

y

[
β(Yhv)f (Yhv)

]
dv − β(y)f (y)

∣∣∣∣∣
≤ (α∗)2‖f ‖∞h + α∗

∫ 1

0
‖QY

h(1−v)f − f ‖∞ dv +
∫ 1

0
‖QY

hv(β × f ) − (β × f )‖∞ dv,

which converges to 0 as h goes to 0 by the dominated convergence theorem because f ∈DY
A ⊂

C0(E). Given this result and the convergence already proven for the second term in (A.12),
we deduce that the second term in (A.13) converges uniformly in (y, k) to (βk − β(y))f (y) =
(α̌(y, k) − α(y))f (y).

The arguments for y /∈ Ek and y ∈ Ek yield the same convergence results, so in conclusion

sup
(y,k)∈E×N

∣∣∣E(y,k)

(
f (X′

h)1Ňt=1

)
+ (α(y) − α̌(y, k))f (y) − α(y)Kf (y)

∣∣∣−→
h↘0

0,

that is, sup(y,k)∈Ě|A4(h)| −→
h↘0

0.

To finish the proof, it remains to handle A5(h) using (2.3) where Ň∗
h ∼P(2α∗h):

|A5(h)| ≤ ‖f ‖∞
h

P(y,k)

(
Ňh ≥ 2

)
≤ ‖f ‖∞

h
P
(

Ň∗
h ≥ 2

)
= 2‖f ‖∞ (α∗)2 h + o

h↘0
(h),

which converges uniformly to 0 as h goes to 0.

A.7. Proof of Corollary 2

Let

G(t) =ψf (t) − f (x) −
∫ t

0
ψAf (s) ds.

This function is continuous and right-differentiable on R+ from Lemmas 4 and 5, and
∂+G(t)/∂t = 0. So G is constant. But G(0) = 0 because s ≥ 0 �→ψAf (s) is bounded. As a con-
sequence we obtain (4.3). Moreover, Af ∈ C0(E), so by Lemma 4 the function s ≥ 0 �→ψAf (s)
is continuous. By (4.3) we deduce that ψf is differentiable.
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in Rd, as introduced in Section 2.4.
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