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1. Introduction

If we consider a semigroup, its algebraic structure may be such that it is
isomorphic to a subsemigroup of a group, or is algebraically embeddable in
a group. This problem was investigated in 1931 by Ore who obtained in (4)
a set of necessary conditions for this embedding. A necessary condition is
that the semigroup should be cancellative: for any a, x, y in the semigroup
either xa = ya or ax = ay implies that x = y. Malcev in (3) showed that this
was not sufficient. It is enough to note that his example was a non-commutative
semigroup: a commutative cancellative semigroup is embeddable algebraically
in a group.

If, however, we give a semigroup S a Hausdorff topology and require the
multiplication to be a continuous map from S x .S to S, so that S is a fopological
semigroup, then an obvious question is whether or not S can be embedded
topologically in a topological group. In other words, is S topologically iso-
morphic to a subsemigroup of a topological group? This question has been
investigated in (2), (6), (8), (9) and (10).

It is the purpose of this paper to answer a slightly narrower question,
namely, when is a topological semigroup embeddable in a group as a sub-
semigroup with non-empty interior? This problem has been considered in
(7) but the solution given there seems too complicated to be useful. A much
simpler solution has been given in (5) (Theorem 3.2.14) but there is a gap in
the proof and the result is false as stated (see Example 5.3 below). In this
paper we effectively complete the result of (5) and consider some related
questions.

I should like here to express my gratitude to my research supervisor, Dr A. J.
White, to whom I am indebted for encouragement and invaluable advice.
Acknowledgement is also due to the Carnegie Trust for their generous financial
support while this work was being done.

2. Embedding in the group of quotients

Let S be a cancellative semigroup such that aSnbS # & for a, be S.
It was shown by Ore in (4) that S may be embedded algebraically in a group as
follows. An equivalence relation R is defined on Sx S by (a, b)R(c, d) if
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bx = dy for some x, y € § implies that ax = ¢y. It is clear that R is reflexive
and symmetric and, since aSnbS # J for a, be S, R is also transitive. The
set of equivalence classes is denoted by Q(S) and multiplication is defined on
O(S) by [a, b][c, d] = [as, dt] where s, t € S are such that bs = c¢t. The group
Q(S) with this operation is called the group of quotients of S. For any p€ S,

[xq, g1 = [xp,P] (g€ S, x€S).
Consequently, if p € S, the equation

(2.1) P(x) =[xp, p] (x€S)

defines a homomorphism P, of S into Q(S), which is independent of the choice
of p. Since P is one-one, P embeds S in O(S). If S is a topological semigroup,
Q(S) has a natural topology: that obtained by endowing S x S with the product
topology and Q(S) with the quotient topology from the relation R. This will
be referred to as the quotient topology of Q(S).

It will often be convenient to identify the image of S in Q(S) with S itself.
A point s € S then appears as s in Q(S), its inverse as s~ 1, and every element of
QO(S) may be written in the form st~ where s, € S. A set A< Q(S) is open in
the quotient topology if 4* = {(x, ): x,ye Sand xp~! € A} is open in Sx S.

Our first theorem shows that the quotient topology is the strongest topology
which we can assign to Q(S) and for which embeddability is possible.

Theorem 2.1. Let S be a cancellative topological semigroup such that
aSnbS # & for a, be S. If S is embeddable in a topological group G, then
the topology which Q(S) inherits as a subspace of G is weaker than the quotient

topology of Q(S).

Proof. Since Q(S) is a topological group with the topology which it inherits
from G, we treat the case G = Q(S). Let Q(S) have the uniformity with basis
A consisting of all sets By = {(x, y): x, yeQ(S) and xy ' e U} for U a
symmetric neighbourhood of the identity of Q(S). Then a uniformity which
generates the topology of S has basis #s = {Byn(Sx S): By %}.

Suppose A<= Q(S) is open in the uniform topology. We now show that
A* ={(s, £): 5, te S and st eA} is open in SxS. Choose (s, 1) € A*.
Then st~ € 4 and there exists By € # such that st~! e st~ 'By[e]= 4, where
e is the identity of Q(S). Choose B, € # such that B, o B,cBy. If W= s"1Vs
and (p, q) € [By[s] x (By[t ] 11n(Sx S), then (p, s)e By and (¢~ *,¢t~*) € By,.
By the construction of W, (sq~!, st~')e B, and, since (pg~!, sq ') e By,
(pqg™Y, st™Y) e By from which it follows that pg~! e st~ 'B,[e]cA4. Hence
(p, q) € A*, i.e. A* is open in Sx S.

The principal result of this section shows that the problem of embedding
a topological semigroup S as an open subsemigroup of some group reduces
to that of so embedding S in @(S) with the quotient topology.
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Theorem 2.2. Let S be a cancellative topological semigroup such that
aSnbS # & for a, be S. Then S is embeddable as a subsemigroup with non-
empty interior in some topological group if and only if

(2.2) Q(S) is a topological group with the quotient topology;
(2.3) S is embeddable with nonempty interior in Q(S) with this topology.
We first prove some lemmas.

Lemma 2.1. Let G be a topological group. G and Q(G) are topologically
isomorphic.

Proof. Since [xy~'p, p] =[x, ¥] (x, », pe G) the equation (2.1) (with
S = G) defines an isomorphism of G onto Q(G). Thus G and Q(G) are iso-
morphic and so, as pointed out above, G and Q(G) may be identified algebraic-
ally. It remains to show the equivalence of the two topologies: 77,, the given
topology of G, and & ,, the quotient topology.

If AcG, AeT,iff{(x,y): x,yeG and xy~'e 4} is open in GxG,
iff {(xy™', ¥): x,ye G and xp~ ' € 4} is open in Gx G ((x, y)~(xy~ !, y)is a
homeomorphism), i.e. 4 €75, iff AXG is open in GXxG so that Ae€J,
iff de7,.

Lemma 2.2. If S is an open subsemigroup of a topological group G and if
aSnbS £ & for a, be S, then the topology which Q(S) inherits as a subspace
of G is the quotient topology of Q(S).

Proof. With Q(S) = {st™1: 5,1 S} as above, let 7 be the topology which
Q(S) inherits from G, 2 the quotient topology.

Let AcQ(S), Ae2. Then A¥ = {(x, y): x, ye S and xy~' € 4} is open
in Sx S and so in Gx G since Sis openin G. If ab~ ' € A, then

aeC=1{g: geGand (g, b)e A} = AbNS.
Since C is open in G, Cb™! is open in G and ab~* e Ch~'cA. Thus AT,
so that 2< 7.
Let AcQ(S), Ae7. Then A = UnQ(S) where U is open in G and so,
by Lemma 2.1, U* = {(x, y): x, ye G and xy~! e U} is open in GxG. Thus
A¥=U*n(SxS)is openin Sx S, ie A4 €2, sothatT 9.

Proof of Theorem 2.2. Suppose S G where G is a topological group and
I=intS s J. (int S denotes the interior of S.) Since I is open in G, SI is
open in G and, since SIc S, we have SIc1, so that I is an ideal of S. Hence
I is an open subsemigroup of G. Let a, bel. By hypothesis there exist
s, t€ S such that as = bt. Choose jel. Since s, tje I, and a(sf) = b(Y),
alnbl # J. Thus I has a group of quotients @(7). In the case when S is
commutative it was shown by Peck (see for example (7), p. 197) that Q)
with the quotient topology is algebraically and topologically isomorphic to
Q(S) with the quotient topology and minor modifications show that the same

E.M.S.—1
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is true in the present case. We therefore identify Q(S) and Q(I). Applying
Lemma 2.2 to I, the quotient topology of Q(S) is the topology which Q(S) inherits
as a subspace of G. Thus Q(S) is a topological group with the quotient topology
and S is embeddable with non-empty interior in Q(S) with this topology.

The reverse implication is obvious.

Corollary. Let S be a cancellative topological semigroup such that aSnbS # &
fora,beS. If Q(S) is a topological group with topology I and S is embeddable
with non-empty interior in Q(S) with this topology, then I is the quotient
topology.

Proof. This is immediate from the proof of Theorem 2.2 where it is pointed
out that if S is embeddable with non-empty interior in some topological group
then the quotient topology of Q(S) is the topology which Q(S) inherits as a
subspace of the group.

3. Preliminary results

This section consists of lemmas which isolate points which are required
for the main embedding theorems and which may be of independent interest.

Lemma 3.1. Let G be a group which is also a topological space. Then the
following conditions are equivalent:

(1) U an open subset of G and x € G imply that xU and Ux are open in G;
(2) the map (x, y)—xy of Gx G into G is separately continuous.

Proof. Suppose (1) holds. Fix ae G. Let be G and let M be an open
neighbourhood of ab. Then N = a M is an open neighbourhood of b
and ab e aN< M, whence follows the continuity of (x, y)-xy in the second
variable. Continuity in the first variable is similar.

Suppose (2) holds. Let U=G be open and xe G. Let {x,} be a net in G
such that x,—xu for some ue U. Using separate continuity, x™x,~»ue U
which is open in G and so {x~'x,} is eventually in U. It follows that {x,} is
eventually in xU and xU is open. Similarly Ux is open.

Lemma 3.2, Let G be a group which is also a topological space and let
Sc G be a non-empty open subsemigroup. If for fixed g € G the maps x—xg
and x—gx of G onto G are continuous and if the map (x, y)—xy of Sx S into
S is continuous, then the map (x, y)=xy of G x G onto G is continuous.

Proof. Let (a, b)e Gx G and let {(a,, b,)} be a net in Gx G such that
(a,, b)—(a, b) in GxG. Then a,—a and b,—»b in G. Using separate con-
tinuity of multiplication on G, a™'a,—e and b,b~'—e where e is the identity
of G and, if p, g€ S, pa~'a,~p and b,p~'q—q. Since Sis open in G, {pa~'a,}
and {b,b'q} are eventually in S. Joint continuity of multiplication in S gives
pa‘a,bb"'q-pq in S and so in G whence, by repeated use of the separate
continuity of multiplication in G, a,b,—ab. Thus the result is established.
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Lemma 3.3. Let G be a group with a Hausdorff topology and separately
continuous multiplication. Suppose G contains a non-empty open subset S such
that S is locally compact in the relative topology. Then G is a locally compact
topological group.

Proof. Let ae G and let N be an open neighbourhood of a. If s€ S,
sa~ !N is an open neighbourhood of s by Lemma 3.1 and so M = sa”*NnS
is an open neighbourhood of s both in S and in G. Since S is locally compact
in the relative topology, there exists a compact neighbourhood C of s in S
such that se Cc M. Now S'is open in G and so C is a compact neighbourhood
of s in G. It follows from Lemma 3.1 that aeas *CcN and as™'C is a
compact neighbourhood of a. The topology of G is thus locally compact.
Since G is a group with a locally compact Hausdorff topology and separately
continuous multiplication, it follows from a result of Ellis in (1) (see Theorem
4.3 below) that G is a locally compact topological group.

4. The embedding theorems

Let S be a topological semigroup. For se S, L, and R, are the maps of
S into S defined by L(x) = sx and R(x) = xs (x€ S). For AcS and se S,
A_;s={t: teS and at = s for some ae€ A}. It should be noted that if §
is a topological group, 4_,s = AT's where 4™! = {a™!: ae A4}.

We now state and prove our main results.

Theorem 4.1. Let S be a topological semigroup such that aSnbS # &
for a, be S. Then S is embeddable as an open subsemigroup of a topological
group if and only if
(4.1) S is cancellative;

(4.2) for all x, ye S and all open subsets U of S, xU, Ux and (Uy)_,x are
open in S.
We first prove a technical lemma.
Lemma 4.1. Let S be a cancellative semigroup such that aSnbS # & for

a,beS. Ifp,q,r,seS and VS, then there are functions v—v', v—>b defined
on V to S such that

@3)  (pg'Vrs)nS = {J (Ry,) (L [L'(Vrv)]);

veV
44) (V7 'rsTHnS = UV(Rsa)"‘(Lp[(Vq)-l(rﬁ)])-

Proof. Choose ve V. Since g, re S are fixed, and since gSnorS # J,
there exist v/, v” € S such that vrv” = gv”. Choose and fix such a v, v” for
each v e S. Similarly fix 7, © € S such that vgd = rd.

If xe(pg~Vrs~1)nS, then xe S and x = pg~'vrs™! for some ve ¥ so
that (xs)(vr)~! = pg~1. Since vrv’ = qv”, it follows from the equivalence
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relation which defines Q(S) that (xs)v' = pv”. The equation vrv’ = qv” also
shows that v” € L;'(Vrv’) and so x e (Rg,) ™ '(L [L7'(Vrv))]). If

X € UV (Rsv’)_ l(Lp[L; I(Vrv,)]),

then xsv’ = py where gy = wrv’ for some we V. By the equivalence relation
which defines Q(S), (xs)(wr)~! = pg~!, so that x e (pg ™ Vrs~})nS. Thus (4.3)
is established.

If xe(pg™*V~"1rs™)NS, then xe S and x = pg~ v~ 'rs~ ! for some veV.
Thus (xs)r™! = p(vg)~* and, since vgd = ro, we have pi = xsb. Since
¥ € (Vq)-,(rd), we have x € (R;)~ (L, [(Vg)-,(rd)]). If

xe "LE)V R (L,[(Vg)-1(rD)]),

then xst = py where wqy = ri for some we V. Hence (xs)r
ie. x = pg~w lrsT e (pqg~ V" rs1)NS. This proves (4.4).
Proof of Theorem 4.1. Suppose conditions (4.1) and (4.2) hold and let Q(S)
be the group of quotients of S in which the image of S is identified with S
as already described. We first of all define a topology for Q(S). It follows
from the corollary to Theorem 2.2 that this topology is the quotient topology

of Q(S) but we justify its use by pointing out that it is more easily manipulated.
Define

4.5 T ={4: AcQ(S)and (pg~'4Ars " )nSisopenin Sforall p, g, r, s€ S}.
1t is clear that Q(S), J €4 and for 4, BeJ, p,q, 1, SE S,
[pg~ Y (AnB)rs ' ]nS =[(pg~Ars)nS]n[(pg~1Brs 1 )nS] so that AnBeT.

It follows similarly that the union of an arbitrary family of members of 7
is again in 4. Thus Z is a topology for Q(S) and for the rest of the proof
Q(S) will denote the group of quotients with topology 7.

The first part of our proof consists of showing that S is an open subsemi-
group of Q(S).

(4.6) Left and right translations in Q(S) are open maps. If AeJ and uv™*eQ(S),
then for any p, g, r, s€ S, pg~tuv™! = wz™! € Q(S) so that

[pg~ Yo~ *A)rs~ NS = (w2~ Ars™Y)nS
which is open in S. Hence uv~14 € 7 and similarly duv~' e 7.

-1

= p(wg)~?,

(4.7) Multiplication in Q(S) is separately continuous. This is immediate from
(4.6) and Lemma 3.1.

Let 77* be the topology which S inherits from Q(S) and & be the original
topology of S.

(48) If AcQ(S) and Ae T then AnSe . If 4Aed, then in particular
(pp~'4pp~)nSe & for any pe S and so AnSe &.
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(49) IfAcSand Ac, then Aeg. Ifp,q,r, ses8, it follows from (4.3)
that (pg~'Ars )nS= |J (R.) L[L;'(4ra)])e ¥ by (42) and the
ae A

continuity of multiplication in S, i.e. (4.9) holds.

It is immediate from (4.8) and (4.9) that 7* = & and that S is an open
subsemigroup of Q(S). We now show that Q(S) is a topological group.

(4.10) J is a Hausdorff topology. Let st™!, wz"le Q(S), st ™! # wz™1,
Choose x, y € S such that tx = zy. By the defining equivalence relation for
0O(S), sx £ wy. Since S is HausdorfT, there exist disjoint open neighbourhoods
Uand Vin S of sx and wy respectively. It follows from (4.9) that U, Ve Z
and then an application of (4.6) shows that Ux~'t~! and Vx~1¢~! are disjoint
neighbourhoods of st~ and wz~! in Q(S).

(4.11) Multiplication in Q(S) is jointly continuous. Since S is an open sub-
semigroup of Q(S), this result follows from (4.7) and Lemma 3.2.

(4.12) The inverse map is continuous in Q(S). Let A be a subset of S with
Ae7. Ifp g, r,seS, (g7 A7 'rs™ NS = |J (Ra)™ (L, [(49) - 1(r@)]) by
aeAd

(4.4) and so 4~ ! € 7, using (4.2) and continuous multiplication in S. Let N be
a subset of Q(S) such that NeZ and let xy~* e N. The set A = NynS<S
and, by (4.6), AeJ. As above 4 'eZ. Now x'ed™! so that
Gy H ' =yx"teyd *cN~1 Sinceyd 'es,N les.

Equations (4.10)-(4.12) combine to show that Q(S) is a topological group,
establishing one half of the theorem.

Now suppose that S< G where G is a topological group and § is an open
subsemigroup of G. It is immediate that (4.1) is satisfied.

Let UcS be open in S and let x, ye S. Since S is open in G, U is open in
G, so that Ux and xU are open in G. But Ux, xU<.S and so Ux and xU are
open in S. Now Uy open in G implies that (Uy) ™! is open in G and

(Uy)-1x = (Uy) " 'xnS.

Since (Uy)~'x is open in G, (Uy)_,x is open in S, showing that (4.2) holds.

Note. If in the above theorem we make the additional assumption that S
is commutative the labour of the proof is to some extent reduced. In particular,
J consists of those sets A<= Q(S) such that (pg~'4)nS is open in S for all
P, g € S and equations (4.3) and (4.4) reduce to
4.3.1) (pg~'V)nS = (L) 'L)V)) and
(44.1) (g™ A" NNS = (49)-1p.

We now prove a theorem on embedding topological semigroups with
non-empty interior in topological groups. It is independent of the above

theorem but is phrased so that they may be combined to give explicit condi-
tions for embedding with non-empty interior.
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Theorem 4.2. Let S be a topological semigroup such that aSnbS + & for
a, be S. Then S is embeddable with non-empty interior in a topological group
if and only if

(4.1) S is cancellative;
(4.13) there exists an open ideal I in S and i, € I such that

(4.13.1) I is embeddable as an open subsemigroup of a topological
group,

(4.13.2) for any x € S and any open neighbourhood U of x there exists
an open neighbourhood A of iy with A<l and (L, )™ '(Ax)c U.

Proof. Suppose (4.1) and (4.13) hold with T embeddable as an open sub-
semigroup of a topological group G. Then, as in the proof of Theorem 2.2,
I has a group of quotients Q(Z) which is isomorphic to @(S) and Q(I)cG.
We may therefore identify .S algebraically with a subset of G and it remains
to show that this embedding is also topological.

We first of all show that for any x € S and any open set A<, Ax is open
in S. Choose x € S and any set A</ which is open in S. Since 7/ is an open
subsemigroup of G, 4 is open in G and so, since x € G, Ax is openin G. Hence
Axcl. From the embedding of I in G and the openness of 7 in G, Ax is open
in I and so in S.

Suppose {x,} is a net in S such that x,—x € S in the topology of S. Since
i, e I which is an ideal of S, {iyx,} is a net in T with Zyx,—iox € I in the topology
which 7 inherits from S. It follows from (4.13) that iyx,—ipx in the topology
of G which is a topological group and so x,—x in the topology of G.

Let {x,} be a net in S such that x,—x € S in the topology which S inherits
from G. Then x,—x in G and so iyx,—iyx € I in the topology which 7 inherits
from G. By (4.13) this means that iyx,—i,x in the topology of S. Let U be
an open neighbourhood of x in S. An application of (4.13.2) produces an
open neighbourhood 4 of i, in § with 4= and (L,) *(4x)cU. From
above Ax is an open neighbourhood of iox in S. Hence {iyx,} is eventually
in Ax and {x,} is eventually in (L,-o)'l(Ax)c U. Thus x,—x in the topology
of S.

The above calculations show that the topology of S is in fact the topology
which S inherits from G. Since /< S and I is open in G, S is embeddable with
non-empty interior in the topological group G.

We now consider S contained in a topological group G with I = int S
non-empty in G. It is immediate that (4.1) is satisfied. As in the proof of
Theorem 2.2, I is an open ideal of S and I is an open subsemigroup of G.
Thus (4.13.1) holds. Choose i, € I. We show that i, satisfies (4.13.2). For
x € S and U an open neighbourhood of x in §, U = VNS where V is an open
subset of G. Now A = (iu,¥x Y)nI is an open neighbourhood of i, in S
and (L))" !(4x) = U, establishing (4.13.2).
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We now consider locally compact semigroups. The assumption of local
compactness simplifies Theorem 4.1, principally due to the following result
of Ellis (1).

Theorem 4.3. Let G be a group with a locally compact Hausdor[f topology.
If multiplication is separately continuous, then G is a topological group.

The following theorem generalises a result in (2) where complete separable
metric topological semigroups are considered.

Theorem 4.4. Let S be a locally compact topological semigroup such that
aSnbS #  for a, be S. Then S is embeddable as an open subsemigroup of a
topological group if and only if

(4.1) S is cancellative;
(4.14) for all xe S and all open subsets U of S, xU and Ux are open in S.

When S is thus embeddable, the group is locally compact.

Proof. Since the proof is basically the same as that of Theorem 4.1, we
refer to this proof and indicate the differences.

Suppose (4.1) and (4.14) hold. Then Q(S) has the topology 7 defined by
(4.5) and (4.6)-(4.9) stand. It follows that S is an open subsemigroup of Q(S).
Since (4.10) also holds and S is locally compact in the relative topology, an
application of Lemma 3.3 shows that Q(S) is a locally compact topological
group. It is in the proof of Lemma 3.3 that Theorem 4.3 is used.

Suppose S is embeddable as an open subsemigroup of a topological group
G. Theorem 4.1 shows that (4.1) and (4.14) are satisfied and it follows from
Lemma 3.3 that G is locally compact.

5. Examples

The purpose of this section is to illustrate some of the preceding results
and delineate the lack of possibilities for removal of some of our embedding
conditions. We first quote a theorem of Schieferdecker (9) which we use to
justify two of the examples.

Theorem 5.1. Let S be a cancellative topological semigroup such that
aSnbS # & fora, be S. Then

(5.1) Q(S) may be topologised to be a topological group and
(5.2) S is embeddable in this topological group if and only if
(5.3) the topology of S is derived from a uniformity;

(5.4) this uniformity is defined by a basis B whose elements B satisfy the
conditions

(5.4.1) (a, b) € B implies that (ax, bx) € B for xe S;
(5.4.2) (ax, bx) € B implies that (a, b)e B for xe S;
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(5.43) for yeS and Be % there exists B' = B'(y, B)e # so that
(a, b) € B’ implies that ( ya, yb) € B;

(5.4.4) for yeS and Be @ there exists B" = B'(y, B)e B so that
(ya, yb) € B” implies that (a, b) € B.

Corollary. Let S be a cancellative topological semigroup such that aSnbS #
fora,be S. Then S is embeddable in a topological group if and only if S satisfies
(5.3) and (5.4).

Proof. If S satisfies (5.3) and (5.4), then it follows that (5.1) and (5.2)
hold, establishing the implication in one direction.

If S is embeddable in a topological group G, then Q(S)=G and Q(S) is a
topological group with the topology inherited from G so that (5.1) and (5.2)
hold. Hence, by the theorem, (5.3) and (5.4) hold.

It is this corollary which we shall use in the examples which follow.

Example 5.1. This example is chosen to exhibit a simple topological semi-
group which is not embeddable in a topological group.

Let S = [0, co) with addition as operation. Let [0, 1] have the discrete
topology and (1, o) the usual topology from R (the real numbers). Then S
is a commutative cancellative topological semigroup. Since S is locally compact
Hausdorff, the topology of S is generated by a uniformity with a base 4. The
discreteness of the topology of S in [0, 1] means that there exists B’ € # such
that B'n([0, 1]1x[0, 1]) = An([0, 1]x[0, 1]) where A = {(s, s): seS}. If
S is embeddable in some topological group, then # must satisfy (5.4.2), and
so it follows that B’ = A, which implies that S is discrete. Thus S is not
embeddable in any topological group by the corollary to Theorem 5.1.

That S is not embeddable in Q(S) with the quotient topology is pointed
out by J. H. Williamson in (11). It is of interest that Williamson uses this
semigroup as an example of a topological semigroup with a nonhomogeneous
topology. Since S is locally compact it is precisely this nonhomogeneity which
prevents its being embeddable as is shown in Theorem 4.4.

Example 5.2. The hypothesis in the corollary to Theorem 2.2 that S have
non-empty interior cannot be dropped. This is illustrated by the following
example.

Let G be the positive rationals with the topology inherited from the usual
topology of R and multiplication as operation. Let S be the positive integers.
Then S is embeddable with empty interior in G. We have, however, that S
is embeddable in Q(S) with the quotient topology, i.e. in the positive rationals
with the discrete topology. Hence S is embeddable in its group of quotients
with two different topologies.

Example 5.3. We now construct a cancellative commutative topological
semigroup in which translation is an open map but which is not embeddable
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in any topological group. This shows that the conditions of the embedding
theorems cannot be reduced. This semigroup also provides a counterexample
to Theorem 3.2.14 of (5).

Let S = [0, co) with addition as the operation. Then S is a commutative
cancellative semigroup with Q(S) = R and & = {[a, b): a, be S} is a base
for a topology 7 for S. With this topology S is easily shown to be a topological
semigroup. Since the members of # are both open and closed, the char-
acteristic function of a member of & is continuous and so 7 is completely
regular. Hence 7 is generated by a uniformity % having base €. If S is em-
beddable in some topological group, the corollary to Theorem 5.1 shows that
(5.4.1) holds for ¢. Choose any ae S, a>0. If b>a, then [a, b) is an open
neighbourhood of @. Thus there exists C € € such that C[a]<[a, b). It follows
from (5.4.1) that Cn{(x, y): x, ye S and x<y<a} = . Since C€ ¥ there
exists D e € with DcC~ !, and Dn{(x, y): x,y€ Sanda>x>y} = . Hence,
for x € SN[O, a), if (x, ) e CAD € %, then x = y and so {x} is open. Since
ae S was arbitrary, this shows that S is discrete, which is a contradiction.
Thus S is not embeddable in a topological group.

We now note that translation in S is an open map and that S is cancellative
and commutative. Theorem 4.1 does not apply since [1, 2)_;3 = (1, 2] ¢.7.
If S were locally compact, then some [a, b) would be compact. It is, however,

clear that the family {I:a, b— 1) n a positive integer} covers [a, b) but has
n

no finite subcover. Hence S is not locally compact and Theorem 4.4 is therefore

inapplicable.
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