A CYCLIC INVOLUTION OF PERIOD ELEVEN
W. R. HUTCHERSON

IN two earlier papers* the writer discussed involutions of periods five and seven
on certain cubic surfaces in S;. In this paper, a quartic surface containing a
cyclic involution of period eleven is considered.

The surface

Fy(x1,%2,03,%4) = axox3® + bx1xox® + cxixs¥os + dxo®xsx = 0
is invariant under the cyclic collineation T of period eleven,
x'1:x%"2:x"3:x s = x1:Exo: E%3: E¥xy (EY = 1),

Points P,(1,0,0,0), P»(0,1,0,0), P;(0,0,1,0), and P,(0,0,0,1) are all invariant
under T and lie on the surface F,.. This fact may be stated in the following
theorem.

THEOREM 1. Each vertex of the tetrahedron of reference not only lies on the
surface but is a point of coincidence.

By rewriting F, in the order
ax2x33 + x4(bx1x2x4 + Cx1x32 + dxzzxs) =0

it is easily seen that the line P, P, (x3 = x4 = 0) lies on the surface. However,
only the two points P; and P, of the line are invariant under 7. In similar
manner P,P,, P,P;, P,P,, and P;P, lie on F, with only two invariant points
on each line. The line P,P; does not lie on the surface. A second theorem
has been proved.

THEOREM 2. This surface includes all the six edges of the tetrahedron of
reference, except PaPs.

It is true that P; is simple on F, while P, and P, are double, and P, is triple.
In this paper only point P; will be investigated in detail.

Consider a curve C, not transformed into itself by T, and passing through
P;. Take the plane x4 + Kx; = 0 of the pencil passing through P, and P;,
tangent to C. This plane is transformed into E%x, + Kx, = 0 or x4 + KE8,
= 0 by T and hence is non-invariant. The curve cut out on F; by x4+ Kx;=0
is therefore non-invariant. The common tangent to the two curves is not
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transformed into itself. Thus the two curves do not touch each other at Pj.
Now, since C was a variable curve through Pj; satisfying the non-invariant
property, it follows that P; is an imperfect coincidence point. In similar
manner it can be shown that P,, P,, and P, are also imperfect coincidence
points. The following theorem has just been proved.

THEOREM 3. The Iy, belonging to Fy in S; has four imperfect points of co-
tncidence.

Consider the complete system of curves ]Al cut out on Fy4 by all surfaces of
order eleven. Its dimension is 243, its genus is 243, and the number of vari-
able intersections of two members of the system is 484. A curve A of this
system is not in general transformed into itself by 7. There are, however,
eleven partial systems |4, in |4 | which are transformed into themselves. By
use of |4.| we find

a4 age + ap? + axd + asixax® + a6’ + aax:®roxsix
+ agx’x3x5x® + aexr*xlxa? + a100:rsxs + anx Pty + daaxtxetrsiey
+ a13%:%25%03x0s + @120+ a1sxPrax® 4 arexrtlxst + @by sd

4+ a16%:12007052 + @19%1%2°%s + GaoxPxXaxs’ F @21x1P%5?K0." + Gaox®xa%rsxs®

+ @2x1202%%s5 + 224X 000 08 4 BasX 1% X8+ BaexPxsxs® + arrxiPxatagt

+ arex1x205% 04t + QaeXatr®xst + Asex1ax P 4 @axx®xd + asaxixxs?

+ a33x22x37x42 = 0.

We refer the curves 4; projectively to the hyperplanes of a linear space of
thirty-two dimensions. We obtain a surface ¢, of order 44, as the image of I;.
The equations of the transformation for mapping I;; upon ¢ in S;, are

pX1 = x ! pXi12 = X140 % 3%, pX 23 = x1x2%x,®
pXy = x1 pX13 = x:1%x28%03x4 pX s = x1Zx0x3%%°
pX3 = x5! pX14 = x12x2%x4 pX 25 = x1x23x3%x,8
pX4s = x4 pX15 = X1%% 9% 5 pX26 = 22%03% 48
pXs = xx3%4° pX16 = x14x0%x 5t pXor = x1%x%x44
pXe = x1%%2x43 pX17 = x:3x0x48 pX s = xixoPxsixd
pX7 = x:8%2x5%x? pX1s = x1%x97x5? pX s = xtx33x44
pXs = x15xo%xaxy? pX19 = X1%2°x3 pX3 = x1%2x3%%43
PX9 = xrtrsbx,? PX20 = x°%ox4 PXM = xs%%3%xd
pX10 = x:18x3'%, pX 2 = x:12x3%%48 pX 3 = x1x3%%?
pX11 = x15x5%5xs pX 20 = x:12x%3%,° pX33 = X737,

By eliminating p, x1, x2, %3 and x, from these thirty-three equations and
Fi(x1x2x3x4) = 0, we get as the thirty equations defining the surface:

Xl X5 XG X7 X8 X9 X11X12X18 = 0
X5 X21X22X24X25X26X28X29X31
X2 X9 X13X14X17X18X19 0
X13X5 X7 X8 X10X11X12
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X3 X1sX 01X 30X 01X 50X 55| _ 0
X 30X 6 X20X 20X 23X 24X 05

X4 X 20X 02X 23X 04X 0gl| _ 0
XauX7 X1X12X16X 16

Xo X7 X5 X10X 01| _ 0
X 23X 25X 26X 25X 29

and equation e X3 + bXas + ¢X2s + dX29 = 0. Designate by P’;the branch
point of ¢ corresponding to the point P; on F,. The coordinates of P’; are
all zero except X.

The curves A, on Fy pass through P; if a; = 0. The tangent plane at P;
to Fyisx; = 0. Now, the system of eleventh-degree surfaces passing through
P; cuts x; = 0 in the curves x; = 0, and

a1 et a0 8 2100150 s s+ Q01 30 %0 S B orx e Sx - @ax 1 Bx g2 = 0.

For general values of the constants this is an eleventh-degree curve with a
triple point at P;, two branches being tangent to the line x;, = x4, = 0 and one
to the line x, = x; = 0. When a5 = @10 = @21 = @27 = @32 = 0, the plane
eleventh-degree curve breaks up into eleven lines through P;. These are all
distinct except when either a; = 0 or as = 0, when they coincide with x, =
x4 = 0 or x; = x; = 0, respectively. Since P; is imperfect, the ]All through
P; must have eleven distinct branches unless each branch touches one of the
two invariant directions. In the plane x, = 0, the involution I, is generated
by the homography T, which is x’y: x'3: 'y = x1: E*3: E3%4.

By use of the plane quadratic transformation X, y1: ¥3: ¥4 = wiws: ws?: wiws
and X7, w; : w3 i wy = Y4 y3Ye : y1Y; one gets

(w1, ws,we) ~x—1 (¥, ¥5y4,Y1Y3) ~1, (ESy4,Efy3y4,E*y1y3) ~x (ESwy, ESws, Frwy)
or
x’lzx’zzx'4 = E4x1:E3x3:x4 fOf T-).
Again (w1, ws,ws) ~x—1 (V&,y594Y1Y3) ~1, (V& E*y3y4, E"y1ys) ~x (wy, Ews, Ew,)
orTsisx’y:x'3:x"y = x1: E%;: E'xy. By use of XT3:X™! one gets
(w1, ws, ws) ~ (Elw,, E'w;, Edw,)
or Tyisx’y:x"3:x"y = EV%; : E'x3:x4 = %1 : E'x3 : x4
Thus, the following theorem has just been established.

THEOREM 4. The imperfect point of coincidence Ps has an tmperfect point
in the first order neighbourhood along the x1 = x, = 0 direction. It also has an
imperfect point in the second order neighbourhood. In the third order neighbour-
hood there is a perfect point.

Now, investigate the characteristics of the point adjacent to P; along the
invariant direction x4 = x; = 0. By use of Y7T,Y™!, where the transforma-
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tion Y is y1:y3:ys = wsw,s : wi? : wyw, and the inverse is wy : W3 1 Wy = yaya:
Y1ys 1 ¥18, we get (wi,ws,ws) ~y=-1(Yysy1yay’) ~1,(E%y3y6 E.9551) ~y (Efwy,
E*w;ws). We have an imperfect point. Define T'; as YT,Y L. ~iNow
apply XT’",X™* = T"', to our next order point, remembering that T, may
be written x’; :x'3:x's = E%;: E?x3:x4. We obtain

('wl,‘w's,w4) ~x—x(y42,yay4,y1ys) ~T, (y42,E2ysy4,E7y1ya) ~Xx (wl,Ezwa,E"lm) .

This transformation T"; or x’1 :x’3 : 2"y = x1: E%; : E™x4 gives evidence of
another imperfect point. For the third order neighbourhood, we use
YT, Y '=T"",. This becomes (w1,w3ws) ~(E*w,, E*w;,w,), denoting an imper-
fect point in the third order neighbourhood of P;along the x;=x4=0 direction.

Finally, by use of XT"",X™' = TV, we get (w1, ws, ws) ~ (w1, E*ws, EMw,)
or (w1, E*wsw,) since EM = 1. This indicates a perfect point. We shall state
our result in the following theorem.

THEOREM 5. Along the invariant direction x;=1x,=0, there are no perfect
points in either the first or second or third order neighbourhood of Ps. There is,
however, a perfect point in the fourth order neighbourhood.

The following theorem is self-evident.

THEOREM 6. The imperfect point P; on Fy has no perfect points in the neigh-
bourhood of the first or second order. It does have one in the third order neighbour-
hood and one in the fourth order neighbourhood, however.
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