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Sliding versus till deformation in the fast motion of an ice
stream over a viscous till
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ABSTRACT. The partitioning between till deformation and sliding in the fast flow of
ice streams with active basal melting is examined assuming no adhesion of the till to the ice
base and incompressible viscous fluid behavior for the till. For deforming-till thickness of
10 m or less the predicted contribution to basal motion by sliding is larger than shearing in
the till unless there is short-scale roughness with wavelengths less than order 0.1 m on the
ice sole. At such short scales strain heating within the till and focused melting on the ice sole
would quickly eliminate the roughness. Thus, fast flow over a till bed would be expected to
be mostly by sliding over the subglacial till. More realistic continuum behavior of the till
including non-linear and compressible deformation strengthens the conclusion. If sliding is
not dominant, then there must be adhesion of the till to the ice base, some mechanism that
continuously generates short-scale roughness on the ice—till interface, or very weak

internal slip boundaries within the till.

1. INTRODUCTION

Ice streams are zones of fast-moving ice within ice sheets
(Bentley, 1987). Of particular interest are the ice streams
that discharge from the interior of the West Antarctic ice
sheet across the Siple Coast into the Ross Ice Shelf and
ultimately the Ross Sea (Alley and Whillans, 1991). The high
speed (100-1000ma ") of these ice streams is achieved with
a very low driving stress (~10kPa). Deformation through
the thickness of the ice (~1km) is expected to contribute
< 1% of the speed at the upper surface. Almost all of the
total velocity is produced by motion at the base (Engelhardt
and Kamb, 1998). Discovery of a weak layer of dilated till
beneath parts of Ice Stream B (Blankenship and others,
1987; Engelhardt and others, 1990) has led to the notion that
lubrication by soft till is responsible for the fast motion at the
low driving stress.

The high speed could be achieved by some combination
of distributed deformation within the till layer, or slip on
discrete interfaces, such as the ice—till interface, within the till
or at the till base (Alley, 1989; Engelhardt and Kamb, 1998;
Truffer and others, 1999). Pervasive deformation of the till
and slip at the ice—till interface have been the focus of most
previous investigations relevant to the West Antarctic ice
streams. There is observational evidence for both of these
processes, but no conclusive evidence regarding which
process is most important (Engelhardt and Kamb, 1997). This
open question represents a major gap in fundamental under-
standing of fast ice-stream motion and related geomorphic
issues concerning till transport, erosion required to replace
till carried away and till discharge to deltas deposited at the
grounding line of ice streams.

This paper addresses the partitioning of the basal
motion between till deformation and slip at the ice base.
The primary assumption is that the till-ice boundary is a
sharp, well-lubricated interface which may be expected
under conditions in which there is net heat flow to the base
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of the ice (Engelhardt and others, 1990), melting of the ice
and lack of adhesion of till components to it. In this circum-
stance, stress is transmitted between the ice and till by
roughness elements of the ice—till interface. The resulting
mean shear stress can cause deformation through the thick-
ness of the till. Slip in the presence of the roughness elements
can occur by local deformations in the till, which we analyze
using the classic theory of ice sliding (Nye, 1969) with the
primary modification that the ice is assumed to be rigid
and the till to deform like an incompressible viscous fluid,
thus reversing the role of ice and bed. In this regard, both
the shearing through the till thickness and the slip at the
ice—till interface are mediated by deformation in the till.
Both mean till deformation and slip increase with increasing
softness of the till. The primary control variables affecting
the relative amount of sliding and till deformation are the
interface roughness and the vertical thickness of the till that
can deform. We explore how the ratio of sliding to till
deformation depends on these two variables, and examine
some implications concerning motions in the till imposed

by the sliding.

2. PHYSICAL DESCRIPTION OF THE PROBLEM

Figure 1 illustrates the configuration of ice, till and bedrock.
The interaction between these elements is complex. For
practical analysis we introduce assumptions and simplifica-
tions about the mechanical behavior of the ice, ice—till con-
tact zone and till that are not generally realistic for a
comprehensive treatment of soft-bed mechanics. We argue
that they are adequate to make useful conclusions concern-
ing the relative amount of till deformation and sliding where
there 1s net heat flow to a well-defined interface between
clean ice and weak, fine-grained till at very high mean pore
pressure. These conditions are generally thought to hold at
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Fig. 1. The geometry of the problem. The velocity of the ice is
U = U + Uy, where s stands for sliding and d _for till
deformation (shearing ).

many locations at the base of the West Antarctic ice streams
(Engelhardt and others, 1990; Engelhardt and Kamb, 1997).

Assumption 1 is that the ice—till contact is well lubricated
and does not support shear stress locally. This is the primary
and most crucial assumption of the analysis. We expect that it
will be reasonable for the conditions defined above. Continu-
ous generation of meltwater at the interface would form a
layer of negligible shear strength composed of water or
super-fluidized till that is much weaker than the bulk material
beneath. This layer is assumed to be thin compared to the
amplitude of roughness on the interface.

Certainly some circumstances would cause this
assumption to break down. Debris load in the basal ice
would be exposed by melting, and partially exhumed
particles would have to plow through the till beneath before
they were released. If there were basal freezing or low pore
pressure in the till, ice would invade the pore space of the
till. If the till were strong and/or contained clasts with size
comparable to the till thickness, then clasts might be driven
into the ice base. All of these would tend to diffuse the inter-
face and suppress lubrication (Iverson, 1999). Less clear is
the small-scale geometry of the ice sole as shaped by
thermodynamic interaction with the surfaces of the fine-
grained till particles. One point of view is that the high pore
pressure responsible for weakening the till and the continual
regression of the ice interface by net melting prevents
invasion of the ice into the till and maintains a locally
smooth interface. If this were not true, then the slip process
envisioned as a velocity discontinuity between the ice and
till would not be applicable, but it could still occur by
concentrated shearing in a thin boundary layer of till slurry.

Assumption 2 is that the till is a single bulk continuum. In
reality, the till is a water-saturated, granular medium. For this
assumption to be valid the thickness of the lubricating layer,
the roughness height, the horizontal scale of the roughness
and the thickness of the till must all be significantly larger than
the typical grain-size. Tulaczyk and others (1998) found that
particles ~10"'mm and smaller accounted for 75% of the
mass in the till beneath Ice Stream B, so this is not a serious
limitation for that environment. Furthermore, the assumption
requires the pore water and rock matrix to move together
without diffusion of pore water and/or its pressure through
the matrix. Io make an initial assessment, we compare the
time 74 for diffusion of water pressure to the time 7 to change
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the loading. Each is related to the horizontal distance 6
between the protruding and re-entrant interface roughness
components moving over the till (e.g. 6 = A/2 in Fig. 1). These
are estimated, following Iverson (1999), as: 74 ~ 620477“, /k with
till matrix elastic compressibility ¢, till permeability k£ and
pore-water viscosity 7y; 71 = U/8 where U is the slip velocity.
The condition 7q = 7; defines a transition scale 6 =
(k/anyU). For 6 < 6, there will be time for pore pressure to
diffuse before the stress is changed by displacement of the
roughness. Tor reasonable values expected for the till
beneath Ice Stream B (Iverson, 1999, p.51) (=10 ®Pa ',
E=2x10""m?%n, =18x 10 *Pas 'and U > 10°ma ),
6y <0.03 m. Horizontal scales A need to be significantly
larger than this for the single continuum assumption to hold.

Assumption 3 is that the till continuum is viscously
incompressible. Incompressibility will hold only as long as
assumption 2 is valid, since the pore water then resists
compression of the pore space. From the discussion of
assumption 2, this third assumption can fail at horizontal
scales below about 1m where the sideways displacement of
material 1s in part pore water without horizontal
displacement of the matrix, which would instead contract
and extend vertically. The resulting accommodation of the
moving roughness is an additional process and will speed
the sliding by an amount limited by pore-water diffusion.
This added deformation process should enhance sliding more
than bulk shearing. Thus, neglecting the compressibility of
the till should cause an underestimate of slip vs bulk till shear-
ing in the basal motion.

Assumption 4 is that shearing in the till is like a linearly
viscous fluid. To allow for change of effective till viscosity
with distance from the interface z (Fig. 1), it is described by

n(z) = noe®*, (1)

where h = ¢! is a scale height for the viscosity increase. For
example, an increase of till viscosity with distance from the
source of water by melting at the ice—till interface can be
accommodated. The assumption of linear viscous behavior is
made for practical convenience as others have done (e.g. Alley
and others, 1987; Hindmarsh, 1998a). Actually the till is
expected to be nearly frictional-plastic (Kamb, 1991; Iverson
and others; 1998; Tulaczyk and others, 2000). The lubricated
roughness of the rigid ice base causes stress concentrations
and associated local motions just beneath them. Introducing
more realistic non-linear strain-rate softening behavior would
concentrate deformation in a narrower zone below the ice—till
interface. Excess pore pressure effects (Iverson, 1999) might
also soften the till near the interface. These can be simulated
by using a stronger increase in effective viscosity below the
ice—till contact. Thus, neglecting non-linearity in the shearing
should also cause an underestimate of slip vs bulk till shearing
in the basal motion.

Assumption 5 1s that the ice is rigid. It 1s justified by the
huge effective viscosity contrast between the ice and till that is
implied by the large fraction of total motion produced at the
base by shearing and/or slip over a layer (H;) that is much
thinner than the ice thickness (Hj). The ratio of effective
viscosity of theice (7;) and the till (1) can be approximated by

i Hi U
Ui H U’

with H; ~10° m, H; ~10° to 10'm, U, /U; ~10? to 10°. This
ratio is about 10* to 10%. In other instances the viscosity


https://doi.org/10.3189/172756500781832729

Thorsteinsson and Raymond: Sliding vs till deformation in fast ice-stream motion

contrast may not be so extreme, and deformation of the ice
would also have to be considered (Hindmarsh, 1998a, b).

We also make the simplifying geometrical assumption
about the ice—till contact (Fig. 1) that the roughness is two-
dimensional with low slopes (A/A < 1).

3. TILL DEFORMATION AND SLIDING

The basal velocity of an ice stream, U (~ surface velocity), is
the sum of slip velocity Uy at the interface and the velocity Uy
due to mean shearing through the till thickness. Us is
examined following Nye (1969). This analysis relates Us to
motions in the till introduced by roughness of the ice—till
interface and to the resulting drag. The drag is then used to
calculate mean shearing in the till and Uy. The separation of
the analysis into slip-induced motion of till around rough-
ness elements and mean shearing is justified by the assump-
tion of linearly viscous till properties and is consistent with
the perturbation solution of the full problem assuming low
roughness of the ice base.

Till deformation only occurs over a limited thickness,
ultimately limited by the thickness of the till H (~10°m to
10' m; Blankenship and others, 1986, 1987) or possibly by a
progressive increase of effective viscosity with distance away
from the icetill interface (£ > 0 in Equation (1)). The
solution for £ # 0 will be referred to as the “variable viscosity”
solution. We also calculate the deformation assuming that
the viscosity is constant within a till layer of fixed thickness
H. This will be referred to as the “constant viscosity” solution.
Both end-member cases are solved, but the development of
solutions focuses on the variable viscosity solution. We will
use H when the same formula applies equivalently to the
scale height or till layer thickness.

3.1. Field equations for till deformation

Let Z point downward and Z be parallel to the mean ice sole
(Fig. 1). Let the velocity components in the till be given by
[Ua(2) + wi(x, 2),0,w (x, )], where u; and w; are the
velocities associated with the motion of till around roughness
elements. Using the governing equations for incompressible
viscous flow we derive a general solution for the velocities in
the till. Then we apply the boundary conditions, assuming
that the roughness of the ice sole is small. This allows us to
derive analytical solutions through perturbation analysis.
The governing equations for slow, steady-state flow of an
incompressible, viscous fluid with vertical variation of viscosity,
in two dimensions, without body forces and inertia terms, are

Opu+ 0,w=0, (2)

0.p = 0.(2)(Dou + Oyw) + 1(2)(Fu + Fu)

0:p = 0:1(2)(20:w) + 1(2)(Fw + 2w)
where p is the pressure. Here, and in the following,
0yp = Op/Ox and so forth.

The Fourier transforms of Equations (2) and (3) with
respect to the T space variable gives

ik + 0. = 0, (4)

3)

—ikp = moe®* [€D.u(k, 2) — ikéw + u — K*u],  (5)

9.p = noe** [2£0.w(k, ) + 02w — K1) . (6)
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Elimination of w in Equation (5) by substitution from Equation
(4) gives

1 .
ﬁ = 7’]()6& %82@ +w + ﬁaj@ — 6Z@ . (7)

Differentiating Equation (7) with respect to z and substituting

for the lefthand side of Equation (6) gives
01w+ 260°w + (£ — 2K*) *w

2025 — 44 12¢2\— (8)

—2K°80.w+ (K + KE&)w=0.

The four roots of the characteristic Equation (8) are
given as

—gi% & 1 4 & 4ikE = —(gia(k,g)) LBk, €),
where

a(k,§) = % \/% <\/§4 + 16k + 24(]€§)2 +e4 4k2> ,

Bk, &) = % \/% <\/54 + 16k + 24(kE)* — & — 41@) .
(9)

Thus, the general solution for W(k, z) may be expressed as
W(k, z) = e /%[ A cos(Bz) + Bsin(62)]

10
+ el&/219%[C cos(B2) + Dsin(B2)] - )

Substitution of Equation (10) into Equation (4) gives

a(k, 2) :%e—@ﬂW{ [A (g + a) - Bﬁ] cos(Bz)
+ [Aﬁ + B(% + a)} sin(ﬁz)}
- %e@*“)z{ {C’ (g + a) - Dﬂ} cos(Bz)

+ {Cﬁ + D<§+ a)} sin(ﬁz)} .

A, B,C and D are constants to be determined from bound-
ary conditions.

(11)

3.2. Boundary conditions and till motion induced by
sliding

The ice—till interface is assumed to have a low-amplitude,
two-dimensional waviness described by

z1(z) = ef(x), (12)
where f(x) is O(l). The development below requires small
slopes (ef'(z) < 1) and also small amplitude compared to
the layer thickness (e f(z) < H). The mean square amplitude
of the bed relief'is

o L% e 2¢ [
=1 a@w-—= [T a3

where [ is the length of the perturbed part of the bed.

The following boundary conditions apply on 21 (z). Till
velocity normal to the interface is zero (no flux of till in or
out of the ice), which leads to w = (U — u) f'(x), or using
tana = dz; /dz = ef'(z) and U — u = U

—Ussina+wcosa = 0. (14)
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There is no shear stress on the interface (no adhesion),
which gives

Toz = = (T — T22) tan 2a = 7, tan 2« (15)

2
where 7., = —7,, are the deviatoric normal stresses.
Since 7, = 9(0,u + 0, w) and T, = 210, u, this gives
4ed, uf’
Al @) g
1+ [ef'(x)]
where 0.u, 0w, J,u and tan « are all of O(e).
Following Nye (1969), Equations (14) and (15 when
expressed to O(e) on z = 0 become
wi = Usf' (@),
A.uy = —Usf'(x).
The corresponding expressions in wavenumber domain are

@ (k,0) = —ikU.,F, (18)

ou + O,w = 20, utan 2c0 =

(17)

0. (k,0) = KUy f . (19)

The formulation of the boundary conditions on z = O rather
than 21 (x) also requires that |21, < H.

The boundary conditions at the base of the till are
different for the cases of variable and constant viscosity.
The variable viscosity solution corresponds to a half-space
with an exponential depth variation of viscosity. In this
case, the boundary condition is zero deformation as
z— 00 and requires C'=D = 0. Equations (10), (11),
(18)and (19) require

A = —ikU,f,

2
— ikUT k2+a2—62+a§+§—

- B(€+ 2a)

These values for A, B, C'and D plugged into Equations (10)
and (11) complete the solution for w; and u;.

(20)

The constant viscosity solution corresponds to a layer of
constant viscosity of specified thickness H. The boundary
conditions at z=H are w(z,H)=w(z,H)=0,
assuming no sliding of the till. Manipulation of Equations

(10), (11), (18) and (19) leads to
A= —y(e M L 2kH + 2K*H? + 1),
B=ry(e M 1 2kH 4+ 1),

21
C = ~(e*! — 2kH + 2K*H* 4+ 1), 21
D = (e —2kH + 1),
where
ikUy f
VT GRH _ 2R 1 AKH (22)

The two alternative solutions transformed back to the space
domain look very similar when scale height A = 1/€ and till
thickness H are the same.

3.3. Drag and mean shearing of the till

The drag transmitted between the ice and till is found by
integration of the normal stress on the wavy interface given
by Equation (5) as
N(k,0) = p(k,0) — 2n(0)0.w: (k,0) . (23)
The solution for normal stress (Equation (23)) with the vari-
able viscosity gives
N(k,0) = —2ik*no U, fD, (24)
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where D is
v | +aé® + (302 4 B2 + 3k*)¢2
4R3(E+2a) | 8
+da(o® + 2+ 3K7)E + 2(a* + 57)° (25)

+ 1202k — 6k + 452/#] .

The corresponding force in the x direction on the bed
(z = 0) per unit width in the y direction is

F= / N(z,2) Zld :%/ kKF(k)N*(k, 0) dk,

(26)

where the asterisk denotes the complex conjugate. This is a
general formula for the force, into which we may substitute
the expression for N*(k‘, 0) given by the complex conjugate
of Equation (24).

Drag is the force per unit area, (7,.) = F'/l which leads
to
< 2e°F (k) J ()
Tyz) = 2 E*noUsD(k, §) ——==—" dk, 27
< J,«> A NoUs ( 6) ml ( )

using Equations (24) and (26).
For z; = ef(x) = eAsin(kz) we find

(Tp2) = = U A?KEPD (28)

where D depends on the scale height and wavenumber. In
the limit £ — 0 (h — 00) we get D(,k) — 1 and thus
— (T = noUs A%K?, which is the solution found by Nye
(1969). The constant viscosity solution for the drag is solved
in an analogous manner.

The drag induces a shear stress 7., that is nearly
constant through the till thickness. The corresponding shear
rate results in velocity

z dz (Tes)H
Uz:—/ Tpy—— = — e "%, 29
a?) 00 n(z) o (29)
Hereafter we will write Uy = Ug(0) = —(7..) H /0.

The spatial form of u; and w; for the single wavelength
interface (f(z) = Asin(kz)) is
g & +al+a’+ 3 -
uy (,2) = Alle™ 7 ||

£+ 2a

cos(fz)

2, 12
+14 +a HH R +ag sin(8z) | sin(kx),

20
(30)
and
wy(z,z) = AkoUse_@‘L“)Z{ cos(0z)
2, 2 32 &
+ Fta®—fF +at+ 4 | sin(Bz) p cos(kx),
B(€+ 2a)
(31)

which we obtain by inverse Fourier transform.

The total velocity associated with motions around
roughness elements and the mean shearing is
[u1(z, 2) + Uq(2), w1 (x, 2)]. Figures 2 and 3 show this total
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Fig. 2. 'The instantaneous velocity field in the till. Here the
wavelength is 30 m, the scale height h = 5m, Us =458 ma !
and the amplitude A >~ 0.5m ( the roughness Ak = 0.1). Max-
imum vertical velocity is 46ma ' and maximum horizontal
velocity is 42ma " The rigid ice moves at U = 500ma "
(the arrow for the ice movement only indicates the direction ).

velocity field, using the sinusoidal perturbation of the ice—
till interface, for wavelengths of 30 and 0.3 m, respectively.

4. COMPARISON OF SLIDING AND SHEARING

We use the ratio Uy /U to describe the relative contribution
of shearing in the till and of sliding at the ice—till interface to
the total basal motion. For the variable viscosity solution,
Equations (28) and (29) give

2 4
% 2745(;; ) 68 + a8 + (3a” + B> + 3k°) €
+4a(a? + B + 3K%)E + 2(a? + F7)° (32)

+120°K* — 6k + 4@8] .

Re-writing, using a = 2«/€ and b = 23/¢,
2
Ys :¢[8(kh)2(3 + 6a 4 3a>— 6(kh)* + b?)
Us ™ 32(kh)’(1 + )
+ (a® + V) + 1+ 4a + 60> + 20° + 4a° + 4ab2] ,
(33)

where

a=a(kh) = \/% (\/1 +16(kR)" +24(kh)*+1+4(kh)?) ,

b = b(kh) = \/% (\/1 + 16(kh)4+24(kh)2—1—4(kh)2> :
(34)

For the constant viscosity solution, the ratio between
sliding and till deformation is

Ua

S

cosh(2kH) 4 (kH)? + 1
sinh(2kH) — 2kH

= (Ak)QkHl (35)

Figure 4 shows the velocity ratio U/Uy (reciprocal of
Equations (33) and (35)) for the variable and constant viscosity
solutions, for comparison. Note that a rather large roughness
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Fig. 3. The instantaneous velocity field in the till, for X =
30cm, h=>5m Ug=240ma ' and amplitude A ~ 5mm
(the roughness Ak = 0.1). Maximum vertical velocity is
24 ma " and maximum horizontal velocity is 260 ma . The
rigid ice moves at U = 500 m a ! (the arrow for the ice move-
ment only indicates the direction ).

Ak = 0.1 is used. The two solutions converge for large kH
values (short wavelengths or large scale height). For small k¥H
(long wavelengths or short scale height) the fixed bottom of
the deformable till layer in the constant viscosity case limits
the contribution to the surface velocity from deformation
compared to the variable viscosity case.

Figure 5 shows sliding as a percentage of total speed
(100 x Us/(Us+ Uy)) for the variable viscosity solution
(Equation (33)) for a range of roughness (Ak), scale height
(h) and wavelength (A =27/k) for sinusoidal ice-till
interface f(z) = Asin(kx), with Ak < 1 and A < h. Note
that we have plotted the ratio as the percentage contribution
of sliding and till deformation to the total ice velocity. The
contribution from sliding increases as the roughness
decreases. The contribution from till deformation increases
as the thickness of the till layer increases. This is the qualita-
tive behavior that one would expect.

The wavelength at which sliding contributes more to the
ice motion (Us/Uy > 1) depends on roughness Ak, and till
thickness h. Examples are: h =5 m, Ak =0.1, then A must be
>03m; h =5m, Ak =005, A > 75 mm; h =5m, Ak =0.001,
A > 3mm (Fig. 5).

Our conclusion is that sliding dominates till shearing
when the thickness of till is order 10 m or less, unless there
1s substantial roughness on the ice—till interface at scale of
order 10 "'m or less.

10°
— ===,
— =
n=n(z)
1
3 10 F ,/ 1
Z b
= 107
16| \ \ L
10 10° 10' 10° 10

kH

Fig. 4. The ratio of sliding velocily to deformational velocity
Jor the variable viscosity and constant viscosity solution as a
Sunction of KH. The roughtness is Ak = 0.1. The requirement
A < H means that results for KH < I are suspect.
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Fig. 5. The contribution of sliding and deformational velocity
to the total ice velocity for the variable viscosity case. For all of
these cases the requirement |z1| .. = A > H is met.

max

5. DISCUSSION

The motion in the till induced by sliding has possible
implications for mixing of till components, which can be
important with regard to the distribution in the till of
distinctive components relevant to the history of deposition
(e.g. Scherer and others, 1998). The energy generation caused
by the distribution of strain in the till may influence changes
in the ice—till interface by differential melting. The details of
the spatial pattern of till deformation will be influenced by
the specific mechanical behavior of the till (assumptions
2—4). However, the general pattern of the deformation and
associated generation of heat follow from continuity.

5.1. Motion pattern in the till

Unless all of the shearing is beneath the deepest roughness
elements, vertical motion is forced in the till when a rough
ice base moves over it. When the motion is predominantly by
sliding Us, a vertical motion scale is AV = Usa (Equation
(14)), where « 1s the amplitude of the slope fluctuations of the
roughness. The corresponding vertical strain scale is Usa/l,
where | <'H is the thickness of roughness-induced de-
formation in the till. The vertical motion and corresponding
strain rate are maximum under locations of maximum slope
deviation of the ice—till interface.

When the till is incompressible, the vertical straining forces
a similar horizontal straining and a variation of horizontal
velocity AU = Usad /1, where ¢ is the horizontal scale distance
between the protrusions and re-entrants (assumption 3 for
6 > 1m). The fluctuations AU will be maximum in between
the locations of maximum slope deviation and under the
protrusions and re-entrants. AU will interact with the mean
motion Uy introduced by mean shearing in the till; it will
become larger than Uy when (Us/Uqg)(aé/1) > 1, which is
expected for long horizontal scales.

The combination of vertical and horizontal motions in-
duces a circulation that migrates through the till. Figures 2
and 3 show realizations of this motion for our assumption of
viscous fluid. Figure 6 shows corresponding particle tracks
for four single-wavelength ice—till interfaces A = lm, 5m,
10 m and 100 m, with A = 5 m and Ak = 0.1. Note that since
we fix the roughness Ak, the amplitude of the ice—till inter-
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Fig. 6. Tracks for particles starting at © = 0 and a depth
beneath the ice of \/10 for X\ =1m (a),5m (b), 10m (c),
100m (d). In all cases h = 5m and Ak = 0.1. Notice how

the motion changes from mostly horizontal left to right to
circular motion as the wavelength increases.

face varies with wavelength . For short wavelengths (e.g.
A = 1m, Fig.6a) the particles move at an almost constant rate
horizontally, induced by mean shearing, with comparatively
little vertical movement. Compressibility of the till, which
canbe more important at this and shorter scales, would result
in even smaller horizontal speed variations. As the wave-
length gets longer (A = 5m, Fig. 6b) the relative vertical
motion increases, and the horizontal motion becomes vari-
able, but still unidirectional. For yet longer wavelength (A =
10 m, Fig. 6¢) the vertical motions become more pronounced
and the horizontal motion is now both along and against the
ice-flow direction. Thus, the particles start tracing out loops
within the till. For very long wavelengths (A =100 m, Fig. 6d)
the particles trace an elongated ellipse that is very slowly
being advected downstream by the mean shearing in the till.
If the ice base has roughness at different scales, then the inter-
action between these kinds of patterns is likely to produce
substantial vertical mixing of the till.

The progression in Figure 6 illustrates the kind of behavior
expected from the simple scale analysis above. Compressibility
of the till matrix in the case of high permeability would reduce
the circulating motion of the rock particles, but that would
have to be taken up by a similar circulation of the pore water.
The circulating motion at long horizontal scale can only be
avoided by bonding the ice—till interface (no sliding) and
forcing all of the motion to be from shearing beneath the
deepest roughness elements. If that shearing is on discrete
surfaces (e.g. Truffer and others, 1999), then the roughness of
those surfaces becomes an issue.

5.2. Evolution of the ice—till interface

A crucial question is what determines the roughness of the
ice—till interface. Hindmarsh (1998a, b) considers the deform-
ation of both the ice and the till and the resulting stability of
the ice—till boundary. This difficult analysis could predict the
interface roughness. Hindmarsh assumes adhesion between
the ice and the till, which is quite different from our assumed
boundary condition. With a condition of extreme contrast in
effective viscosity between the ice and deformable till and a
slippery interface, we suspect that the evolution of the ice base
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Fig. 7. The heat generation within the till, for (a) X = 0.3m and (b) X\ = 30 m. In both cases h = 5m, U = 500ma ', ng =
5% 10° Pa s and Ak = 0.1. The maximum heat generation is 0.89 Wm " at z = 0.05m for X = 0.3m and 14mW m " at z =

3m for X = 30m.

will be controlled by differential melting rather than deform-
ation of the ice.

The general features of strain heat generation can be seen
from the foregoing scale analysis. The resulting heating will
be located where strain rate is maximum. For the sliding-
induced motion, this maximum is beneath the locations of
maximum slope deviation of the interface. The heating
induced by the mean shearing will be maximum under the
deepest protrusions of the ice, where the differential shearing
motion is accommodated over a shorter vertical distance.
Examples of the instantaneous total heat production rate per
unit volume for the total motions (sliding-induced and mean
shearing) are shown in Figure 7 for the incompressible fluid
assumption with a short and long wavelength. The patterns
illustrate the above general expectations.

These patterns are being moved through the till at the slip
velocity. The question is whether the till is differentially
heated to a sufficient degree to cause differential melting on
the ice sole. In order to assess whether the ice sole sees the
average field of the heat generation within the till or indi-
vidual peaks, we estimate the relative time-scales for vertical
diffusion and horizontal movement. The time-scale for the
motion of the ice over the spatial pattern of heat generation
inthe till is t, = A/(2Us), the time it takes the ice to move half
a wavelength. The time-scale for vertical diffusion is approxi-
mately tq = d?/k, where d is the distance to the heat maxi-
mum from the ice—till interface and & is thermal diffusivity
of the till (on the order of 10 ® m”s ). The ice sole sees the
average of the heat generated if the ratio tq/ty is large. tq will
be large if the source is deep and ¢, will be small if Uy is large.
For A ~ 30m, Uy =458 ma 'and d = 3 m (Fig. 7b) this leads
to tq/ty > 10. The ice should thus see the average of the heat
generated. For short wavelength, A = 0.3 m, Us = 240m al
d = 0.05m and Ak = 0.1 (Fig. 7a) we find that tq/t, ~ 0.25.
Therefore we expect that melting of the ice base will reflect to
some extent the spatial pattern of heat generation beneath.

Another relevant time-scale is how long it takes to flatten
out the waviness of the sole. The sole of the ice is an isotherm
(at pressure-melting point). The roughness of the sole distorts
1sotherms below, which causes focusing of the upwelling heat
flux and thus differential melting. There is also an effect from
the strain heating, due to the spatial distribution of heat
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generation depending on the sliding velocity and horizontal
roughness scale as discussed above. The differential melting
rate 1s given roughly by

 2(A/d) @ +G
11— (A/d)* oL

where qq = Qglq is the heat flux due to the mean heat
production (Qq) in a layer of thickness l4, the product
pL ~3035MJ m ° G is the geothermal heat flux, assumed
to be G = 75mW m % and d is the depth to the top of the
heat-producing layer. Here we have assumed that the scale
for the focusing of the geothermal heat flux is roughly
A/(2m), which is also roughly the depth to the maximum

m Y

in strain heating. For A =30 m, A =5m and A = 0.5 m, we
find that gg =24 mWm % using @y =1.2mWm > I =2m
and d = 2m (Fig. 7b). The differential melting rate is then
about 4mma . It would thus take ~100 years to completely
flatten the roughness A ~ 5m. For ice speed of 500ma ',
this means a distance of ~10—100 km. Since we use the max-
imum value here, this is an upper limit for the differential
melting. Differential melting is therefore ineffective in
removing large-scale roughness. In contrast, for A = 0.3 m
and h = 5m and Ak = 0.1, we find that g4 = 56 mW m 2,
using Qg = 07mWm >, lg = 0.08m and d = 0.02m (Fig.
7a). The differential melting rate is then 7mma ', whereas
the amplitude in this case is only 4.8 mm. This kind of a
short-scale roughness would thus be smoothed out very
quickly (~1 year).

6. CONCLUSIONS

Given our assumptions (1-4) about the till and the ice—till
interface, sliding at the ice—till interface must be the dominant
mechanism of basal motion. Accounting for strain-rate
softening and compressibility of the till (relaxing assumptions
3 and 4) will not alter the conclusion. If] in fact, till shearing is
dominant, then either there is adhesion of till to the ice base
(assumption 1 inapplicable), a mechanism for continuous
generation of short-scale roughness on the interface, or a weak
interface in the till (failure of assumption 2). One question we
have not addressed is the origin of waviness at the ice—till
interface, but we have shown that the roughness at which till
deformation contributes significantly to the velocity is
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smoothed out very quickly by melting. Even without mean till
deformation, sliding over a rough ice base will tend to induce
coupled vertical and horizontal motion in the till that may
mix the till.
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