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Abstract

Background. Recent stressful life events (SLEs) are an established risk factor for a range of
psychiatric disorders. Animal studies have shown evidence of gray matter (GM) reductions
associated with stress, and previous work has found similar associations in humans. However
longitudinal studies investigating the association between stress and changes in brain structure
are limited.
Methods. The current study uses longitudinal data from the UK Biobank and comprises 4,543
participants with structural neuroimaging and recent SLE data (mean age = 61.5 years). We
analyzed the association between recent SLEs and changes in brain structure, determined using
the longitudinal FreeSurfer pipeline, focusing on total GMvolume and five a priori brain regions:
the hippocampus, amygdala, anterior cingulate cortex, orbitofrontal cortex, and insula. We also
examined if depression and childhood adversity moderated the relationship between SLEs and
brain structure.
Results. Individuals who had experienced recent SLEs exhibited a slower rate of hippocampal
decrease over time compared to individuals who did not report any SLEs. Individuals with
depression exhibited smaller GM volumes when exposed to recent SLEs. There was no effect of
childhood adversity on the relationship between SLEs and brain structure.
Conclusions. Our findings suggest recent SLEs are not directly associated with an accelerated
decline in brain volumes in a population sample of older adults, but instead may alter brain
structure via affective disorder psychopathology. Further work is needed to investigate the effects
of stress in younger populations who may be more vulnerable to stress-induced changes, and
may yet pinpoint brain regions linked to stress-related disorders.

Introduction

Stressful life events (SLEs) are a recognized risk factor for a range of disorders including
depression, psychosis, and infectious illnesses [1]. The brain is central to responding to external
stressors and regulating the biological stress response [2]. Findings from animal studies have
suggested prolonged exposure to stress can cause reductions in graymatter (GM) volumes within
the brain in areas such as the hippocampus, cingulate cortex, and prefrontal regions [3–5]. This
has been attributed to the hypothalamic–pituitary–adrenal (HPA) axis, the main biological
system that secretes glucocorticoids in response to stress, which is thought to be neurotoxic at
sustained levels [6, 7]. It is posited this could in part be due to excitotoxicity, where the over-
stimulation of cells via glutamate receptors are further exacerbated by elevated glucocorticoids,
resulting in neuronal damage [8, 9].

Cross-sectional structural neuroimaging studies have reported associations between recent
SLEs in adulthood and smaller gray matter (GM) volumes within regions including the anterior
cingulate cortex (ACC), insula, prefrontal cortex, hippocampus, and amygdala in healthy adults
[10–13]. To clarify the direction of effect, studies using longitudinal data are required, of which
we are aware of only two in non-clinical samples. Papagni et al. [14] (N = 26) found reductions in
the hippocampus, parahippocampus, and anterior cingulate cortex (ACC) associated with SLEs
that occurred over a three-month period. Ringwald et al. [15] (N = 212) found a negative
association between SLEs and GM volume changes over a 2-year follow-up period within the
medial prefrontal cortex. These findings indicate that recent SLEs may have a detectable effect on
macroscopic brain structure.

The current study investigated the effects of recent SLEs on brain structure using a large,
longitudinal, population dataset from the UK Biobank (https://www.ukbiobank.ac.uk). Previous
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work examining the neural correlates of lifetime adulthood stress
and early life adversity using cross-sectional UK Biobank data has
been carried out by McManus et al. [16], where the authors did not
find a significant association with GM volumes in their hypothe-
sized regions-of-interest (ROIs): the hippocampus, amygdala, and
thalamus. Here, we sought to investigate whether recent SLEs are
distinctly associated with brain structural changes in this popu-
lation sample. We have focused on total GM volume and five
subregions of the brain: the hippocampus, amygdala, ACC, orbi-
tofrontal cortex (OFC), and insula. These regions have previously
been implicated in the regulation of the stress response [7], with
evidence of structural neuroanatomical changes within these regions
associated with stress in non-clinical adult samples [10–15, 17].
These brain regions have also been observed to exhibit aberrant
functional connectivity associated with stress in healthy adults
[18, 19], and in animal studies [20]. One study further observed
persistent anomalous resting-state connectivity in rodents a week
after being exposed to a stressor within the prefrontal cortex and
amygdala [21].

We have analyzed a subset of UK Biobank participants who had
available structural neuroimaging and recent SLE data measured at
two timepoints. We categorized participants into two groups based
on whether they had any or no recent SLE exposure and examined
for group differences in brain structure. We hypothesized that
individuals exposed to recent SLEs would have smaller brain vol-
umes and lower cortical thickness, and that changes in their brain
structure over the follow-up period would be more adversely
affected when compared to individuals without recent SLE expos-
ure. Among individuals with recent SLE exposure, we hypothesized
that brain structural measures would be negatively associated with
the number of events.

Methods

UK Biobank data

The UK Biobank is a population-based cohort of over 500,000 parti-
cipants from across the United Kingdom (https://www.ukbiobank.ac.
uk), recruited between the ages of 40 and 69 [22]. Recruitment began
in 2006, and baseline data were collected covering an extensive range
of variables relating to health and wellbeing, sociodemographic
measures, and lifestyle. There have since been three follow-up assess-
ments, where imaging data were collected in the latter two [23].
Between 2014 and 2020, participants completed their first MRI
scan, while data collection for the second MRI scan occurred
between 2019 and 2022. At each follow-up, participants who com-
pleted the MRI scan also completed the main assessment suite on
the same day, which included recent SLE data and depressive
symptom data. The current study used data from participants
who had complete structural MRI data and recent SLE data at both
imaging visits (N = 4,543). In between assessments, participants
were also invited to complete one-off online questionnaires such as
the 2016MentalHealth Questionnaire (see Supplementary Figure S1
for a timeline illustrating data collection). The current study obtained
only childhood adversity data from the Mental Health Question-
naire. Supplementary Figure S2 presents a flow chart depicting
sample sizes of the analyses and a list of the variables used is reported
in Supplementary Table S1.

The UK Biobank obtained ethical approval from the Research
Ethics Committee (Ref:11/NW/0382), and participants provided
written, informed consent. Data in the current study (application
ID: 87152) were retrieved from the UK Biobank in July 2023.

Recent stressful life events

At each imaging assessment, participants were asked if they had
experienced any SLEs within the last 2 years (Data-Field 6145).
Participants selected events from a pre-specified list of six events
which included: a serious illness, injury or assault to self or to a close
relative, death of a close relative or spouse/partner, marital separ-
ation/divorce, or financial difficulties. We calculated an SLE score
based on the number of events (0–6). Participants were assigned
group membership at each timepoint to either SLE�, for scores of
zero, or SLE+, for scores greater than zero. In our analyses, we
compared brain structural measures between the two groups, and
we also examined the association between the SLE score and brain
structure within the SLE+ group.

Neuroimaging measures

The UK Biobank’s MRI acquisition protocol and quality control
have been previously described [24]. Participants were scanned at
four centers (Cheadle, Reading, Newcastle, and Bristol) using the
same scanner model (3 T Siemens Skyra). At the time of data
retrieval in the current study, there were no repeat imaging scans
completed at Bristol, and therefore only data from three centers
have been included.

T1-weighted scans from both timepoints were processed using
the longitudinal stream in the software FreeSurfer (v7.3.2) (https://
surfer.nmr.mgh.harvard.edu) [25], which has demonstrated reli-
able structural measurements for longitudinal neuroimaging ana-
lysis [26]. Segmented regions were derived based on the Desikan–
Killiany Atlas [27]. In the current study, we focused on global total
GM volume and five brain regions that have been previously
associated with recent stress in healthy adults: (1) hippocampus
[14, 28, 29]; (2) amygdala [12, 29]; (3) OFC [10, 13]; (4) ACC [11,
13, 14]; and (5) insula [13, 17]. Results from the FreeSurfer processing
were assessed following the ENIGMAQuality Control (QC) Protocol
(https://enigma.ini.usc.edu/protocols/imaging-protocols/), where
seven participants were excluded due to poor data quality. Further
details are reported in the supplement.

For the subcortical regions, the hippocampus and amygdala, we
analyzed bilateral GM volumes summing left and right volume
measures as obtained from FreeSurfer. For the cortical regions,
theOFC, ACC, and insula, we analyzed themean cortical thickness,
which was calculated by averaging the FreeSurfer thickness esti-
mates across hemispheres for each region.

Other non-imaging variables

Time
The time between assessments was considered as the time from the
first imaging assessment and calculated using the assessment date
(Data-Field 53) for each participant. Time at the first imaging
assessment was therefore zero across all participants. The time to
the second imaging assessment was calculated in days by subtract-
ing assessment dates and dividing by 365 to convert it to years.

Depressive symptoms
Recent depressive symptoms were measured using the total score
of the Patient Health Questionnaire (PHQ)-2 (Data-Fields 2050–
2080), the depression subscale of the PHQ-4 [30, 31].We selected
the PHQ-2 as these data were collected on the same day as the
MRI scans and were the most complete measure of psychopath-
ology. As a large number of participants scored zero, indicating
no recent depressive symptoms, we grouped participants based
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on the established PHQ-2 cut-off score, where scores of ≥ 3
indicated probable depression (PHQ+) and < 3 indicated no
probable depression (PHQ�) [30].

Childhood adversity
Participants completed the Childhood Trauma Screener (CTS-5)
[32] as part of the online 2016Mental Health Questionnaire (Data-
Fields 20489–20491), and a total CTS-5 scorewas calculated. Not all
participants completed the online assessment, which was issued
between follow-up assessments, and 1,219 participants were miss-
ing data. As just over half of the participants reported experiencing
no childhood adversity, we created a childhood adversity
(CA) grouping where participants were assigned membership
based on whether they experienced any (CA+) or no childhood
adversity (CA�).

Sociodemographic variables
Other variables used in the current study as potential confounders
included: employment status (Data-Field 6142), the presence of a
long-standing illness, disability, or infirmity (Data-Field 2188),
alcohol intake frequency (Data-Field 1558), smoking status
(Data-Field 20116), and the Townsend deprivation index (Data-
Field 22189). The Townsend deprivation index measures socio-
economic deprivation, with higher scores indicating higher depriv-
ation [33]. Further details regarding the treatment of the variables
are reported in the supplement.

Statistical analysis

All analyses were conducted in R (v4.3.1), with the statistical
significance level set at p < 0.05 (two-tailed).

Sample characteristics of the SLE� and SLE+ groups were com-
pared using independent sample t-tests or chi-square tests as appro-
priate, using data from the first imaging assessment or at recruitment.

Our primary analysis was to compare brain structural measures
between the groups SLE+ and SLE�. We employed linear mixed
models (LMM), using the R package lme4 [34], and participants
were modeled with random intercepts to account for the repeated
measures. LMMs do not require data to be measured at consistent
time intervals making it suitable for analyzing longitudinal data
[35]. We fitted separate LMMs with each brain structural measure
as the outcome variable, and SLE group, time, and the interaction
term SLE group × time as the main fixed effects. The interaction
term allowed us to examine whether there were group differences in
brain structural changes over the study period. Time was measured
in years from the date of the first imaging assessment.

In an additional analysis we fitted LMMs using SLE score with
data from only the SLE+ group, to examine whether the number of
SLEs were associated with changes in brain structure. Separate
LMMs were modeled for each brain structural measure as the
outcome variable, and with SLE score, time, and SLE score × time
as the main fixed effects.

In exploratory analysis, we investigated whether recent SLEs
influenced the relationship between depression and brain structure,
given the strong evidence linking recent stress and the onset of
depressive disorders [36, 37]. We fitted LMMs with depression
group (PHQ+ or PHQ�), SLE group, and the interaction term
SLE group × depression group as the main fixed effects, controlling
for time. We also considered the effects of childhood adversity as it
has been associated with smaller brain volumes [38, 39], and is
linked to an increased sensitivity to stress in later life, potentially
amplifying the effects of stress in adulthood [40, 41]. To examine

for the effects of childhood adversity, we fitted LMMs to include CA
group (CA+ or CA�), SLE group, and the interaction term CA
group × SLE group as the main fixed effects, controlling for time.

In all models, where the interaction term was not significant, we
re-fitted the models excluding the interaction term to report the
fixed effects of the variables of interest [42]. All models were
adjusted for age, age2 (where age was taken at the first imaging
assessment), sex, total intracranial volume (ICV), and scan center,
included as fixed effects. Age and total ICV were standardized to
avoid varying scales across covariates affecting model convergence
[34]. Neuroimaging and SLE data were used across both timepoints
in all models.

To adjust formultiple comparisons, we used a 5% false discovery
rate (FDR) correction inclusive of the main and exploratory ana-
lyses (51 p-values). The p-values reported in the results section are
uncorrected, with a superscript indicating whether significant p-
values had passed correction.

We conducted several sensitivity analyses to test for changes to
the significance of our results in our main SLE group analysis.
Firstly, we excluded data from participants who had experienced
a stroke in their lifetime (n = 52), and who had outlier total ICV
(n = 36), defined in the ENIGMA QC protocol as 2.698 standard
deviations above or below the sample mean ICV. Next, we adjusted
the models for potential confounding sociodemographic variables,
which were found to be different between SLE groups (see Table 1):
employment status, the presence of a long-standing illness, disabil-
ity or infirmity, alcohol intake frequency, smoking status, and the
Townsend deprivation index. Finally, we re-fit the models to
include a broader range of neuroimaging confounders as identified
by Alfaro-Almagro et al. [43], which included non-linear terms for
time, age and sex interactions, and head motion measures. Further
details are provided in the supplement.

Whole-brain exploratory analysis

We conducted a final exploratory analysis looking at group differ-
ences in structural measures across all FreeSurfer regions in the
brain between SLE+ and SLE�. This analysis was to provide further
insight into potential stress-affected brain regions separate from
our analytical plan detailed above. Using LMMs with SLE group as
themain fixed effect, and controlling for time, we examined left and
right cortical thickness and surface area measures for a total of
68 regions, and left and right subcortical volumes for a total of
18 regions. Results were corrected for multiple comparisons using a
5% FDR correction.

Results

Sample characteristics

The current study used 4,543 participants from the UK Biobank
who had available neuroimaging and recent SLE data at both
imaging assessments. Sample characteristics and group differences
between SLE+ and SLE- at the first imaging assessment are reported
in Table 1. The SLE+ group were younger, consisted of more
females, were more likely to be in employment, consumed less
alcohol, more likely to be current smokers, and lived in more
socioeconomically deprived areas. More SLE+ individuals reported
having a long-standing illness, disability or infirmity and depres-
sion, and had a mean SLE score of 1.26 (SD = 0.53) at the first
imaging assessment. The frequencies of SLE types are reported in
Supplementary Table S2. All participants completed two imaging
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assessments with a mean time of 2.65 years (SD = 1.09; Range 1.00–
7.34 years) between assessments.

Associations between recent SLEs and brain structure

The estimates of the main effects of SLE group and time are
reported in Table 2 for the LMMs fitted for each brain structure.
Where the interaction term for SLE group × time was not signifi-
cant, the reported coefficient estimates are from the models where
we have excluded the interaction term.

Only the hippocampus revealed a significant SLE group × time
interaction, where hippocampal volumes decreased over time at a
slower rate in the SLE+ group as compared to the SLE� group (seen
by the different slopes in Figure 1). In all other brain regions, SLE
group did not have a significant effect, suggesting there was no
difference in brain structure between SLE+ and SLE� when con-
trolling for time. All brain regions, except for the ACC, reported a
significant effect of time, exhibiting a reduction in GMvolumes and
inmean cortical thickness over the follow-up period. The full model
results are reported in Supplementary Table S3.

When we examined for associations between the SLE score and
brain structure within the SLE+ group, we did not find any significant
effect of the interaction term SLE score × time, nor of the SLE score as
amain effect (see Supplementary Table S4). This suggests the number
of events was not associated with brain structure.

Exploratory analyses of the effects of depression and childhood
adversity

The results from the exploratory analysis investigating the effects
of depression group (PHQ+ or PHQ–) are reported in Table 3.
The interaction term SLE group × depression group only had a
significant effect on total GM volume. Individuals with probable
depression exhibited smaller total GM volumes where they
reported recent SLEs, compared to those who did not report
any recent SLEs (Figure 2). We also observed a significant
interaction effect of SLE group × depression group on hippo-
campal volumes, however this did not pass correction
(pcorrected = 0.070). The full model estimates are reported in
Supplementary Table S5.

Table 1. Sample characteristics of participants at the first imaging assessment (n = 4,543)

SLE– SLE+ SLE– versus SLE+

Variable (n = 2,794) (n = 1,749) t-Value/χ2 p-Value

Age, mean (SD) 62.20 (7.54) 60.39 (7.19) 8.01 1.45 × 10�15**

Sex, n (%) Female 1,446 (51.8) 983 (56.2) 8.56 0.003**

Ethnicity, n (%) White 2,716 (97.2) 1,697 (97.0) 3.76 0.584

Mixed 10 (0.4) 6 (0.3)

Asian/Asian British 23 (0.8) 22 (1.3)

Black/Black British 17 (0.6) 13 (0.7)

Chinese 10 (0.4) 3 (0.2)

Other ethnic group 13 (0.5) 7 (0.4)

Current employment status, n (%) In employment 1269 (45.4) 956 (54.7) 63.66 4.92 × 10�13**

Retired 1440 (51.5) 704 (40.3)

Unable to work 59 (2.1) 70 (4.0)

Unemployed 10 (0.4) 10 (0.6)

Other 14 (0.5) 5 (0.3)

Alcohol intake frequency, n (%) Daily 435 (15.6) 238 (13.6) 29.90 1.45 × 10�6**

1–4 times/week 1701 (60.9) 979 (56.0)

<3 times/month 502 (18.0) 429 (24.5)

None 156 (5.6) 102 (5.8)

Smoking status, n (%) Current 75 (2.7) 70 (4.0) 8.20 0.017*

Previous 921 (33.0) 533 (30.5)

Never 1789 (64.0) 1142 (65.3)

Townsend Deprivation Indexa, mean (SD) �2.05 (2.59) �1.77 (2.77) �3.35 0.001**

Experienced any childhood adversity (CA+), n (%) 1195 (42.8) 749 (42.8) 0.32 0.570

Probable depression (PHQ+), mean (SD) 488 (17.5) 465 (26.6) 54.83 1.32 × 10�13**

Any long-standing illness, disability, or infirmity, n (%) 484 (17.32) 393 (22.47) 19.31 1.11 × 10�5**

Abbreviations: SLE, stressful life event; SLE�, no recent SLE; SLE+, one ormore recent SLE; CA+, any childhood adversity; PHQ+, probable depression based on the Patient Health Questionnaire-4
depression subscale.
aTownsend deprivation index measures the socioeconomic deprivation of a participant’s census area (based on postcode) at point of recruitment. Higher scores indicate higher socioeconomic
deprivation.
*p < 0.05.
**p < 0.01.
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We did not find a significant interaction between SLE group
and CA group associated with brain structure, nor was there a
main effect of CA group on brain structure in the subsequent
models excluding the interaction term (all p > 0.05). Our results
indicate there were no differences in brain structure between
individuals who had experienced childhood adversity and those
who had not. The fullmodel estimates are reported in Supplementary
Table S6.

Sensitivity analyses

There were no changes to the significance of our results when we
excluded individuals who reported having a stroke in their lifetime
or outlier total ICV, nor when we included the lifestyle and socio-
demographic variables as covariates of no interest. When we
expanded our model to include the additional neuroimaging con-
founders, the interaction between SLE group × time associated with
the hippocampus was no longer significant.

Whole-brain exploratory analysis

The results of the whole-brain analysis are reported in the
Supplementary Table S7 for group differences between SLE+ and
SLE�. None of the findings survived correction for multiple com-
parisons.

Discussion

We investigated the effects of recent SLEs on brain structure using a
longitudinal neuroimaging dataset from a large population cohort.
The hippocampus exhibited a slower decline in GM volume over
the study period in individuals with recent SLE exposure compared
to those without recent SLE exposure. In exploratory analysis, total
GM volume differed between SLE exposure groups in individuals
with depression but not in non-depressed individuals. We found
childhood adversity had no effect on the relationship between
recent SLEs and brain structure.

Our results exhibited a decrease in hippocampal volumes with
time, which is expected in terms of aging-related changes
[44]. However, contrary to our expectations, the SLE+ group
exhibited a slower rate of volume reduction over the follow-up
period. The hippocampus is highly plastic, andwhile thismaymake
it a region of vulnerability in many disorders [45], hippocampal
GM volume reduction might be countered through mental stimu-
lation, exercise, or social interaction [46–50], which may serve as

Table 2. Fixed effect estimates from the linear mixed models comparing brain structure between participants who have or have not reported recent stressful life
events

SLE groupa Time (years from first imaging assessment) SLE group × timeb

Brain structure
(dependent variable) b 95% CI p-Value b 95% CI p-Value b 95% CI p-Value

Total gray matter
volume

�0.277 [�0.903, 0.349] 0.386 �1.842 [�1.981, �1.704] < 0.001**,† – – –

Hippocampus volume �0.010 [�0.023, 0.003] 0.142 �0.054 [�0.057, �0.051] < 0.001**,† 0.007 [0.002, 0.013] 0.010*,†

Amygdala volume 0.004 [�0.001, 0.010] 0.133 �0.012 [�0.013, �0.011] < 0.001**,† – – –

Orbitofrontal cortical
thickness

�0.002 [�0.004, 0.001] 0.165 �0.004 [�0.004, �0.003] < 0.001**,† – – –

Anterior cingulate
cortical thickness

�0.001 [�0.004, 0.001] 0.297 �4.62 × 10�4 [�1.34 × 10�4, 0.001] 0.129 – – –

Insula cortical
thickness

�0.002 [�0.004, 0.001] 0.250 �0.003 [�0.004, �0.003] < 0.001**,† – – –

Abbreviations: SLE, stressful life events.
The linear mixed models included participants (n = 4,543) modeled as random intercepts. All models controlled for sex, age at first imaging assessment, age2, total intracranial volume, and scan
centre.
aReference category for SLE group is SLE– (coded as 0) comprising individuals who have not reported a recent SLE.
bWhere the interaction term of SLE group × time was not significant, the fixed effects from the model excluding the interaction term are reported. Only the hippocampus estimates are from the
model that included the interaction term. Full results are present in Supplementary Table S3.
*p < 0.05.
**p < 0.01.
†Findings survived false discovery rate correction for multiple comparisons (p-values reported are uncorrected).

Figure 1. The predicted marginal effects from the linear mixed model showing differ-
ent trajectories of the SLE� and SLE+ groups for hippocampal volume changes over the
study follow-up period. The shaded regions represent the 95% confidence interval.
Abbreviations: SLE, stressful life event; SLE�, individuals who reported no recent SLEs;
SLE+, individuals who reported one or more recent SLE.
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protective factors. This may explain our findings, as a higher
proportion of the SLE+ group were still in employment, which
could suggest higher mental stimulation, and were found to con-
sume less alcohol, a risk factor associated with brain shrinkage
[51, 52]. However, there were no changes to our results when we
controlled for employment status and alcohol intake in a sensitivity
analysis. The interaction between SLE group and time was no
longer significant when we expanded our model to include a wider
set of neuroimaging confounders. However, the difference in the
rate of hippocampal volume change between SLE groups was very
subtle, estimated to be slower by 0.007 ml/year in the SLE+ group
(see the interaction term of SLE group × time in Table 2).

It is possible that stress may pose more of a risk at a younger age,
given the global median age of onset for stress-related disorders was
found to be below 35 years [53]. Neuroimaging studies investigating
stress in older cohorts (>60 years) are limited. One longitudinal
study, in a depressed and non-depressed sample (N = 159, mean
age = 70 years), found that SLEs were associated with larger hippo-
campal volumes at baseline but there was no evidence of a temporal
association between SLEs and brain structure [54]. Another cross-
sectional study (N= 466,mean age = 71 years) reported that SLEs that
occurred over the age of 65 were associated with greater amygdala
volumes, but not with hippocampal volumes [55]. Previous longitu-
dinal studies by Papagni et al. [14] and Ringwald et al. [15] that found
significant associations between recent SLEs and changes in brain
structure analyzed younger samples with mean ages of 25.2 years
(N = 26) and 32.8 years (N = 212) respectively, suggesting stress-
induced changes could be more prominent in younger populations.

Stress is subjective to an individual’s experience, and itmay be the
perception of stressful events that is more relevant to structural brain
changes rather than the occurrence of an event. Previous cross-
sectional work has reported associations between higher perceived
stress levels and smaller GM volumes within the prefrontal cortex
[56] and insula [17], and a longitudinal study has suggested that a
smaller hippocampus represents a vulnerability to stress [57]. There
is also some evidence of rumination being associated with larger GM
volumes within the prefrontal cortex andACC [58], whichmay have
affected our results. As such, future studies could incorporate sub-
jective measures of stress and rumination.

We found total GM volume differed between depressed indi-
viduals with and without recent SLE exposure, but not in nonde-
pressed individuals. Stress is linked to the onset of depression
[36, 37] and severe subclinical depressive symptoms have been
associated with smaller GM volumes [59, 60]. Our findings indicate
that recent stress may influence the association between depressive
symptoms and total GM volume as has been previously reported
[61]. However, further work is required to clarify the direction of
effect as smaller GM volumes have been associated with major
depressive disorder in non-stress studies [62, 63]. In addition,
affective-disorder psychopathology could result in an individual
becoming susceptible to SLEs [64, 65], subsequently leading to
further harmful effects.We did not observe any effects of childhood

Table 3. Fixed effect estimates from the linear mixed models examining the association between brain structure and recent stressful life events and depression

SLE groupa Depression groupb SLE group × depression groupc

Brain structure (dependent variable) b 95% CI p-Value b 95% CI p-Value b 95% CI p-Value

Total gray matter volume 0.126 [�0.595, 0.848] 0.731 0.318 [�0.758, 1.395] 0.562 �1.943 [�3.370, �0.516] 0.008**,†

Hippocampus volume �0.004 [�0.016, 0.008] 0.503 �0.018 [�0.036, �7.73 × 10�5] 0.049* 0.029 [0.005, 0.052] 0.018*

Amygdala volume 0.006 [8.02 × 10�5, 0.011] 0.047* �0.001 [�0.009, 0.007] 0.795 – – –

Orbitofrontal cortical thickness �0.001 [�0.004, 0.001] 0.274 0.001 [�0.002, 0.005] 0.402 – – –

Anterior cingulate cortical thickness �0.001 [�0.004, 0.002] 0.397 0.004 [3.51 × 10�4, 0.008] 0.032* – – –

Insula cortical thickness �0.001 [�0.004, 0.002] 0.518 �0.001 [�0.005, 0.003] 0.648 – – –

Abbreviations: PHQ, Patient Health Questionnaire; SLE, stressful life events.
The linear mixed models included participants (n = 4,506) modeled as random intercepts. All models controlled for time (in years from first imaging assessment), sex, age at first imaging
assessment, age2, total intracranial volume, and scan centre.
aReference category for SLE group is SLE– (coded as 0), comprising individuals who have not reported a recent SLE.
bReference category for the depression group is PHQ– (coded as 0) comprising individuals who are unlikely to have a depressive disorder based on the cut-off score (<3) for the PHQ-2.
cWhere the interaction term of SLE group × depression group was not significant, the fixed effects from the model excluding the interaction term are reported. Only total GMV and the
hippocampus estimates are from the model that included the interaction term. Full results are present in Supplementary Table S5.
*p < 0.05.
**p < 0.01.
†Findings survived false discovery rate correction for multiple comparisons (p-values reported are uncorrected).

Figure 2. The predicted marginal effects from the linear mixed model showing the
differences in total GM volumes between depression groups depending on recent SLE
exposure (SLE group). The error bars represent the 95% confidence interval. Abbrevi-
ations: GM, gray matter; SLE, stressful life event; SLE�, individuals who reported no
recent SLEs; SLE+, individuals who reported one or more recent SLE; PHQ+, individuals
with probable depression; PHQ�, individuals without probable depression.

6 See et al.

https://doi.org/10.1192/j.eurpsy.2025.2 Published online by Cambridge University Press

https://doi.org/10.1192/j.eurpsy.2025.2
https://doi.org/10.1192/j.eurpsy.2025.2


adversity on the association between recent SLEs and brain struc-
ture. However, as childhood adversity is thought to increase sensi-
tivity to stress [40, 41], perceived stress levels may be more relevant
in this context.

The current study had several limitations. Firstly, the question-
naire capturing recent SLEs was limited to six events. While these
events are found in other validated life event questionnaires [66, 67],
they did not capture other event types such as having serious
problemswith a friend or being the victimof theft. The questionnaire
also did not facilitate the reporting of multiple events of the same
type, meaning the datamay have underreported the number of SLEs.
The UK Biobank data comprised individuals from mainly white
European ethnic backgrounds (97% of the current sample), and
older adults, affecting the generalizability of results to other racial
and ethnic groups. In addition,wemay be observing a survival bias in
the study sample as participants have actively participated in
repeated data collection, which could indicate that they are overall
healthier and perhaps more resilient to stress. The time between
assessments varied with some participants completing a follow-up
assessment more than 2 years after their first imaging assessment. It
is, therefore, possible that SLEs with potentially impactful or lasting
effects may have occurred outside of the 2-year period defining a
recent SLE, andwere therefore not accounted for in the study. Future
study design using experience sampling methods to record daily
stressors over a shorter period may be an alternative approach to
capture an individual’s experience of stress.

In conclusion, using longitudinal neuroimaging data from a
large population cohort, we have found that recent SLEs may not
accelerate brain structure reductions in older adults, but may
influence changes through affective disorder psychopathology.
Further research is needed to uncover the effects of stress on the
general population, with a particular focus on younger populations,
who may be more vulnerable to stress-induced changes. This work
may yet pinpoint vulnerable brain regions linked to stress-related
disorders.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1192/j.eurpsy.2025.2.
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